同底数幂的乘法及单项式的乘法讲义

合集下载

《同底数幂的乘法》课件

《同底数幂的乘法》课件
《同底数幂的乘法》课件
2023-10-27
目 录
• 同底数幂乘法概述 • 同底数幂乘法规则与技巧 • 同底数幂乘法在数学中的应用 • 同底数幂乘法的实际应用 • 同底数幂乘法的扩展知识
01
同底数幂乘法概述
定义与公式
定义
同底数幂的乘法是指将相同的底数和指数相乘。
公式
a^m × a^n = a^(m+n)(其中a为底数,m和n为指数)。
在代数中的应用
整式乘法
同底数幂的乘法是整式乘法的基础,可以用于解决整式的乘法问 题,如求解代数式的值、化简多项式等。
幂的运算
同底数幂的乘法可以用于求解幂的运算,如求解$x^n \times x^m$的值,以及求解$(a^m)^n$的值等。
指数运算
同底数幂的乘法可以用于求解指数运算,如求解$a^n \times a^m$的值,以及求解$(a^m)^n$的值等。
运算性质
交换律
同底数幂乘法满足交换律,即 a^m × a^n = a^n × a^m。
结合律
同底数幂乘法满足结合律,即 (a^m × a^n) × a^p = a^(m+n) × a^p = a^(m+n+p)。
指数分配律
同底数幂乘法满足指数分配律 ,即a^(m+学知识的联系
与指数幂的定义
同底数幂的乘法是建立在指数幂的基础上的 ,因此需要先理解指数幂的概念和运算规则 。
与乘法的结合律和分配律
同底数幂的乘法满足结合律和分配律,与普 通乘法有相似之处,但也有其独特性质。
与其他数学运算的关系
与除法
同底数幂的除法可以看作是乘法的逆运算 ,满足相同的运算规则。
规则详解
总结词:了解规则

同底数幂的乘法 讲义

同底数幂的乘法  讲义

3、同底数幂的乘法一:知识点1:同底数幂的乘法法则及运用法则:a m·a n=a m+n(m、n都是正整数)即:同底数的幂相乘,底数,指数如:103×105= =注:进行同底数幂的乘法时,一定要注意以下几点:(1)底数必须相同(2)相乘后底数不变(3)指数相加的和等于幂的指数(4)如果是三个或三个以上的同底数幂相乘,同样适用例:(1)、(p-q)5·(q-p)2 (2)、x m·x m+1·x m+2(m为正整数)解:(1)、(p-q)5·(q-p)2=(p-q)5·(p-q)2=(p-q)5+2=(p-q)7(2)、x m·x m+1·x m+2=x m+m+1+m+2=x3m+3思路点拨:做同底数幂的乘法时先观察底数是否相同,若底数相同直接代入公式计算,若底数不同,则应先化为同底数然后再进行计算练习:计算(1)、a2·a4(2)、(-x)6·x8·(-x)5二、知识点2:同底数幂乘法法则的逆运用例:已知a x=2,a y=3(x、y均为正整数)求a x+y的值解:a x+y=a x·a y=2×3=6练习:1、3m+2=27×3n,当m=4时,n=2、若a m=3,a m+n=24,则a n=4、幂的乘方与积的乘方一、知识点1:幂的乘方和积的乘方的法则及运用1、幂的乘方:(a m)n=a mn(m、n都是正整数)即:幂的乘方,底数,指数如:(103)2=103×2=1062、积的乘方:(a·b)m=a m·b m(m是正整数)即:积的乘方等于把积的每一个因式分别,再把所得的积。

