(完整word版)(北师大版)_六年级数学下册正比例课后练习题

合集下载

六年级下册数学试题-第四单元《正反比例》(含解析)北师大版

六年级下册数学试题-第四单元《正反比例》(含解析)北师大版

页 1【单元提高讲义】2019—2020学年北师大版六年级下册第四单元《正反比例》(提高版)模块一:正比例与反比例 1、成正比例的量①两种相关联的量;②一种量变化,另一种量也随着变化;③比值一定关系式:k yx=(一定) 2、成反比例的量①两种相关联的量;②一种量变化,另一种量也随着变化;③积一定 关系式:k xy =(一定)3、判断两种量成正比例还是成反比例的方法。

关键是看这两种相关联的量对应的两个数的商一定还是积一定,如果商一定就成正比例,如果积一定就成反比例。

4、正比例与反比例的区别模块二:用比例解决实际问题根据问题中的不变量找出两种相关联的量,并判断这种相关联的量成什么比例,根据正反比例关系式列出方程并求解。

一、正、反比例异同点相同点:都有两种相关联的量,一种量随着另一种量变化.不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.二、正比例和反比例的比较正比例反比例1.相同点(1)都有两种相关联的量(2)一种量随着另一种量变化2.不同点页2正比例:(1)变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小(2)相对应的每两个数的比值(商)是一定的反比例:(1)变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大)(2)相对应的每两个数的积是一定的【试题检测】一.选择题(共8小题)1.一个直角三角形的两条直角边分别是3厘米和2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24C.48D.962.把线段比例尺改写成数值比例尺是()A.1:8000B.1:80C.1:8000003.下列X和Y成反比例关系的是()A.x+y=10B.x=y C.y=(>0)4.下列各项中,两种量成反比例关系的是()A.工作效率一定,工作时间与工作总量B.人的年龄与其身高页3C.长方形的周长一定,它的长与宽D.三角形的面积一定,这个三角形的底和高5.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:4006.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断7.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配8.8x=5y,x与y()A.成正比例B.成反比例C.不成比例D.无法判断二.填空题(共8小题)9.某学校平面图的比例尺是,改为数值比例尺是.在图中量得校园的长为3厘米,那么它的实际长度为米.10.一种微型零件长0.3毫米,将其画在纸上长9厘米,这张图纸的比例尺是.11.5x=3y,x:y=(:),x和y成比例.页412.一捆100m长的电线,用去的长度与剩下的长度成正比例.(判断对错)13.反比例关系可以用式子表示.14.如果x=3y(x和y都不为0),那么x和y成比例关系:如果xy=12.6(x和y都不为0),那么x和y成比例关系.15.在一张地图上画有一条线段比例尺,把它写成数值比例尺是,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是千米.16.(1)一批零件2000个(填写下表)40100200400……每箱装的个数20……装的箱数100(2)一批零件一定,每箱装的个数和装的箱数成比例.三.判断题(共9小题)17.将图形缩小后得到的图形与原图形相比,大小不同,形状相同.(判断对错)页518.煤的数量一定,使用天数与每天的平均用煤量成正比例关系.(判断对错)19.两个正方形边长的比和面积的比能够组成比例.(判断对错)20.如果ab+5=12,则a与b成反比例..(判断对错)21.火车行驶1000km,行驶的速度和所需的时间成反比例..(判断对错)22.一辆汽车从甲地开到乙地所用的时间与速度成正比例..(判断对错)23.梯形的面积一定,它的高与上、下底的和成反比例.(判断对错)24.若以ab﹣8=12.5,则a与b成反比例.(判断对错)25.报纸的单价一定,总价与订阅的份数成反比例.(判断对错)四.计算题(共7小题)26.将线段比例尺化为数值比例尺:页627.画出图形A按2:1放大后的图形C;画出图形B按1:2缩小后的图形D.28.一个机器零件长5毫米,画在一张图纸上是20厘米.求这张机器零件图的比例尺.29.把图1图形按比例缩小后得到图2的图形,求未知数x.(单位:cm)30.在比例尺是1:300的地图上,量得一块直角三角形地的周长是24厘米.已知三条边的长度比是3:4:5,求三角形地三条边实际的长各是多少米?31.右图是由左图按比例放大得到的,右图的长是多少?(单位:分米)页732.在一幅比例尺是的图纸上,量得某校的篮球场长26厘米,宽15厘米,这个篮球场的实际面积是多少?五.应用题(共5小题)33.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?34.“六一”那天,芳芳和小朋友们一起骑车去动物园玩.下面的图象表示的是她骑车的路程和时间的关系.(1)芳芳骑车行驶的路程和时间成正比例吗?为什么?(2)看图估计,行2.5千米大约用多少分钟?页835.甲地到乙地的实际距离是150km,在一幅地图上量得两地的图上距离是2.5cm.这幅地图的比例尺是多少?36.在比例尺是1:20000图纸上量得北京天安门广场南北长为4.4厘米,东西宽为2.5厘米.北京天安门广场的实际面积是多少平方米?37.右边的图象表示汽车在公路上行驶的路程与耗油量的关系.①请你用学过的数学知识描述这辆汽车行驶的路程和耗油量的关系,并讲明理由.②根据图象,这辆汽车行驶75km耗6升.