2017高考数学三视图汇编(供参考)
2017高考数学二轮浙江专用课件:5-1空间几何体的三视图、表面积与体积 精品

1
2
B. +
关闭
6
,下面是底面积为 1,高为 1 的四棱锥,体积
1 4 2 V1= × π × 2 3 2 1 1 V2=3 × 1×1=3,故选
3
=
C.
关闭
C
解析 答案
-4热点考题诠释 能力目标解读
1 2 3 4 5
2.(2016全国乙,理6)如图,某几何体的三视图是三个半径相等的圆及 每个圆中两条互相垂直的半径.若该几何体的体积是 28π ,则它的 3 表面积是 ( )
3.(2016全国丙,理9)如图,网格纸上小正方形的边长为1,粗实线画出 的是某多面体的三视图,则该多面体的表面积为( )
关闭
由三视图知该几何体是平行六面体,且底面是边长为 3 的正方形, 侧棱长为 3 5,所以该几何体的表面积为 S=2×3×6+2×3×3+2×3×3 5=54+18 5,故选 B. A.18+36 5 B.54+18 5 C.90 D.81
专题五 立体几何与空间向量
第1讲 空间几何体的三视图、 表面积与体积
-3热点考题诠释 能力目标解读
1 2 3 4 5
1.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下 图所示.则该几何体的体积为( )
A.3 + 3π
2 π 3 2 π 6 2 由三视图可知 , 上面是半径为 的半球,体积为 2 2 D.1+ 6 π 2π 1 3 1 C.3 +
由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的
长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3). 由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为
(经典)高考数学三视图还原方法归纳

高考数学三视图还原方法归纳方法一 :还原三步曲核心内容:三视图的长度特征——“长对齐,宽相等,高平齐” ,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示( 1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点 A、 B、 C、 D 处不可能有垂直拉升的线条,而在 E 处必有垂直拉升的线条 ES,由正视图和侧视图中高度,确定点 S 的位置;如图③将点 S 与点 ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题 1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3。
解答:(24)例题 2:一个多面体的三视图如图所示,则该多面体的表面积为()答案: 21+ 3 计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M 、N 处不可能有垂直拉升的线条,而在点 A、B、C、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点 G,G' , B' , D ' , E ' , F '地位置如图;第三步:由三视图中线条的虚实,将点G 与点 E、F 分别连接,将G'与点E'、F'分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题 3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:( 1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点 A、B、 C 出不可能有垂直向前拉升的线条,而在 M 出必有垂直向前拉升的线条 MD,由俯视图和侧视图中长度,确定点 D 的位置如图:( 3)将点 D 与 A、B、 C 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:解:置于棱长为 4 个单位的正方体中研究,该几何体为四面体 D—ABC,且 AB=BC=4, AC=42 ,DB=DC=2 5 ,可得 DA=6.故最长的棱长为 6.方法 2若由左视图引发,具体步骤如下:( 1)依据左视图,在长方体右侧面初绘BCD如图:( 2)依据正视图和俯视图中显示的垂直关系,判断出在节点 C、D 处不可能有垂直向前拉升的线条,而( 3)将点 A 与点 B、 C、 D 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法 3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。
2017年全国中考数学真题分类 三视图与展开图2017(选择题)

2017年全国中考数学真题分类三视图与展开图选择题一、选择题1..(2017四川广安,6,3分)如图所示的几何体,上下部分均为圆柱体,其左视图是( )答案:C,解析:从左边看,下方是一个大矩形,上方是一个小矩形.故选C.2.(2017浙江丽水·3·3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同答案:B.解析:根据三视图的概念,这个几何体的主视图和左视图是相同的长方形,俯视图是正方形,故选B.3.(2017四川泸州,4,3分)左下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )答案:D,解析:该几何体从左面看,是一列两层的两个小正方形.故选D.4.(2017安徽中考·3.4分)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A. B. C. D.答案:B.解析:根据俯视图的概念,该几何体的俯视图是两个同心圆,故选B.5.(2017浙江衢州,2,3分)下图是由四个相同的小立方块搭成的几何体,它的主视图是()主视方向A B C D答案:D,解析:主视图即是从正面看到的视图,易得左侧有2个正方形,右侧有一个正方形.