区分:幂的乘方是指几个相同的幂相乘;积的乘方指底数是乘积形式的乘方。

例:计算:(1)、(x2)5·x (2)、(-2ab3c4)3解:(1)、(x2)5·x=x10·x=x11(2)、(-2ab3c4)3=(-2)3a3(b3)3(c4)3=-8a3b9c12思路点拨:(1)先用幂的乘方,再用同底数的幂相乘(2)先用积的乘方,再用幂的乘方练习:计算:(1)、(a m)3·a n(2)、(-3a2)2(3)、【(a+b)2】3·【(a+b)4】22、知识点二:幂的乘方,积的乘方与同底数的幂相乘的综合运用例:(1)、(-0.25)11×411(2)、(-0.125)200×8201解:(1)、(-0.25)11×411=(-0.25×4)11=(-1)11=-1(2)、(-0.125)200×8201=(-0.125)200×8200×8=(-0.125×8)200×8=(-1)200×8= 1×8=8思路点拨:幂的乘方和积的乘方法则的你运算同样成立练习:1、(16n)2=48,则n的值为2、2n=a,3n=b,则b n=3、计算:24×44×0.12545、同底数幂的除法一、知识点1:同底数幂除法法则及运用法则:a m÷a n=a m-n(m、n都是正整数)即:同底数幂相除,底数,指数如:108÷105=108-5=103计算:(1)、(ab)10÷(ab)3(2)、(x+y)8÷(x+y)3(3)、42m÷22m-1解:(ab)10÷(ab)3=(ab)10-3=(ab)7=a7b7(2)、(x+y)8÷(x+y)3=(x+y)8-3=(x+y)5(3)、42m÷22m-1=(22)2m÷22m-1=24m÷22m-1=24m-(2m-1)=22m+1思路点拨:把底数不同的幂转化为底数相同的幂,再按同底数幂的运算法则进行运算练习:计算:(1)、(-x)2m+2÷x m(2)、(-x4)3÷x7二、知识点2:零指数幂和负指数幂公式:a0=1,a-p=注:零指数幂和负指数幂运用的前提是底数a不能为0例:(1)、20100(2)、2010-10练习:计算(-3)2-∣-1∣+(2)-1小测验1、计算:(-3ab2c3)4(-x)·(-x2)·(-x3)·(-x4)2、已知:2x+2=m ,则2x= (用含m的式子表示)3、2×8n×16n=222,则n=4、求式子(x+y)·(x+y)3·(x+y)4的值,其中x=2 ,y=-3课后作业:1、下列运算正确的是()A、x·x2=x2B、(xy)2=xy2C、(x2)3=x6D、x2+x2=x42、计算:(a3)2·a3的结果是3、计算:(ab3)2=y·y2·y3=4、先化简再求值:x3·(-y3)2+(-3xy2)3,其中x=-2,,y=45、已知:2x=3 ,2y=5, 2z=15 ,试证明:x+y=z。

幂的运算讲义

幂的运算讲义
即 也能被13整除。
方法二:∵〔 - 〕= = = = ,
∴ 与 也能被13整除,又∵ 能被13整除,∴ 也能被13整除。
题型训练:
计算:1. = 2. = 3. =
4. = 5. = 6.
7. 8. 9.
10. 11.
12. 13.
14. 15.
16. 17. 18.
19. 20.
21. 22.
23. 24.
(2)① 解方程: ; ② 解不等式: < ;
解:① 原方程可化为 ,即 ;∴*-1=2,解得*=3;
②∵ < ,∴ 2*-1> ,
∴ 2*-1>-3(1-*), ∴ 2*-1>3+3*, ∴ -*>-2, ∴ *<2。
方法总结:在含有幂的运算的等式〔不等式〕中,确定指数中的字母取值〔*围〕的方法:通过符号〔等号〕两边各自计算,使左右两边底数一样,然后由指数相等〔不等〕构造方程〔不等式〕来求解字母的取值*围。
综合开展题:1. ;思路引导:先由"两非负数和为0,则每个非负数均为0,〞得到*,y的值,然后化简求值;
2. ;思路引导:先由"三个非负数和为0,则每个非负数均为0,〞得到*,y,z的值,然后代入求值;
3.1;思路引导:∵ ,∴ ,同理有 ,
∴ ,即 ,∴ *y=*+y,即 =1;
4.8或12或16;思路引导:由条件可以列出方程组 ,∴
① ; ② ;
③ ; ④ 。
解:① 不正确,应改为: ,法则中底数不变,指数相减,而不是指数相除;
② 不正确,应改为: , 与 底数不同,要先化为同底数,即 ,再计算;
③ 不正确,应改为 ,*-y与y-*互为相反数,先化同底数再计算;