计算这辆汽车行驶180km耗油多少升?页9六.操作题(共3小题)38.把图A缩小到原来的,把图B放大到原来的2倍.39.下面是胜利小学综合楼一层的布局,请你根据比例尺及实际距离确定下面四个地点的位置.A:图书室30米×10米B:会议室29米×7米C:实验室13米×7米D:科技室10米×6米页1040.长征造纸厂的生产情况如表.时间/天1234567…生产量/吨70140210280350420490…(1)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(2)说明这个比值所表示的意义.(3)表中的两种量成正比例关系吗?为什么?(4)在下面画出它的图象,并根据图象估计一下生产560吨纸大约要用几天时间.七.解答题(共4小题)41.如图,方格中的梯形是按1:1000的比例尺画出的学校的一块草地.请你给草地的正中央设计一个半径为10米的圆形花池,按比例画在图中.再量出有关数据(取整厘米数),标在图上,并求剩余草地的实际面积.(单位:厘米)页11页 1242.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y 表示用煤的数,x 表示用煤的天数,k 表示每天的用煤量,它们之间的关系可以表示为.(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?43.王叔叔买了一辆汽车,下表是他在试车过程中记录下的数据.汽车所行路程/km015304560耗油量/L02468(1)汽车所行路程与耗油量有什么关系?(2)汽车行驶90km,耗油多少升?(3)当油箱还剩3L油时,汽车还能行驶多少千米?44.文具盒每个售价8元,购买2个,3个,…分别需要多少元?(1)填一填.数量/个01234567…应付金额/元0816243240…(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花元.页13(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.页14【解析版】一.选择题(共8小题)1.一个直角三角形的两条直角边分别是3厘米和2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24C.48D.96【解答】解:(3×4)×(2×4)÷2=12×8÷2=48(平方厘米)答:面积是48平方厘米.故选:C.2.把线段比例尺改写成数值比例尺是()A.1:8000B.1:80C.1:800000【解答】解:1厘米:8千米=1厘米:800000厘米=1:800000改写成数值比例尺是1:800000.页15故选:C.3.下列X和Y成反比例关系的是()A.x+y=10B.x=y C.y=(>0)【解答】解:A、x+y=10,是和一定,不成比例;B、x=y,即x:y=,是比值一定,则x和y成正比例;C、y=(>0),即xy=6,是乘积一定,则x和y成反比例.故选:C.4.下列各项中,两种量成反比例关系的是()A.工作效率一定,工作时间与工作总量B.人的年龄与其身高C.长方形的周长一定,它的长与宽D.三角形的面积一定,这个三角形的底和高【解答】解:A、作总量÷工作时间=工作效率(一定),是对应的“比值”一定,所以工作时间与工作总量成正比例;B、人的身高和年龄对应的“比值”和“乘积”都不一定,所以人的身高和年龄不成比例;页16C、长方形的长+宽=周长÷2(一定),是对应的“和”一定,所以长方形的长和宽不成比例;D、因为三角形的面积S=ah,所以三角形的面积一定,三角形的底和高成反比例.故选:D.5.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:400【解答】解:16千米=1600000厘米,4:1600000=1:400000;答:这幅地图的比例尺是1:400000.故选:C.6.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.页177.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.8.8x=5y,x与y()A.成正比例B.成反比例C.不成比例D.无法判断【解答】解:8x=5y,若x、y都不为0,则x:y=5:8=,是比值一定,则x和y成正比例;若x、y都为0,则不成比例.故选:D.二.填空题(共8小题)9.某学校平面图的比例尺是,改为数值比例尺是1:10000.在图中量得校园的长为3厘米,那么它的实际长度为300米.【解答】解:图上的1厘米表示实际距离100米,比例尺为:1厘米:10000厘米=1:10000页183×100=300(米)答:改为数值比例尺是1:10000.在图中量得校园的长为3厘米,那么它的实际长度为300米.故答案为:1:10000,300.10.一种微型零件长0.3毫米,将其画在纸上长9厘米,这张图纸的比例尺是300:1.【解答】解:因为0.3毫米=0.03厘米则9厘米:0.03厘米=300:1答:这张图纸的比例尺是300:1.故答案为:300:1.11.5x=3y,x:y=(3:5),x和y成正比例.【解答】解:因为5x=3y,所以x:y=3:5x:y=(一定),是比值一定,所以成正比例;故答案为:3,5,正.12.一捆100m长的电线,用去的长度与剩下的长度成正比例.×(判断对错)页19【解答】解:因为用的长度+剩下的长度=一捆电线的长度,所以用的长度与剩下的长度的比值和乘积都不一定,所以用的长度和剩下的长度不成比例,原题说法错误.故答案为:×.13.反比例关系可以用xy=k(一定)式子表示.【解答】解:如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),正比例关系可以用式子表示为:xy=k(一定);故答案为:xy=k(一定)14.如果x=3y(x和y都不为0),那么x和y成正比例关系:如果xy=12.6(x和y都不为0),那么x和y成反比例关系.