第一章半导体中的电子状态
半导体物理

半导体物理思考题第一章半导体中的电子状态1、为什么内壳层电子能带窄,外层电子能带宽?答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。
(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。
)2、为什么点阵间隔越小,能带越宽?答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。
3、简述半导体的导电机构答:导带中的电子和价带中的空穴都参与导电。
4、什么是本征半导体、n 型半导体、p 型半导体?答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n 型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p 型半导体。
5、什么是空穴?电子和空穴的异同之处是什么?答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。
(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致(成对出现)。
不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。
6、为什么发光器件多半采用直接带隙半导体来制作?答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。
7、半导体的五大基本特性答:(1)负电阻温度效应:温度升高,电阻减小。
(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。
(3) 整流效应:加正向电压时,导通;加反向电压时,不导通。
(4) 光生伏特效应:半导体和金属接触时,在光照射下产生电动势。
(5) 霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。
第二章半导体中杂质和缺陷能级1、简述实际半导体中杂质与缺陷来源。
答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。
2、什么是点缺陷、线缺陷、面缺陷?答:( 1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷; (2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。
半导体物理

半导体物理思考题第一章半导体中的电子状态1、为什么内壳层电子能带窄,外层电子能带宽?答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。
(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。
)2、为什么点阵间隔越小,能带越宽?答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。
3、简述半导体的导电机构答:导带中的电子和价带中的空穴都参与导电。
4、什么是本征半导体、n型半导体、p型半导体?答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。
5、什么是空穴?电子和空穴的异同之处是什么?答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。
(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致(成对出现)。
不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。
6、为什么发光器件多半采用直接带隙半导体来制作?答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。
7、半导体的五大基本特性答:(1)负电阻温度效应:温度升高,电阻减小。
(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。
(3)整流效应:加正向电压时,导通;加反向电压时,不导通。
(4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。
(5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。
第二章半导体中杂质和缺陷能级1、简述实际半导体中杂质与缺陷来源。
答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。
2、什么是点缺陷、线缺陷、面缺陷?答:(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷;(2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。
半导体物理第一章0510

半导体器件
带底,带顶 附近: (一维情况) 能量—在带底,带顶 附近,E~k 为抛物线关系.有效质量为定值 导带底有效质量>0,加速度 与外力方向一致; 价带顶有效质量<0,加速度 与外力方向相反 速度—在带底、带顶 附近,其 数值正比于k.
半导体器件
练习
1、什么是共有化运动?
2、画出Si原子结构图(画出s态和p态并注明该能 级层上的电子数)
3、电子所处能级越低越稳定。 ( )
4、无论是自由电子还是晶体材料中的电子,他们 在某处出现的几率是恒定不变的。 ( )
5、分别叙述半导体与金属和绝缘体在导电过程中 的差别。
半导体器件
§3
半导体中电子的运动
0 E0 E kx kx '
kx ' V ( x) kx 0
k x ' V ( x) k x
kx n
带、禁带之分。 原因。 半导体器件
a
晶体的平移对称性是晶体中出现允带、禁带的
半导体器件
半导体器件
半导体器件
(3)导体、半导体和绝缘体的能带
金属:有一个部分充满的导带 绝缘体:导带和价带之间存在较大的能隙—导 带全空,价带全满.(满带电子对导电没有贡献) 半导体:导带和价带之间存在适当能隙的材 料,Eg∽1eV. 导带几乎全空,价带几乎全满. ♦特点- 两种载流子(电子,空穴)导电; 光敏性,热敏性; 掺杂效应……
2 2 V (r ) (r ) E (r ) 2m0
V ( r Rn ) V ( r )
半导体器件
近自由电子: 单电子近似+弱周期势场 ★近自由电子近似的主要结果 ①波函数- Bloch波 (调幅平面波)
半导体物理第1章 半导体中的电子状态