《整式》同底数幂的乘法讲义

《整式》同底数幂的乘法讲义

一同底数幂的乘法知识要点1、同底数幂的意义同底数幂是指底数相同的幂;如与,与,与,与等等; 提示:同底数幂中的底数可以是具体的数字,也可以是单项式或多项式,但和不是2、同底数幂的乘法法则 同底数幂相乘,底数不变,指数相加,即m,n 是正整数;这个公式的特点是:左边是两个或两个以上的同底数幂相乘,右边是一个幂,指数相加;经典例题例1.填空:1ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;2写出一个以幂的形式表示的数,使它的底数为c,指数为3,这个数为________;34)2(-表示________,42-表示________; 4根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+例2.计算:1=-⋅23b b 2=-⋅3)(a a 3=--⋅32)()(y y 4=--⋅43)()(a a 5=-⋅2433 6=--⋅67)5()5( 7=--⋅32)()(q q n 8=--⋅24)()(m m 9=-32 10=--⋅54)2()2( 11=--⋅69)(b b 12=--⋅)()(33a a例3.如果339+=x x ,求x 的值;例4.已知,2=m a3=n a ,求n m a +和n m a 32+的值练一练一、基础训练1、同底数幂相乘,底数_______,指数______; 用公式表示a m ·a n =______m,n 都是正整数.2、a 3·a 2=a 3+2=______;3、a 2· =a 7;3、-b 2·-b 4=-b 2+4=_______.4、a 16可以写成A .a 8+a 8B .a 8·a 2C .a 8·a 8D .a 4·a 45、下列计算正确的是A .b 4·b 2=b 8B .x 3+x 2=x 6C .a 4+a 2=a 6D .m 3·m=m 46、计算-a 3·-a 2的结果是A .a 6B .-a 6C .a 5D .-a 57、计算:1-122×-123=_____________. 2103·104·105=________________.3a 10·a 2·a=_________________8、计算:1m 3·m 4·m ·m 7; 2xy 2·xy 8·xy 18;3-a2·-a4·-a6; 4m+n5·n+m8;9、一种电子计算机每秒可进行1015次运算,它工作107秒可进行多少次运算二、能力提升1.下面的计算错误的是A.x4·x3=x7 B.-c3·-c5=c8 C.2×210=211 D.a5·a5=2a10 2.x2m+2可写成A.2x m+2 Bx2m+x2 C.x2·x m+1 D.x2m·x2 3.若x,y为正整数,且2x·2y=25,则x,y的值有A.4对 B.3对 C.2对 D.1对4.若a m=3,a n=4,则a m+n=A.7 B.12 C.43 D.345.若102·10n=102010,则n=_______.6.计算1.m-n·n-m3·n-m42x-y3·x-y·y-x2 3x·x2+x2·x7.已知:3x=2,求3x+2的值.8.已知x m+n·x m-n=x9,求m的值9.若52x+1=125,求x-22011+x的值.二幂的乘方知识要点幂的乘方,底数不变,指数相乘,即()mn n ma a =经典例题例1.填空 1. 221()3ab c -=________,23()n a a ⋅ =_________2.5237()()p q p q ⎡⎤⎡⎤+⋅+⎣⎦⎣⎦ =_________,23()4n n n n a b =. 3.3()214()a a a ⋅=.例2.计算1x 237 2 a -b m n 3x 34·x 2例3、1若x 2n =x 8,则m=_________. 