【解答】解:如果x=3y(x和y都不为0),即x:y=3,是比值一定,那么x和y成正比例关系;如果xy=12.6(x和y都不为0),是乘积一定,那么x和y成反比例关系;故答案为:正,反.页2015.在一张地图上画有一条线段比例尺,把它写成数值比例尺是1:4000000,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是140千米.【解答】解:40千米=4000000厘米数值比例尺是1:400000040×3.5=140(千米)答:把它写成数值比例尺是1:4000000,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是140千米.故答案为:1:4000000,140.16.(1)一批零件2000个(填写下表)40100200400……每箱装的个数20……装的箱数100(2)一批零件一定,每箱装的个数和装的箱数成反比例.【解答】解:(1)2000÷40=50(箱)页212000÷100=20(箱)2000÷200=10(箱)2000÷400=5(箱)40100200400……每箱装的个数205020105……装的箱数100(2)因为每箱装的个数×装的箱数=这批零件个数(一定);所以,一批零件一定,每箱装的个数和装的箱数成反比例.故答案为:反.三.判断题(共9小题)17.将图形缩小后得到的图形与原图形相比,大小不同,形状相同.√(判断对错)【解答】解:将图形缩小后得到的图形与原图形相比,大小不同,形状相同原题说法正确.故答案为:√.页2218.煤的数量一定,使用天数与每天的平均用煤量成正比例关系.×(判断对错)【解答】解:因为每天的平均用煤量×使用的天数=煤的数量(一定),也就是两种相关联的量的乘积一定,所以,煤的数量一定,使用的天数与每天的平均用煤量成反比例.这种说法是错误的.故答案为:×.19.两个正方形边长的比和面积的比能够组成比例.×(判断对错)【解答】解:设这两个正方形的边长分别是1与2;1×1=12×2=4边长之比的比值是:1:2=面积之比的比值是:1:4=≠所以,两个正方形边长的比和面积的比不能组成比例.故答案为:×.20.如果ab+5=12,则a与b成反比例.√.(判断对错)页23【解答】解:如果ab+5=12,ab=12﹣5=7(一定),是两个量的乘积一定,则a与b成反比例;原题说法正确.故答案为:√.21.火车行驶1000km,行驶的速度和所需的时间成反比例.√.(判断对错)【解答】解:火车的速度×所需的时间=火车行驶距离(一定),是乘积一定,所以行驶的速度和所需的时间成反比例.原题说法正确.故答案为:√.22.一辆汽车从甲地开到乙地所用的时间与速度成正比例.×.(判断对错)【解答】解:速度×时间=路程(一定),是乘积一定,所以速度和时间成反比例.原题说法错误.故答案为:×.23.梯形的面积一定,它的高与上、下底的和成反比例.√(判断对错)页24【解答】解:因为梯形的两底之和×高=梯形的面积×2(一定),是乘积一定,所以梯形的高与上、下底的和成反比例.故答案为:√.24.若以ab﹣8=12.5,则a与b成反比例.√(判断对错)【解答】解:若ab﹣8=12.5,即ab=20.5,是乘积一定,则a与b成反比例.原题说法正确.故答案为:√.25.报纸的单价一定,总价与订阅的份数成反比例.×(判断对错)【解答】解:订阅份数与总价是两种相关联的量,它们与报纸的单价有下面的关系:总价:订阅份数=报纸的单价(一定);已知报纸的单价一定,也就是总价与订阅份数的比值一定,所以订阅份数与总价成正比例.原题说法错误.故答案为:×.页25四.计算题(共7小题)26.将线段比例尺化为数值比例尺:【解答】解:2厘米:60千米=2厘米:6000000厘米=1:3000000;答:化为数值比例尺是1:3000000.27.画出图形A按2:1放大后的图形C;画出图形B按1:2缩小后的图形D.【解答】解:画出图形A按2:1放大后的图形C(下图红色部分);画出图形B按1:2缩小后的图形D(下图绿色部分):页2628.一个机器零件长5毫米,画在一张图纸上是20厘米.求这张机器零件图的比例尺.【解答】解:20厘米:5毫米=200毫米:5毫米=40:1答:这张机器零件图的比例尺是40:1.29.把图1图形按比例缩小后得到图2的图形,求未知数x.(单位:cm)【解答】解:由题意得:15:x=25:2025x=15×20页27x=12答:未知数x的值是12厘米.30.在比例尺是1:300的地图上,量得一块直角三角形地的周长是24厘米.已知三条边的长度比是3:4:5,求三角形地三条边实际的长各是多少米?【解答】解:24×=6(厘米)24×=8(厘米)24×=10(厘米)6÷=1800(厘米)1800厘米=18米8÷=2400(厘米)2400厘米=24米10÷=3000(厘米)3000厘米=30米答:三角形地三条边实际的长分别是18米、24米、30米.页2831.右图是由左图按比例放大得到的,右图的长是多少?(单位:分米)【解答】解:300÷60=5120×5=600(分米)答:右图的长是600分米.32.在一幅比例尺是的图纸上,量得某校的篮球场长26厘米,宽15厘米,这个篮球场的实际面积是多少?【解答】解:26÷=26×100=2600(厘米)=26(米)15÷=15×100页29=1500(厘米)=15(米)26×15=390(平方米)答:这个篮球场的实际面积是390平方米.五.应用题(共5小题)33.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?【解答】解:5cm:8m=5cm:800cm=1:160答:这张照片的比例尺是1:160.34.“六一”那天,芳芳和小朋友们一起骑车去动物园玩.下面的图象表示的是她骑车的路程和时间的关系.(1)芳芳骑车行驶的路程和时间成正比例吗?为什么?页30(2)看图估计,行2.5千米大约用多少分钟?【解答】解:(1)芳芳骑车行驶的路程和时间成正比例,因为速度一定,路程与时间成正比例关系;(2)利用图象估计,芳芳行2.5千米时大约用了15分钟.35.