能带成因
当N个原子彼此靠近时,根据不相容原理 ,原来分属于N个原子的相同的价电子能 级必然分裂成属于整个晶体的N个能量稍 有差别的能带。
S i1 4 :1 s 2 2 s 2 2 p 6 3 s 2 3 p 2
能带特点
分裂的每一个能带称为允带,允带间的能量范 围称为禁带
一.能带论的定性叙述 1.孤立原子中的电子状态
主量子数n:1,2,3,…… 角量子数 l:0,1,2,…(n-1)
s, p, d, ... 磁量子数 ml:0,±1,±2,…±l 自旋量子数ms:±1/2
n1
主量子数n确定后:n= 2(2l 1) 2n2 0
能带模型:
孤立原子、电子有确定的能级结构。 在固体中则不同,由于原子之间距离很近,相互
Ⅲ-Ⅴ族化合物,如 G a A S , I n P 等 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞
等半金属材料。
1.1.3 纤锌矿型结构
与闪锌矿型结构相比 相同点 以正四面体结构为基础构成 区别 具有六方对称性,而非立方对称性 共价键的离子性更强
1.2半导体中的电子状态和能带
1.2.1原子的能级和晶体的能带
1.3半导体中电子的运动——有效质量
1.3.1半导体中的E(k)与k的关系 设能带底位于波数k,将E(k)在k=0处按
泰勒级数展开,取至k2项,可得
E (k)E (0 )(d d E k)k 0k1 2(d d k 2E 2)k 0k2
由于k=0时能量极小,所以一阶导数为0,有
E(k)E(0)1 2(d d2E 2k)k0k2
1.1.2 闪锌矿型结构和混合键
Ⅲ-Ⅴ族化合物半导体材料 结晶学原胞结构特点 两类原子各自组成的面心立方晶格,沿
第一章 微电子器件 半导体物理课件

1 d 2 Ec 1 2 2 dk k k0 mn
1 dE 电子运动速度 dk
基本图形 • • • • 半导体、绝缘体、导体能带示意图 半导体本征激发能带示意图 硅半导体能带结构图 砷化镓半导体能带结构图
基本图示 • 一定温度下,载流子迁移率与杂质浓度的关系 • 一定掺杂浓度下,载流子迁移率与温度的关系 • 载流子漂移速度与电场关系 • 砷化镓载流子漂移速度与电场关系
第五章 非平衡半导体
一、基本关系式
导带电子浓度(包含非平衡导带电子)n n n0 价带空穴浓度(包含非平衡价带空穴)
表面复合率 U s s p s 电子扩散电流密度 J n 扩 空穴扩散电流密度 J p 扩 电子漂移电流密度 J n 空穴漂移电流密度
d n x qDn dx
d p x qD p dx
漂
q(n0 n)n E
q( p0 p) p E
半导体空间电荷密度方程 0 x q p0 x nDj x n0 x p Ai x
基本概念
1、状态密度——能带中能量E附近单位能量间隔内的电子状态数
2、费米统计分布——半导体电子服从的统计分布 3、少子浓度——半导体单位体积中的少子数 4、多子浓度——半导体单位体积中的多子数 5、非简并半导体——载流子分布从费米分布蜕化化服从波尔兹曼统计分布的半导体 6、简并半导体—掺杂浓度很高,使费米能级非常接近、甚至进入导带或价带的半导体 7、载流子冻析效应——温度很低时,杂质不能完全电离,电子或空穴被杂质束缚
基本关系式 漂移电流密度 J (nqn pq p ) E
半导体物理学 第一章__半导体中的电子状态

The End of Preface
第一章 半导体中的电子状态
主要内容:
1.1 半导体的晶格结构和结合性质 1.2半导体中电子状态和能带 1.3半导体中电子运动--有效质量 1.4 本征半导体的导电机构--空穴 1.5 常见半导体的能带结构 (共计八学时)
本章重点:
*重 点 之 一:Ge、Si 和GaAs的晶体结构
晶体结构周期性的函数 uk (x) 的乘积。
分布几率是晶格的周期函数,但对每个原胞的
相应位置,电子的分布几率一样的。 波矢k描述晶体中电子的共有化运动状态。
它是按照晶格的周期 a 调幅的行波。
这在物理上反映了晶体中的电子既有共有化的 倾向,又有受到周期地排列的离子的束缚的特点。
只有在 uk (x) 等于常数时,在周期场中运动的 电子的波函数才完全变为自由电子的波函数。
硅基应变异质结构材料一维量子线零维量子点基于量子尺寸效应量子干涉效应量子隧穿效应以及非线性光学效应等的低维半导体材料是一种人工构造通过能带工程实施的新型半导体材料是新一代量子器件的基宽带隙半导体材料宽带隙半导体材料主要指的是金刚石iii族氮化物碳化硅立方氮化硼以及iivi族硫锡碲化物氧化物zno等及固溶体等特别是sicgan和金刚石薄膜等材料因具有高热导率高电子饱和漂移速度和大临界击穿电压等特点成为研制高频大功率耐高温抗辐射半导体微电子器件和电路的理想材料在通信汽车航空航天石油开采以及国防等方面有着广泛的应用前景
(1)元素半导体晶体
Si、Ge、Se 等元素
(2)化合物半导体及固溶体半导体
SiC
AsSe3、AsTe3、 AsS3、SbS3
Ⅳ-Ⅳ族
Ⅴ-Ⅵ族
化合物 半导体
InP、GaN、 GaAs、InSb、
半导体物理课件:第一章 半导体中的电子状态