2、若x 3m2=x 12,则m=_________;例4、1若x m ·x 2m =2,求x 9m 的值; 2、若a 2n =3,求a 3n4的值;练一练一、基础训练1、幂的乘方,底数_______,指数________.a mn= ______________其中m 、n 都是正整数2、计算: 1232=_____; 2-223=______;3--a 32=______; 4-x 23=_______;3、如果x 2n =3,则x 3n4=_____.4、下列计算错误的是 .A.a55=a25 B.x4m=x2m2 C.x2m=-x m2 D.a2m=-a2m5、在下列各式的括号内,应填入b4的是.A.b12= 8 B.b12= 6 C.b12= 3 D.b12= 26、如果正方体的棱长是1-2b3,那么这个正方体的体积是.A.1-2b6 B.1-2b9 C.1-2b12 D.61-2b67、计算-x57+-x75的结果是.A.-2x12 B.-2x35 C.-2x70 D.08、计算:1x·x23 2x mn·x nm 3y45-y544m34+m10m2+m·m3·m8 5a-b n 2 b-a n-1 26a-b n 2 b-a n-1 2 7m34+m10m2+m·m3·m88-1m2n+1m-1+02012――12011二、能力提升1、若x m·x2m=2,求x9m=___________;2、若a2n=3,求a3n4=____________;3、已知a m=2,a n=3,求a2m+3n=___________.4、若644×83=2x,求x的值;5、已知a2m=2,b3n=3,求a3m2-b2n3+a2m·b3n的值.6、若2x=4y+1,27y=3x- 1,试求x与y的值.8、已知a3=3,b5=4,比较a、b 的大小.7、已知a=355,b=444,c=533,请把a,b,c按大小排列.三积的乘方知识要点积的乘方等于幂的乘积.“同指数幂相乘,底数相乘,指数不变”ab n =()()()ab ab ab n 个ab =()a a a n 个a ·()b b b n 个b =a n bn 经典例题例1.若2,3n n x y ==,则()n xy =_______,23()n x y =________.例2.若4312882n⨯=,则n=__________.例3.计算 1 -328×2387; 281999·0.1252000;例4. 比较3344555,4,3的大小 练一练一、基础训练1.ab 2=______,ab 3=_______.2.a 2b 3=_______,2a 2b 2=_______,-3xy 22=_______.3. 判断题 错误的说明为什么13ab 22=3a 2b 4 2-x 2yz 2=-x 4y 2z 2 3232xy 2=4234y x 46423241)21(c a c a =-5a 3+b 23=a 9+b 6 6-2ab 23=-6a 3b 84.下列计算中,正确的是A .xy 3=xy 3B .2xy 3=6x 3y 3C .-3x 23=27x 5D .a 2b n =a 2n b n5.如果a m b n3=a 9b 12,那么m,n 的值等于A .m=9,n=4B .m=3,n=4C .m=4,n=3D .m=9,n=66.a 6a 2b 3的结果是A .a 11b 3B .a 12b 3C .a 14bD .3a 12b 7.-13ab 2c 2=______,42×8n =2 ×2 =2 . 8.计算:12×1032 2-2a 3y433244243)2()(a a a a a -++⋅⋅47233323)5()3()(2x x x x x ⋅+-⋅5-2a 2b 2·-2a 2b 23 6-3mn 2·m 23 2二、能力提升1.用简便方法计算:4-0.12512×-1237×-813×-359. 55201020112432513()...................(2)(0.125)(8)...............(3)()()()()35432n n n n ⨯--⨯-⋅⋅⋅()2.若x3=-8a6b9,求x的值; 3.已知x n=5,y n=3,求xy3n的值.4.已知 x m= 2 , x n=3,求下列各式的值:1x m+n 2 x2m x2n 3 x 3m+2n。