甲地到乙地的实际距离是150km,在一幅地图上量得两地的图上距离是2.5cm.这幅地图的比例尺是多少?【解答】解:150千米=15000000厘米,2.5:15000000=1:6000000;答:这幅地图的比例尺是1:6000000.36.在比例尺是1:20000图纸上量得北京天安门广场南北长为4.4厘米,东西宽为2.5厘米.北京天安门广场的实际面积是多少平方米?【解答】解:4.4÷88000(厘米)88000厘米=880米页312.5÷=50000(厘米)50000厘米=500米880×500=440000(平方米)答:北京天安门广场的实际面积是440000平方米.37.右边的图象表示汽车在公路上行驶的路程与耗油量的关系.①请你用学过的数学知识描述这辆汽车行驶的路程和耗油量的关系,并讲明理由.②根据图象,这辆汽车行驶75km耗6升.计算这辆汽车行驶180km耗油多少升?【解答】解:①汽车行驶路程与耗油量是正比例关系;因为50:4=100:8=150:12=…=12.5(一定),汽车行驶路程与耗油量的比值一定,所以汽车行驶路程与耗油量是正比例关系.页32②设这辆汽车行驶180km耗油x升,=75x=6×180x=x=14.4.答:辆汽车行驶180km耗油14.4升.六.操作题(共3小题)38.把图A缩小到原来的,把图B放大到原来的2倍.【解答】解:把图A缩小到原来的(图中图形A′),把图B放大到原来的2倍(图中图形B′).39.下面是胜利小学综合楼一层的布局,请你根据比例尺及实际距离确定下面四个地点的位置.页33A:图书室30米×10米B:会议室29米×7米C:实验室13米×7米D:科技室10米×6米【解答】解:答案如下:比例尺:1:100040.长征造纸厂的生产情况如表.时间/天1234567…生产量/吨70140210280350420490…(1)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(2)说明这个比值所表示的意义.(3)表中的两种量成正比例关系吗?为什么?页34(4)在下面画出它的图象,并根据图象估计一下生产560吨纸大约要用几天时间.【解答】解:(1)70:1=70,140:2=70,210:3=70,280:4=70,350:5=70,它们的比值都是70;(2)这个比值是用工作量除以工作时间所得,所以这个比值表示工作效率;(3)因为表中相关联的两种量:工作量:工作时间=工作效率(一定)符合正比例的意义,所以表中相关联的两种量成正比例关系;(4)估计图象可得,生产560吨纸大约要用8天时间.七.解答题(共4小题)页3541.如图,方格中的梯形是按1:1000的比例尺画出的学校的一块草地.请你给草地的正中央设计一个半径为10米的圆形花池,按比例画在图中.再量出有关数据(取整厘米数),标在图上,并求剩余草地的实际面积.(单位:厘米)【解答】解:10米=1000厘米1000×=1(厘米)即圆形花池的半径图上为1厘米画图如下:页366÷=6000(厘米),6000厘米=60米8÷=8000(厘米),8000厘米=80米10÷=10000(厘米),10000厘米=100米(60+100)×80÷2﹣3.14×102=160×80÷2﹣3.14×100=6400﹣314=6086(平方米)答:剩余草地的实际面积是6086平方米.42.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.页37(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为=(一定).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?【解答】解:(1)用煤的吨数÷用煤的天数=每天的用煤量(一定)根据两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就是成正比例的量因此可判断用煤天数和用煤量成正比例关系.(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为=(一定).(3)根据图象可判断:5天有煤1.5吨;2.4吨煤可以用8天.故答案为:=(一定).43.王叔叔买了一辆汽车,下表是他在试车过程中记录下的数据.页38汽车所行路程/km015304560耗油量/L02468(1)汽车所行路程与耗油量有什么关系?(2)汽车行驶90km,耗油多少升?(3)当油箱还剩3L油时,汽车还能行驶多少千米?【解答】解:(1)耗油量随着路程的变化而变化,因为15÷2=7.5、30÷4=7.5…即每升油所行路程不变,所以汽车所行路程和耗油量成正比例关系;(2)因为耗油量=路程÷每升油所行路程,90÷7.5=12(升)答:要耗油12升.(3)因为路程=每升油所行路程×耗油量,7.5×3=22.5(千米)答:汽车大约还能行驶22.5千米.44.文具盒每个售价8元,购买2个,3个,…分别需要多少元?(1)填一填.页39数量/个01234567…应付金额/元0816243240…(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花72元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的5倍.【解答】解:(1)8×6=48(元)8×7=56(元)表格如下:数量/个01234567…页40应付金额/元08162432404856…(2)因为:8÷1=8(元)16÷2=8(元)24÷3=8(元)……总价÷数量=单价(单价是一定的),所以应付金额与文具盒的数量成正比例.(3)画图如下:(4)8×9=72(元)答:买9个文具盒要花72元.(5)根据总价和数量的正比例关系可知:所以:李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的5倍.故答案为:72,5.页41。