故选D.6.(2017山东济宁,5,3分)下列几何体中,主视图、俯视图、左视图都相同的是A. B. C. D.答案:B,解析:根据几何体“三视图的定义”,如图,B选项球的主视图、俯视图、左视图都是圆,其他三个选项几何体的主视图、俯视图、左视图不一样.7.(2017山东德州,4,3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()答案:B,解析:俯视图是从上往下看得到的图形,图中竖直圆柱的俯视图是圆形,横放的圆柱的俯视图是长方形,又它们等直径,故该T型管道的俯视图是选项B中图形.8.(2017山东威海,8,3分)一个几何体有n个大小相同的小正方形搭成,其左视图、俯视图、如图所示,则n的值最小是()A.5B.7C.9D.10答案:B,解析:由俯视图知该几何体1、2、3、4个位置上都有小正方体,结合左视图知1、2位置中,其中一个位置最多有三个另一个位置最少有一个小正方体,3、4位置中,其中一个位置最多有两个最少有一个小正方体,故该几何体至少有七个小正方体.1 23 49.(2017山东菏泽,3,3分)下列几何题是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()答案:C,解析:选项A的左视图和俯视图如图1所示,选项B的左视图和俯视图如图2所示,选项C的左视图和俯视图如图3所示,选项D的左视图和俯视图如图4所示.10.(2017年四川绵阳,4,3分)如图所示的几何体的主视图正确的是A. B. C. D.答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.11. (2017四川自贡,8,3分)下面是几何体中,主视图是矩形的是( )A .B .C .D .答案:A ,解析:选项A 中圆柱的主视图是矩形;选项B 中球的主视图是圆;选项C 中圆锥的主视图是等腰三角形;选项D 中圆台的主视图是等腰图形.12. (2017年四川南充,2,3分)图1是由7个小正方体组合而成的几何体,它的主视图是( )答案:A 解析:主视图是从前向后看立体图形所得到的平面图形.这里主视图共可看到四个正方形,其中左边从上到下共有3个正方形,右边只有1个正方形.故选A .13. (2017浙江舟山,4,3分)一个立方体的表面图如图所示,将其折叠成立方体后,“你”字对面的字是( ) A . 中B . 考C .顺D .利答案:C ,解析:解析:正方体的表面展开图共有如下11种:正面图1A .B .C .D .其中处在同一行上的间隔一个正方形的为对面,如图21中的1与2即为对面;不在同一行上的”之”字两端的正方形为对面,如图21与21中的1与2为对面,所以“你”字对面的字是“顺”,故选C.14. 2.(2017江苏盐城,2,3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是A.圆柱B.球C.圆锥D.棱锥答案:C,解析:观察发现,主视图、左视图都是三角形,可猜想几何体可能是棱锥或圆锥,又因为俯视图是带圆心的圆,所以这个几何体是圆锥.15. (2017年四川内江,5,3分)由一些大小相同的小正方体搭成的几何体的俯视图如下图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是A B C D答案:A,解析:由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,3,由此可画出图形,如下所示:第2题图16.(2017山东临沂,5,3分)如图所示的几何体是由五个小正方体组成的,它的左视图是()答案:D解析:几何体的左视图有2列,左边一列小正方形数目是2,右边一列小正方形的数目是1,故选 D.17.(2017山东泰安,6,3分)下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.4答案:B,解析:根据几何体的形状以及摆放的方式可知,第一个正方体的俯视图为正方形,第二个圆柱体的俯视图为圆,第三个三棱柱的俯视图为矩形,第四个球体的俯视图为圆,所以俯视图是四边形的几何体的个数为2个.18. 5.(2017江苏连云港,5,3分)由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小 D.俯视图的面积最小答案:C ,解析:分别画出这个几何体的正视图,左视图和俯视图,假设每个正方体的一个侧面的面积为1,则正视图的面积为5,左视图的面积为3,俯视图的面积为4,得到左视图的面积最小,故选择C选项.19.(2017四川达州2,3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A. B. C. D.答案:B,解析:这个几何体从左边看,上下有两个正方体,故本题选B.20.(2017四川眉山,4,3分)右图所示几何体的主视图是答案:B,解析:主视图是指从立体图形的正面看到的平面图,从正面看,其主视图为2行2列,第一列有两个正方形,第二列也有两个正方形,故选择B.21. 2.(2017山东潍坊,2,3分)如图所示的几何体,其俯视图是()答案:D,解析:该杯子上口大下底小,且皆为圆形,又带着不透明的盖,故俯视图中下底圆形为虚线.22. 3.(2017浙江温州,3,4分)某运动会颁奖台如图所示,它的主视图是DCBA主视方向(第3题)A.B. C. D.答案:C,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的高度和长度,及其上下、左右的位置关系.23. 3.(2017四川宜宾,3,3分)下面的几何体中,主视图为圆的是()A.B.C.D.答案:C,解析:圆柱的主视图是矩形,正方体的主视图是正方形,球体的主视图圆,圆锥的主视图是等腰三角形.24.(2017山东滨州,6,3分)图2是一个几何体的三视图,则这个几何体是()主视图左视图A. B. C. D.