同底数幂的乘法讲解课程

同底数幂的乘法讲解课程

同底数幂的乘法讲解课程同底数幂的乘法是指当两个底数相同时,它们的幂相乘。

这是一种常见的数学运算,在代数中经常会遇到。

在本篇文章中,我们将详细讲解同底数幂的乘法规则,并提供一些相关参考内容供进一步学习。

同底数幂的乘法规则可以表示为:a^m * a^n = a^(m+n),其中a为底数,m和n为指数。

换句话说,如果两个幂具有相同的底数,我们可以将底数保持不变,将指数相加,得到一个新的幂。

这个规则可以通过以下步骤来证明:1. 首先,我们将a的幂m表示为连乘形式:a^m = a * a * a * ... * a(共m个a相乘)。

2. 同样地,将a的幂n表示为连乘形式:a^n = a * a * a * ... * a (共n个a相乘)。

3. 将这两个连乘式相乘:a^m * a^n = (a * a * a * ... * a) * (a * a * a * ... * a)。

4. 由于相同的因子可以交换位置,我们可以将它们合并成一个连乘式:a^m * a^n = a * a * a * ... * a * a * a * ... * a(共m+n个a相乘)。

5. 根据指数的定义,我们可以将上述连乘式写成指数形式:a^m * a^n = a^(m+n)。

通过这个规则,我们可以轻松地计算同底数幂的乘法。

例如,假设我们要计算2^3 * 2^4。

根据乘法规则,我们可以将底数2保持不变,将指数3和4相加得到7,即2^3 * 2^4 = 2^7。

因此,2^3 * 2^4 = 128。

同底数幂的乘法在诸多数学上的应用中扮演着重要的角色。

它常常用于解决各种问题,例如计算复利、指数函数的运算等等。

因此,对同底数幂的乘法规则有深入的理解是非常重要的。

以下是一些相关参考内容,供进一步学习:1. 视频教程: "同底数幂的乘法" - Khan Academy(可在YouTube上搜索)这个视频教程简单而明了地解释了同底数幂的乘法规则,并提供了一些例子进行演示。

八整式的乘除讲义-整章

八整式的乘除讲义-整章

一 整式的乘除一、同底数幂的乘法1.同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。

即:mnm na a a +⋅=(m ,n 都是正整数)。

这个公式的特点是:左边是两个或两个以上的同底数幂相乘,右边是一个幂,指数相加。

注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.公式拓展:p n m a a a ⋅⋅= 。

【典型例题】例1:计算:(1)821010⨯; (2)23x x ⋅-(-)(); (3)32)(x x -⋅例2:计算:(1))()()(32b a a b b a +⋅+⋅+ (2)23x 2y y x -⋅()(2-)(3))()()(25y x x y y x -⋅-⋅- (4)n 2n 1n a a a a ++⋅⋅⋅总结()()(),n nn a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数例3、计算:31213)(2x x x x x x n n n ⋅+⋅--⋅-+ 4236)()()()(a a a a -⋅-⋅-⋅-例4:已知x 22m +=,用含m 的代数式表示x 2。

【变式练习】(1) –x2·(-x3) (2) –a·(-a)2·a3(3) –b2·(-b)2·(-b)3(4) x·(-x2)·(-x)2·(-x3)·(-x)3(5) 1+-•n n x x x (6)x 4-m ·x 4+m·(-x)(7) x 6·(-x)5-(-x)8·(-x)3(8) -a3·(-a)4·(-a)52 逆用同底数幂的法则逆用法则为:n m nm a a a •=+(m 、n 都是正整数)【典型例题】1.(1)已知x m=3,x n=5,求x m+n。

同底数幂乘法经典例题讲解-知识复习

同底数幂乘法经典例题讲解-知识复习
8、理解: (x-y) 2=(y-x)2即a 2=(-a)2
9、明确乘方的底数: -a 2 和-a3底数都是a;(-a)2和(-a)3底数都是-a
注意 条件:①乘法
②底数相同
结果:①底数不变 ②指数相加
练一练
下面的计算对不对?如果不对,应当怎样改正.
(1)b3·b3=2b3
× b6
(2)b3+b3=b6
(2)已知an-3·a2n+1=a10,求n的值; 解:n-3+2n+1=10,
n=4; (3) 3×27×9 = 32x-4,求x的值;
解:3×27×9 =3×33×32=32x-4,
2x-4=6;
x=5.
课堂小结
am·an=am+n (m,n都是正整数)
同底数幂 的乘法
法则
am·an·ap=am+n+p(m,n,p都是正整数)
=x2 x(3 -x)2 =-x7
例3 (1) (-x)3 (-x)5 (-x6)+4 x10 x4
= (-x3) (-x5) (-x6)+4x14
= -x14 +x14
=0
(3) 2n +2n -3×2n+1
整式的乘法 复习总结
1、同底数幂相乘运算法则:
同底数幂相乘,底数不变,指数相加。
即 a m ·a n= a m+n(m,n都是正整数)
2、会逆用法则: 即 a m+n=a m ·a n (m,n都是正整数)
3、注意 am ·an 与am + an的区别 4、不能疏忽指数为1的情况:如a·an =an+1 5、若底数不同,先将底数化为一致 6、注意: 注意负数分数的乘方要加括号 7、区分: -a 2和(-a)2、-a3和(-a)3