六年级下册数学一课一练-4.2正比例-北师大版测试题(含答案)

六年级下册数学一课一练-4.2正比例-北师大版测试题(含答案)

六年级下册数学一课一练-4.2正比例(含答案)一、单选题1.一堆煤,已烧的吨数和剩下的吨数()A. 成正比例B. 成反比例C. 不成比例2.用四根木条制作一个长方形框架,双手将它的两个对角慢慢向两边拉动,在这个变化过程中,平行四边形的面积和高()A. 不成比例B. 成反比例关系C. 成正比例关系3.下面题中的两个相关联的量()电脑的单价一定,购置电脑的数量和总价.A. 成正比例B. 成反比例C. 不成比例4.总是相等的两个量()A. 成正比例B. 成反比例C. 不成比例D. 既成正比例又成反比例5.下面题中的两个相关联的量()用铜制成的零件的体积和质量.A. 成正比例B. 成反比例C. 不成比例二、判断题6.如果=5,那么a和b成正比例。

7.芝麻的出油率一定,芝麻的重量和榨出油的重量成正比例。

8.时间一定,路程和速度成正比例。

9.根据X= Y,可以知道X和Y成正比例.10.圆的半径和面积成正比例.三、填空题11.修一段路,已经修的与未修的________12.用铁做成的物体,体积和质量成________。

13.车轮的半径一定,车轮所行的路程和车轮转数成________比例。

14.(1)总人数一定,每组的人数和组数成________比例.(2)总价一定,单价和数量成________比例.(3)道路的全长一定,已经走了的路程和剩下的路程________比例.15.一个三角形的底是20厘米,它的高与面积成________比例。

四、解答题16.下面表格中的两个数量是否成正比例或反比例?为什么?一本书看了的页数和剩下的页数.17.下面表中的两种量成什么比例?说明理由.五、综合题18.一辆汽车所行的时间与路程的关系,可以用右图来表示,请你根据图上信息填一填、算一算下列问题。

(1)从图上可以看出这辆车所行的路程与时间,这两个量成________比例。

(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?参考答案一、单选题1.【答案】C【解析】【解答】一堆煤,已烧的吨数和剩下的吨数不成比例.故答案为:C.【分析】根据题意可得:已烧的吨数+剩下的吨数=这堆煤的总量(一定),和一定,两种量不成比例,据此解答.2.【答案】C【解析】【解答】解:把长方形框架拉成平行四边形的过程中,平行四边形的面积÷高=底(一定),所以平行四边形面积和高成正比例关系。

北师大版六年级下册《第2章_正比例和反比例》小学数学-有答案-单元测试卷(7)

北师大版六年级下册《第2章_正比例和反比例》小学数学-有答案-单元测试卷(7)

北师大版六年级下册《第2章正比例和反比例》小学数学-有答案-单元测试卷(7)一、填空.1. 一篇文章,小明每分钟打24个字,需要打50分钟,王老师每分钟打60个字,需要________分钟。

2. 一幅地图上3厘米表示的实际距离是360千米,这幅地图的比例尺是________.甲、乙两地相距270千米,在这幅地图上的距离是________厘米。

3. 圆的周长和半径成________比例。

4. 三角形的面积一定,底与高成________比例关系。

5. 车轮直径一定,所行路程和车轮转数成________比例。

6. 在A×B=C(C不为0)中,当B一定时,A和C成________比例,当C一定时,A和B成________比例。

7. xy=1,x与y成________比例;x=y5,x与y成________比例;x3=4y,x与y成________比例;3x=y,x与y成________比例。

8. 已知变量x和y成反比例,完成下表。

9. 甲乙两地相距35千米,画在一幅地图上的长度是7厘米,这幅地图的比例尺是________.10. 在比例尺是1:10000的地图上,量得学校操场的长是0.9厘米,宽为0.6厘米,学校操场的实际面积是________平方米。