图2俯视图答案:B,解析:由主视图易知,只有B选项符合.25.(2017湖南岳阳,4,3分)下列四个立体图形中,主视图、左视图、俯视图都相同的是A.B.C.D.答案:B,解析:考察三视图,球体的主视图、俯视图、左视图是面积相等的圆,三视图相同.26. 5.(2017江苏扬州,,3分)经过圆锥顶点的截面的形状可能是【答案】B27. 4.(2017甘肃酒泉,4,3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )答案:D,解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选D.28. 2.(2017甘肃兰州,2,4分)如图所示,该几何体的左视图是从正面看DCBA【答案】DA B C D第4题图A B C D【解析】在三视图中实际存在而被遮挡的线用虚线来表示,故选D29. 4.(2017湖北黄冈,4,3分)已知:如图,是一几何体的三视图,则该几何体的名称为A .长方体B .正三棱柱C .圆锥D .圆柱答案:D ,解析:A .长方体的三个视图都是矩形; B .正三棱柱的视图应该有三角形;C .圆锥的视图也应该有三角形;D .圆柱的主视图和左视图都是矩形,俯视图是圆.30. 10.(2017湖北荆门,10,3分)已知:如图2,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )B A .6个 B .7个 C .8个 D .9个答案:B ,解析:如答图1,以俯视图为基础,将另两个视图中小正方形的个数填写在俯视图的相应位置,即可得小正方体的个数是7.故选B .31. (2017山东烟台,4,3分)如图所示的工件,其俯视图是( )答案:B ,解析:从上面看到的图形是B 项中的图形.主视图 俯视图左视图图21 23 1 答图132. 5.(2017天津,3分)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.33. 3.(2017浙江义乌,3,4分)如图的几何体由五个相同的小正方体搭成,它的主视图是A.B. C. D.答案:A,解析:根据主视图是从物体的正面看得到的视图,从正面看可知第一层有3个正方形,第二层最左边有一个正方形.34. 4.(2017湖北咸宁,4,3分) 如图是某个几何体的三视图,该几何体是( )A.三棱柱 B.三棱锥 C.圆柱 D.圆锥答案:A解析:∵三棱柱的三视图符合所给的三视图的形状,∴A正确;∵三棱锥的三视图是三角形,与所给三视图不一致,∴B错误;∵圆柱的俯视图是圆,与所给三视图不一致,∴C错误;∵圆锥主视图、左视图都是三角形、俯视图是圆形,与所给三视图不一致,∴D错误.故选A.35.3.(2017湖北宜昌,3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌答案:C,解析:根据正方体展开图的相对面求解,如果以“爱”为底,则“我”和“美”分别为前侧面和后侧面,“丽”为右面,“宜”在上面,“昌在左面,故选择C .36.(2017湖南邵阳,4,3分)下列立体图形中,主视图是圆的是()A B C D答案:A,解析:因为球的主视图是圆,圆柱的主视图是长方形,圆锥的主视图是等腰三角形,正方体的主视图是正方形,故选A.37.4.(2017湖北鄂州,3分)如图是由几个大小相同的小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()答案:D,解析:从左向右看,一共有3列,左侧一列有2层,中间一列有2层,右侧一列有1层,故选D.A.B.C.D.1122第4题图38. (2017湖北十堰,2,5分)如图的几何体,其左视图是( )A .B .C .D .答案:B ,解析:左视图为从左向右看,此图从左向看看到的图形为B ,故选B .39.(2017湖北随州,3,3分)如图是某几何体的三视图,这个几何体是( )俯视图主视图A .圆锥B .长方体C .圆柱D .三棱柱答案:C ,解析:解析:A .圆锥的视图应该有三角形; B .长方体的三个视图都是矩形;C .圆柱的主视图和左视图都是矩形,俯视图是圆;D .三棱柱的视图应该有三角形.40. (湖南益阳,8,5分)如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是2·1·c ·n ·j ·y A .214πcm 2 B .2116πcm 2C .30cm 2D .7.5cm 2答案:D ,解析:圆柱的主视图是矩形,它的一边长是10cm ,另一边长是12cm.在比例尺为1:4的主视图中,它的对应边长分别为2.5cm ,3cm ,因而矩形的面积为7.5cm 2.因此选D .第8题图41.(2017江苏镇江,14,3分)如图是由6个大小相同的小正方体组成的几何体,它的主视图是A.答案:C,解析:这个几何体共两层三排三列,主视图看到的是这个几何体的长和高,故选C.44. (2017甘肃天水.2.4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()2题图A B C D答案:C,解析:俯视图即是从上面看到的视图,由实物图知从上面看到的是四个小正方形组成的大正方形,故选C.43.(2017湖南郴州,7,3分)如图(1)所示的圆锥的主视图是答案:A,解析:主视图就是从几何体的正面得到的投影,本题中主视图反映的是圆锥的高和底面·圆的直径,∴A符合.44. 3.(2017安徽中考·4分)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A. B. C. D.答案:B.解析:根据俯视图的概念,该几何体的俯视图是两个同心圆,故选B.45.(2017新疆生产建设兵团,2,5分)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥答案:D 解析:由于主视图与左视图是三角形,俯视图是圆,该几何体是圆锥,故选D.46. 