七年级下册同底数幂的乘法讲解课程

七年级下册同底数幂的乘法讲解课程

七年级下册同底数幂的乘法讲解课程《同底数幂的乘法真有趣》小朋友们,今天咱们来一起学习一个特别好玩的数学知识——七年级下册的同底数幂的乘法。

比如说呀,咱们有两个数,一个是 2 的 3 次方,一个是 2 的 2 次方。

那 2 的 3 次方就是2×2×2 = 8,2 的 2 次方就是2×2 = 4。

那它们相乘会怎么样呢?其实呀,同底数幂相乘,底数不变,指数相加。

所以 2 的 3 次方乘以 2 的 2 次方,就等于 2 的(3 + 2)次方,也就是 2 的 5 次方,结果是 32。

再比如,5 的 2 次方乘以 5 的 3 次方,按照咱们的方法,就是5 的(2 + 3)次方,等于 5 的 5 次方,就是 3125。

小朋友们,是不是觉得挺简单好玩的呀?《一起探索同底数幂的乘法》小朋友们,咱们来一起探索一个神奇的数学知识,那就是同底数幂的乘法。

先举个例子,就像有一堆苹果,第一次有 3 个 3 组,这就是 3 的 3 次方。

第二次又有 3 个 2 组,这就是 3 的 2 次方。

那把这两次的苹果加在一起,一共有多少个呢?这时候就用到同底数幂的乘法啦。

3 的 3 次方乘以 3 的 2 次方,就等于 3 的(3 + 2)次方,也就是 3 的 5 次方。

再比如说,4 的 2 次方乘以 4 的 3 次方,那就是 4 的 5 次方。

是不是像变魔术一样呀?《学会同底数幂的乘法》小朋友们,今天咱们要学会一个超有用的数学本领,叫同底数幂的乘法。

假设咱们有很多小星星,10 的 2 颗小星星一堆,有 3 堆,这就是 10 的 2 次方乘以 3。

还有 10 的 3 颗小星星一堆,有 2 堆,这就是 10 的 3 次方乘以 2。

那把它们放在一起,总共多少颗小星星呢?这就要用同底数幂的乘法啦,10 的 2 次方乘以 10 的 3 次方,等于 10 的(2 + 3)次方,就是 10 的 5 次方。