二、判断题.长方形的周长一定时,长和宽成反比例。

________.(判断对错)正方体的棱长和它的棱长总和成正比例。

________ (判断对错)如果x.y成正比例,那么当x扩大时,y也随着扩大。

________.(判断对错)圆的面积和圆的周长的平方成正比例。

________(判断对错)三.选择题.(将正确答案的序号填在括号里)在一幅地图上,图上3分米,表示实际距离1.5厘米,这幅图的比例尺是()A.20:1 B.1:20 C.200:1 D.1:200一架客机从北京飞往上海,飞行速度和所用时间()A.成正比例B.成反比例C.不成比例两种相关联的量()A.成正比例B.成反比例C.不一定成比例一个机器零件长1.5米,在图上表示是3厘米,那么,这幅图的比例尺是()A.1:50 B.1:5 C.1:500 D.50:1圆柱体和圆锥体的体积比是3:1,如果它们的半径相等,那么它们的()A.高也相等B.高的比是1:3C.高的比是3:1圆柱的体积一定,底面积和高()A.成正比例B.成反比例C.不成比例在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是________,成反比例关系是________A.汽车每次运货吨数一定,运货次数和运货总吨数B.汽车运货次数一定,每次运货的吨数和运货总吨数C.汽车运货总吨数一定,每次运货的吨数和运货的次数。

北师大版六年级下册《第4单元_正比例与反比例》小学数学-有答案-同步练习卷(1)

北师大版六年级下册《第4单元_正比例与反比例》小学数学-有答案-同步练习卷(1)

北师大版六年级下册《第4单元正比例与反比例》小学数学-有答案-同步练习卷(1)1. 是变化的量画“√”,不是的画“×”.①小朋友的年龄和身高。

________②工人已修的路程和未修的路程。

________③汽车行驶的路程和所用的时间。

________④一天中,每个时刻的温度与其相对应的时刻。

________⑤每天看书的页数和看书的天数。

________二、下表是小明爸爸工资变化情况.下表是小明爸爸工资变化情况。

(1)上表中哪些量在发生变化?(2)说一说小明爸爸工资从1985年到2015年是如何随时间而变化的?三、有20粒糖果,平均分给一些同学,请把表填写完整.有20粒糖果,平均分给一些同学,请把表填写完整。

将20粒糖果平均分,人数越多,每人分得糖果的粒数越________.四、解答题(共1小题,满分0分)圆的半径与它的面积变化情况如表。

(1)把上表填完整(2)上表中哪些量在发生变化?(3)圆的面积是如何随着半径的变化而变化的?五、解答题(共1小题,满分0分)某电信公司的手机卡的A类套餐收费标准如下:不管通话时间多长,每张卡每月必须交月租50元。

另外,每通话1分交费0.4元。

如果用y(元)表示每月应交费用,x(分)表示通话时间。

(1)你能用式子表示每月应交费用与通话时间的关系吗?(2)若某手机用户这个月通话时间为152分,那么他应交费多少元?判断下面各题中的两个量是否成正比例,是的在括号里画“√”,不是的画“×”.一袋大米,吃去的千克数与剩下的千克数成________比例。

(在横线里写上“正”“反”“不成”)圆柱的高一定,它的体积和底面积。

________花生的出油率一定,花生的质量和榨出的油的质量。

________一个人的体重和年龄。

________二、根据下表,完成问题.根据如表,完成问题。

①上表中________和________是两种变化的量,________随着________的变化而变化。

北师大版六年级数学下册第四单元《正比例和反比例》专项练习卷(含答案)

北师大版六年级数学下册第四单元《正比例和反比例》专项练习卷(含答案)

北师大版六年级数学下册第四单元《正比例和反比例》专项练习卷(全卷共5页,共22题,70分钟完成)1.一个工程队3天修了57米路。

照这样计算再修133米,一共需要几天?(用比例知识解)2.买4个本子用了6元。

如果买3个同样的本子,要用多少钱?(用比例解)3.工程队要修一条路,计划每天修150米,60天可以修好,实际每天比计划多修30米,多少天可以修好?(用比例解)4.给一间小型会议室铺地砖,用面积0.09m2的方砖铺地,正好需要100块,如果改用边长0.2m的方砖铺地,需要多少块?(用比例解)5.一架飞机顺风每小时飞行1500km,逆风每小时飞行1200km,燃油够飞9小时,飞机起飞时为顺风,飞机飞出多远就得往回飞?(用比例知识解答)6.学校会议室,用边长0.6m的方砖铺地,正好需要200块,如果改用边长0.5m的方砖铺地,需要多少块?(用比例解)7.六年级教师办公室购进一包白纸,计划每天用20张,可以用28天。