14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分
第一章-半导体中的电子态

36
1、自由电子波函数和能量
E 2k2 2m0
自由电子能量与波矢的关系图
37
2、晶体中电子的波函数和能量
2、晶体中电子的波函数和能量
3、布里渊区和能带
E-k关系 晶体中电子处在不同的k状态,具有不同的能量E(k) 由于周期势场的微扰,在布里渊区边界处,能量出现不连
续,形成能带.
1.1.2 闪锌矿型结构与混合键
思考: 左图的一个晶胞包含几个原子?几个第III族原子?几个第V族原子?
14
1.1.3 纤锌矿结构 (Wurtzite structure)
II-VI族化合物、电负性差异较大的III-V化合物通常属于纤锌矿结构。 属六方晶系,AB型共价键晶体,其中A原子作六方密堆积(堆
d=内d找xd到yd粒z子
的概率,则:
dW x, y, z,t CΨ x, y, z,t2 d
32
薛定谔方程
薛定谔方程
i
(r,t) [
2
2 V (r )] (r ,t)
t
2
拉普拉斯算符
2= 2 2 2 x2 y 2 z 2
薛定谔方程描述在势场 U(r)中粒子状态随时间的变化,也称微观粒子 波动方程。只要知道势场的具体形式就可求解该方程得到粒子波函数的 具体形式,从而得出粒子的运动状态和能量状态。
m m 由于价带顶的 * 0,因此 * 0
n
p
61
未满导带
对于不满带,只有部 分电子状态电子占据, 电子可以在电场的作 用跃迁到能量较高的 空状态,导致电子在 布里渊区状态中的分 布不再对称,形成宏 观电流。
62
有电场时导带电子能量和速度分布
导体
有未被填满的价带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 半导体中的电子状态
第一章 Part 1
1.1 半导体中的电子状态和能带 1.2 半导体中的电子运动、有效质量 1.3 半导体的导电机构、空穴 1.4 载流子的回旋共振 1.5 常见半导体的能带结构
1.1 半导体中的电子状态和能带
一、原子中电子的状态和能级
电子的运动服从量子力学,处于一系列特定的运动状态 ——量子 态,要完全描述原子中一个电子的状态,需要四个量子数:
n—主量子数, 表征量子态具有的能量大小,n=1,2,3… L—角量子数, 表征电子运动的角动量大小,L=0,1,2…(n-1) m—磁量子数, 决定轨道角动量在空间的方位,m=0,1,-1,2,-2…L,-L s—自旋量子数, 决定自旋角动量在空间的方位,s=1/2,-1/2
一、原子中电子的状态和能级
原子中的电子处在不同的能 级上,形成电子壳层。
N=3 +
N=2 N=1
主壳层
32 2
±1/2
10
1
±1/2
0
±1/2
18
-1 ±1/2
-2 ±1/2
1
1
±1/2
6
0
±1/2
-1 ±1/2
0
0
±1/2
2
21
1
±1/2
6
8
0
±1/2
-1 ±1/2
0
0
±1/2
2
10
0
±1/2
2
2
nLm
s
状态数
一、原子中电子的状态和能级
一、原子中电子的状态和能级
电子在壳层上的分布:
遵从: 1、泡利不相容原理 2、能量最低原理
表示方法: 电子组态,如Si 1S22S22P63S23P2
在单个原子中,电子状态的特点是: 总是局限在原子和周围的局部化量子态,其能级取一 系列分立值。
1、两个原子的情况
相距很远时,相互作用忽略不计
二、晶体中能带的形成
原子逐渐靠近,外层轨道发生电子的共有化运动——能级分裂
¾当原子聚集形成晶体时,不能改变量子态的总数; ¾没有两个电子具有相同的量子数。
2、N个原子的情况
二、晶体中能带的形成
N个原子相距很远时,相互作用忽略不计。
N个原子逐渐靠近,最外层电子首先发生共有化运动,
每一个能级分裂成N个相距很近的能级, 形成一个准连续的能带。
N个原子继续靠近,次外壳层电子也开始相互反应, 能级分裂成能带。
二、晶体中能带的形成
原子外壳层交叠的程度最大,共有化运动显著 ,能级分裂的很厉害,能带很宽; 原子内壳层交叠程度小,共有化运动很弱,能 级分裂的很小,能带很窄。