像这样的例子还有很多很多呢,小朋友们学会了吗?《同底数幂的乘法不难哟》小朋友们,别害怕,同底数幂的乘法一点儿也不难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:底数可以是单项式,也可以是多项式;
底数不同的幂相乘,不能用该法则;
不要忽视指数为1 的因数;
三个或三个以上同底数幂相乘时,也具有这一性质;
该法则可以逆用,即 (m、n都是正整数)
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。即
注:不要将幂的乘方与同底数幂的乘法混淆,幂的乘方运算转化为指数的乘法壳牌 (底数不变),同底数幂的乘法运算转化为指数的加法运算(底数不变);
20. 若2x+5y=4,求4x·32y的值.
21.先完成以下填空:
(1)26×56=()6=10( )(2)410×2510=()10=10( )
你能借鉴以上方法计算下列各题吗?
()(-8)10×0.12510
(4)0.252007×42006
(5)(-9)5·(- )5·( )5
22.观察下列等式:
13=12;
13+23=32;
13+23+33=62;
13+23+33+43=102;
(1)请你写出第5个式子:______________
(2)请你写出第10个式子:_____________
(3)你能用字母表示所发现的规律吗?试一试!
知识点二、单项式的乘法
1、单项式乘单项式法则:把它们的系数、同底数分别相乘,其余字母连同它的指数不变,作为积的因式。
6.计算xn(-x)n的正确结果是( )
A.-x2nB.(-1)n·x2nC.x2nD.-2x2n
7.下列各式中,结果为(a+b)3的是( )
A.a3+b3B.(a+b)(a2+b2) C.(a+b)(a+b)2D.a+b(a+b)2
8.下列各式中,不能用同底数幂的乘法法则化简的是( )
A.(a+b)(a+b)2B.(a+b)(a-b)2C.-(a-b)(b-a)2D.(a+b)(a+b)3(a+b)2
16.已知am=2,an=5,求a3m+2n的值.17.已知xn=2,yn=3,求(x2y)2n的值
18.据不完全统计,全球平均每小时大约产生5.1×108吨污水排入江河湖海,那么一个星期大约有几吨污水污染水源?(每天以24小时计算,结果用科学计数法表示)
19. 卫星绕地球运动的速度(即第一宇宙速度)是7.9×103米/秒,求卫星绕地球运行2×102秒走过的路程.
多项式的乘法:
多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即
(5) ; (6) ; (7)(x-y)2·(y-x)3;
(8) ; (9) ; (10) .
4.下面计算正确的是( )
A.x4·x4=x16B.-x2·(-x)3=x5C.a2·a2=2a2D.a2+a3=a5
5下面计算错误的是( )
A.a4+2a4=3a4B.x2·x·(-x)3=-x6C.a2+a2=a4D.(-x)·(-x)3=x4
积的系数等于各因式系数的积,注意相乘时积的符号;
相同字母相乘,要运用同底数幂的乘法,即底数不变,指数相加;
2、单项式乘多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
单位项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同;
积的符号由单项式的符号与多项式的符号同时决定的;
对于混合运算,应注意运算顺序,先算积的乘方与幂的乘方,再算乘法,最后有同类项要合并,使所得的结果是要最简。
三个或三个以上因式的乘方,也具有这一性质;
该法则可逆用,即,逆向运用可将算式灵活性变形或简化计算。
基础应用:
计算:
⑴ = ⑵ = ⑶ = ⑷ =
(5)(-a)2·(-a)3= (6)-b2·(-b)2·(-b)3= (7)(-x4)(-x)4+(-x)3·(-x4)·(-x)=
⑴(-x)2·(-x)3; ⑵(-x2)·(-x3); ⑶ ; ⑷ .
在形式上,底数本身就是一个幂,底数为多项式时,应视为一个整体,切忌分开;
幂的乘方法则可进一步推广为: (M、N、P都是正整数)
该法则可逆用,即
3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。即 (N为正整数)。
注:法则中的字母可以表示数,也可以表示单项式或多项式;
运用该法则时,注意系数为-1时的“-”号的确定;
(11)(a-b)[(a-b)2]5(12)(-a2)5·a-a11(13)(x6)2+x10·x2+2[(-x)3]4
(14)(-2×103)3(15)(x2)n·xm-n(16)a2·(-a)2·(-2a2)3(17)(2xy2)2-(-3xy2)2
14.已知ax=2,ay=3,求ax+y的值.15.已知4·2a·2a+1=29,且2a+b=8,求ab的值.
9.下列各式中,计算结果为-27x6y9的是( )
A.(-27x2y3)3B.(-3x3y2)3C.-(3x2y3)3D.(-3x3y6)3
10.化简(- )7·27等于( )
A.- B.2 C.-1 D.1
11.如果(xa)2=x2·x8(x≠1),则a为( )
A.5 B.6 C.7 D.8
12.有下列计算:(1)b5b3=b15; (2)(b5)3=b8; (3)b6b6=2b6; (4)(b6)6=b12;(5)(xyz)2=xyz2;(6)(xyz)2=x2y2z2;(7)-(5ab)2=-10a2b2;(8)-(5ab)2=-25a2b2;其中结果正确的是5.
辅导讲义
学员姓名:教师:
课题
同底数幂的乘法及单项式的乘法
授课时间:2011年月日
教学目标
掌握整式乘法的相关法则,并能进行简单的运算
重点、难点
掌握整式乘法的相关法则,并能进行简单的运算
考点及考试要求
教学内容
知识点一、同底数幂的乘法:
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。即 (m、n都是正整数)
13.若2k=83,则k=______.
计算:
(1)64×(-6)5(2)-a4(-a)4(3)-x5·x3·(-x)4(4)(x-y)5·(x-y)6·(x-y)7
(5)(-b)2·(-b)3+b·(-b)4(6)a·a6+a2·a5+a3·a4(7)x3m-n·x2m-3n·xn-m
(8)(-2)·(-2)2·(-2)3·…·(-2)100(9)(y2a+1)2(10)[(-5)3]4-(54)3
相关文档
最新文档