由于有了节约用纸的意识,实际每天只用了16张,实际可以用多少天?8.李师傅原来加工一个零件需要3.5分钟,后来改进了工艺,加工同样的一个零件只需2.8分钟。

原来准备做600个零件的时间,现在可以多做多少个?(用比例知识解决)9.从芜湖到上海的路程全程约360千米。

一辆轿车1.5小时行驶了135千米,照这样的速度行驶,行完全程需要多长时间?10.学校食堂运来30袋大米,每袋40kg,第1周(5天)用了400kg照这样计算,这批大米能用多少天?(列比例解答)11.食堂运来一批煤,原计划每天烧0.4t,可以烧63天,改进技术后,每天只烧0.28t,这批煤实际能烧多少天?(用比例知识解答)12.李老师读《新教育》一书,如果每天读10页,26天能读完。

李老师想提前6天读完,平均每天要读多少页?(请用比例的知识解答)13.有一间大客厅,用面积9平方分米的方砖铺地,需要1200块,如果改用边长40厘米的方砖铺地,需要多少块?(用比例解)14.工厂加工一批零件,原计划每天做80个,30天可以完成任务。

2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析

2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析

北师大版数学六年级下册章节复习知识点、达标训练附解析第四单元《正比例和反比例》知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。

2.列表与画图都可以表示变量之间的变化关系。

分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。

3. 一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。

知识点二:正比例1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。

2.如果用x和y表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k(一定)。

3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。

知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。

2.从正比例图象中可以得出任意一点所表示的意义。

3. 观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。

知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。

2.如果用字母x和y表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。

3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。

北师大版六年级下册数学第四单元-正比例和反比例-同步练习题及参考答案【完整版】

北师大版六年级下册数学第四单元-正比例和反比例-同步练习题及参考答案【完整版】

北师大版六年级下册数学第四单元正比例和反比例同步练习题一.选择题1.圆的周长和半径所成的比例是()。

A.正比例B.反比例C.不成比例2.圆柱的体积一定,它的高和()成反比例。

A.底面半径B.底面积C.底面周长3.比例尺一定,图上距离和实际()。

A.成正比例B.成反比例C.不成比例4.有1桶油,如果每天吃100克,能吃50天;如果每天吃200克,能吃25天.每天的吃油量(单位:克)与所吃的时间(单位:天) ()。

A.成正比例B.不成比例C.成反比例5.在一幅比例尺是()的地图上,量得上海到杭州的距离是3.4厘米,上海到杭州的实际距离是170千米。

A.1∶500B.1∶50000C.1∶500000D.1∶5000000二.判断题1.把一个图形按照一定的比放大或缩小后,形状和大小都没有发生变化。

()2.车轮的直径一定,车轮的转数和车轮前进的距离成正比例。

()3.圆的半径和面积成正比例。

()4.比例是由任意两个比组成的。

()5.正方形的周长与该正方形的边长成正比例。

()三.填空题1.把下面的除式改写成比的形式。

÷= ():()2.一个鱼塘按5:2放养白鱼和青鱼,养的白鱼比青鱼多1200尾,白鱼养了()尾,青鱼养了()尾。

3.男生占全班人数的,这个班男女生人数的比是()。

4.一个长方形长5厘米,宽2厘米,按3:1放大后画在图上,这个长方形在图上的面积是________平方厘米。

5.=9÷()=()÷0.4==()(填小数)四.计算题1.解方程。

2.求未知数x。

五.作图题1.画一画:自己画一个三角形,把三角形的各条边按4:1放大,画出得到的三角形。

六.解答题1.如果x和y成正比例关系,当x=16时,y=0.8;当x=10时,y是多少?如果x和y成反比例关系,当x=16时,y=0.8;当x=10时,y是多少?2.一本书,小仙女第一天读了全书的,第二天读的页数与第一天读的页数的比是6∶5,两天后还剩下54页没读,这本书一共有多少页?3.用96厘米长的铁丝围成一个直角三角形,这个直角三角形三条边的长度比是3∶4∶5,这个三角形的面积是多少?4.在生活中,找出三种相关联的量,并写明这三种量在什么情况下成比例关系。

六年级下册数学一课一练正比例北师大版

六年级下册数学一课一练正比例北师大版

六年级下册数学一课一练4一、单选题(共7题;共14分)1.下面各图中,()图中的两个量成正比例关系。

A.B.C.2.买同样的书,花钱的总价与()成正比例.A.书的本数 B.书的页数 C.书的单价D.不能确定3.假定甲、乙两人在一次赛跑中,路程s与时刻t的关系如图所示,则下列说法正确的是()A.甲比乙先动身B.乙比甲跑的路程多 C.甲、乙两人速度相同 D.甲先到达终点X 2 3 5 10 ……Y 4 2.4 12 ……X与Y成那种比例A.成正比例B.成反比例C.不成比例5.依照表格判定数量间的比例关系。

时刻(小时) 2 3 5 7 8 ……路程(千米) 100 150 250 350 400 ……时刻与路程()。

A.成正比例B.成反比例C.不成比例6.每次搬砖的块数一定,搬的总块数与搬的次数()。

A.成正比例B.不成比例7.正方形的面积和边长()A.成正比例B.成反比例C.不成比例二、判定题(共5题;共10分)8.和一定,加数和另一个加数成正比例9.成正比例的量,在图象上描的点连接起来是一条曲线.(判定对错)10.三角形的面积一定时,底和高成反比例。