3能带重组(轨道杂化)3、能带重组(轨道杂化)
简并度不计自旋的状态数计入自旋的
状态数S 能级n L=0m=01或无简并
12P 能级n L=1
m=0,1,-1
336d 能级
n L=2m=0,1,-1,2,-2
5
5
10
在金刚石中这两个带之间的间距禁带宽度很大¾(禁带宽度)很大,表现出绝缘性;
¾在Si,Ge中,禁带较窄,在较高温度(室温)下可以有少量的电子从价带激发到导带中,因而表现出半导体性质。
¾单电子近似:
晶体中的某个电子是在周期性排列且固定不晶体中的某一个电子是在周期性排列且固定不动的原子核势场以及其他大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。
2、晶体中电子的运动状态——布洛赫波2晶体中电子的运动状态
自由电子波函数:kx
i2Ae
(x)π=波函数
()ψ()
()k x
体中电波数(x)U e
(x)
k k x i2k πψ
=晶体中电子波函数:布洛赫波的强度随晶格周期性变化,说明电子在晶体的一个原胞中各点出现的几率不同,但在晶体中每一个原胞的对应位置上,出现的几率是一样的——电子在晶体内的共有化运动。
3、E-k关系3E k关系
求解维条件体中电的薛定谔方程到所求解一维条件下晶体中电子的薛定谔方程,可以得到图(a)所
(a) E(k)~k关系
1
2a E-k E k
小结
周期性
连续不完全连续
势场
1
2a
1.2 半导体中的电子运动、有效质量
一、能量在能带顶部
二、半导体中电子的平均速度
1
dE
二、半导体中电子的平均速度
h
¾引入有效质量这一概念的意义在于:
这概念的在于
有效质量概括了晶体内部势场对电子的作用,使得在解决晶体或半导体中电子在外力作用下的运动规律时,可以不涉及到内部势场对电子的作用,而直接按照牛顿第二定律由外力求出电子的加速度。
四、有效质量的性质电子)。
1.3 本征半导体的导电机构、空穴
本征半导体:
1.纯净,不含任何杂质;
1纯净不含任何杂质
具有理想的晶体结构,无缺陷
2.具有理想的晶体结构,无缺陷。
实际使用时,若杂质或缺陷含量足够小,即称为本征半导体。
晶体的导电性取决于电子在能带中的填充情况:
¾满带:完全被电子占据的能带
半满带部分被电子占据的能带
¾空带:完全未被电子占据的能带
¾半满带:部分被电子占据的能带
1满带
1、满带
¾无外场时:
E(+k)=E(-k),即电子在k空间是对称分布的;
v(k)=-v(-k),k状态和-k状态的电子速度大小相等,
方向相反晶体中总电流为零,不导电。
¾有外场时:
能带中的所有状态以相同的速率移动;
电子在k空间的对称分布并未改变;
晶体中的总电流仍为零满带电子对导电没有贡献。
晶体中的总电流仍为零。
本征半导体的导电机构、空穴
2能带中没有电子,谈不上导电。
0
ε=r
2、空带
能带中没有子谈导
3、未满带
¾无外电场时:
电子在k 空间对称分布,不导电。
0
ε≠r
有外电场时
¾有外电场时:电子分布不对称,具有正负速子分布不对称具有负速度的电子产生的电流不能全部抵消总电流不再为零未满带电子对导电有贡献
抵消,总电流不再为零。
本征半导体的导电机构、空穴4、空穴
空穴的性质:
1.带有正电荷(+q),其电量等于电子电量;
2.其速度等于该状态上电子的速度、方向相反;
3.价带中的空穴数恒等于价带中的空状态数;
4.空穴能量增加的方向与电子能量增加的方向相反;
5.空穴具有正的有效质量。
5空穴具有正的有效质量
半导体中有两种导电粒子:电子和空穴。
半导体中有两种导电粒子:电子和空穴
本征半导体的导电机构:
导带中有多少电子,价带中就有多少空穴;
导带上的电子参与导电,价带上的空穴也参与导电。
1.4 载流子的回旋共振
¾载流子——运载电流的运动粒子。
运载电流的运动粒子
在半导体中,是电子和空穴的通称。
在半导体中是电子和空穴的通称。
¾人类最初用回旋共振实验测出载流子的有效质量,并推出半导体的能带结构。
1等能为球
1、等能面为球面
等能面为球面时,载流子的有效质量是各向同性。