11.汽车行驶的速度一定时,路程和时刻成正比例.()12.(2021·四川重庆)比例尺一定,图上距离和实际距离成正比例。

(判定对错)三、填空题(共12题;共30分)13.若x与y成正比例,则m=________,若x与y成反比例,则m=__ ______.X 12 18y 6 m14.两种________的量,一种量变化,另一种量________,假如这两种量中________的两个数的________一定,这两种量就叫做成正比例的量,它们的关系叫做________。

15.步测一段距离,每步的平均长度和步数成________比例.。

16.假如a=(c≠0),那么________一定时,________和________成反比例;________一定时,________和________成正比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(北师大版)六年级数学下册正比例课后练习题
班级姓名
一.判断下面的两种量是否成正比例,并说明理由。

1.苹果的单价一定,购买苹果的数量和总价。

()
( )○( )=单价( )
因为和的()一定,
所以()和()正比例。

2. 轮船行驶的速度一定,行驶的路程和时间。

()
( )○( )=速度( )
因为和的()一定,
所以()和()正比例。

3.每小时织布米数一定,织布的米数和时间。

()
( )○( )=每小时织布米数( )
因为和的()一定,
所以()和()正比例。

4.幼儿园老师分给每个小朋友的饼干的块数一定,小朋友的人数和所需的饼干数。

()( )○( )=( )
因为和的()一定,
所以()和()正比例。

5.订阅《中国小年报》的份数和钱数。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

6.小新跳高的高度和他的身高。

()
因为和的()一定,
所以()和()正比例。

7.长方形的宽一定,它的面积和长。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

8. 长方形的宽一定,它的周长和长。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

9.小麦的每公顷产量一定,小麦的公顷数和总产量()。

( )○( )=( )
因为和的()一定,
所以()和()正比例。

10.平行四边形的高一定,它的面积和底。

( )
( )○( )=( )
因为和的()一定,
所以()和()正比例。

11. 三角形的高一定,它的面积和底。

( )
( )○( )=( )
因为和的()一定,
所以()和()正比例。

12.圆的周长和半径。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

13.圆的面积和半径。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

14.甲地到乙地,已行的路程和剩下的路程。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

15.小明要做了12到数学题,做完的题和没做的题。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

16.三(1)班的出勤率一定,全班人数和出勤人数。

()
( )○( )=( )
因为和的()一定,
所以()和()正比例。

二、判断.
1.一个因数不变,积与另一个因数成正比例.()
2.长方形的长一定,宽和面积成正比例.()
3.大米的总量一定,吃掉的和剩下的成正比例.()
4.圆的半径和周长成正比例.()
5.分数的分子一定,分数值和分母成正比例.()
6.铺地面积一定,方砖的边长和所需块数成正比例.()
7.圆的周长和直径成正比例.()
8.除数一定,被除数和商成正比例.()
9.和一定,加数和另一个加数成正比例.()
三、填空.
1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,
它们的关系叫做(),关系式是().
2.一房间铺地面积和用砖数如下表,根据要求填空.
(1)表中()和()是相关联的量,
()随着()的变化而变化.
(2)表中第三组这两种量相对应的两个数的比是(),比值是();
第五组这两种量相对应的两个数的比是(),比值是().(3)上面所求出的比值所表示的的意义是(),铺地面积和砖的块数的()是一定的,所以铺地面积和砖的块数().4.练习本总价和练习本本数的比值是().当()一定时,()和()成()比例.
四、判断下面每题中的两种量是不是成正比例,并自己写出理由.
1.平行四边形的高一定,它的底和面积.
2.被除数一定,商和除数.
3.小明的年龄和他的体重.
4.做一件衬衫的用布量一定,生产这种衬衫的总用布量和件数。

5.拖拉机每天耕地的公顷数一定,耕地的总公顷数与天数。

五、选择
1、把一根铁丝截成同样长的小段,截成的段数和每段的长度()。

⑴成正比例⑵不成比例
2.修一幢楼房,参加修建的工人数与所修天数()。

⑴成正比例⑵不成比例
3.长方体底面积一定,它的高和体积( )。

⑴成正比例 ⑵ 不成比例
六、综合练习:
判断x 和y 是否成正比例,要写明理由。

⑴ y ︰x= 5 ⑵ y = 8
5x
⑶ xy =5 ⑷ x =2
3y
⑸ 5+x =y (6) 2-y =3(x+1)
七、思考.
第一题:
x 、y 、z 三种量的关系是: x ×y =z
1.如果 x 一定,那么 y 和 z 成( )比例;
2.如果 y 一定,那么 x 和z 成( )比例。

第二题:
如果M=8N (M ,N 都不为0), M 和 N 成( )比例.
第三题:
判断m 和n 是否成正比例
如果7a =8 b ,那么a 和b ( )。

如果 m :6=n : 8,那么m 和n ( )。

如果 m +8=n ,那么m 和 n ( )。

相关文档
最新文档