8. (2017浙江湖州,3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是A.2002cm D.200π2cmcm C.100π2cm B.6002答案:D,解析:能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)称为三视图. 从物体的前面向后面投射所得的视图称主视图(正视图)--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图(侧视图)--能反映物体的左面形状.由此可知,此几何体是圆柱体,由比例可知底面半径为5cm,高为20cm,所以该几何体的侧面积是一个长方形,即2=22520200r h cmSπππ⨯=⨯⨯=侧面积.47.4.(2017湖北天门,4,3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是A.传B.统C.文D.化化文统传扬弘答案:C,解析:所给图形是正方体展开图中“132”型,∴把所给图形折成正方体后“弘”与“文”、“扬”与“统”、“传”与“化”相对,故选择C.48.6. (2017湖南张家界,3分)如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是( )A.丽B.张C.家D.界答案:C,解析:同一行或列中,间一个小正方形就是一对相对面,所以“丽”与“张”是相对面;相对面不共顶点,所以“的”与“美”、“家”不是相对面,从而“的”与“界”是相对面;因此剩下的两个面“美”与“家”是相对面.49. 5.(2017浙江宁波,5,4分)如图所示的几何体的俯视图为( )【答案】D【解析】根据三视图的概念,俯视图是从物体的上面向下面看所得的视图,从上往下看,只有D 正确.故选D.50. 10.(2017四川凉山,10,4分)如图是一个几何体的三视图,则该几何体的侧面积是( ) A.213πB.10πC.20πD.413π【答案】A【解析】由三视图可知此几何体为圆锥,根据三视图的尺寸可得圆锥的底面半径为2,高为3,∴圆锥的母线长为:132322=+,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×2=4π,∴圆锥的侧面积=21×4π×13=213π.故选A.51. 3.(2017浙江绍兴,4分)如图的几何体由五个相同的小正方体搭成,它的主观图是A.B.C.D.【答案】A.【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选A.55.(2017北京,3,3分)右图是某个几何题的展开图,该几何体是()4 4334A.三棱柱B.圆锥C.四棱柱D.圆柱答案:A,解析:此图是三棱柱的展开图.53.(2017河南,3,3分)某几何体的左视图如下图所示,则该几何体不可能是( )A. B. C. D.答案:D,解析:从左视图可以看到几何体有几列,每列的最高层数是多少,选A、B、C从左面去看都只能看到2列,并且第一列的最高层数为2,第二列只有一层,和题中给出的左视图吻合,只有选项D的左视图应该可以看到有3列,第一列有2层,第2、3列均有1层,不符合题意,故应选D.55. (2017黑龙江齐齐哈尔,8,3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于( )A. 10B. 11C. 12D.13答案:C解析:根据主视图可知俯视图中第一列最高为3块,第二列最高有1块,∴a=3×2+1=7,b=3+1+1=5,∴a+b=7+5=12.55.(2017湖北襄阳,6,3分)如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.答案:A,解析:从几何体上面看几何体得到的平面图形是该几何体的俯视图.56.(2017山东聊城,6,3分)如图是由若跟个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()答案:C,解析:主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.57.(2017新疆乌鲁木齐,8,4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A. πB.2πC. 4πD. 5π答案:B,解析:观察三视图发现几何体为圆锥,其母线长为()2231+4,侧面积为12lR=12×2π×1×2=2π,故选B.58..(2017广西百色,7,3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是( )A.①②③ B.②①③ C.③①② D.①③②答案:D,解析:主视图是三角形,俯视图是两个矩形,左视图是矩形.59. 4.(2017贵州安顺,4,3分)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D.答案:C,解析:根据简单组合体的三视图,从上边看矩形内部是个圆.60. 4.(2017年贵州省黔东南州,4,4分)如图所示,所给的三视图表示的几何体是A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱答案:D,解析:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个正三角形,∴此几何体为正三棱柱.61. 3.(2017江苏常州,3,3分)右图是某个几何体的三视图,则该几何体是( )A.圆锥B.三棱柱C.圆柱D.三棱锥【答案】B【解析】由俯视图知是三棱柱或三棱锥,再由主视图排除三棱锥.66. 2.(2017·辽宁大连,2,3分)一个几何体的三视图如图所示,则这个几何体是第2题A.圆锥B.长方体C.圆柱D.球答案:B 解析:观察发现,主视图、左视图、俯视图都是矩形,可以确定几何体是直棱柱,所以这个几何体是长方体,故选B.63. 3.(2017山东淄博,3,4分)下列几何体中,其主视图为三角形的是()A B C D答案:D,解析:圆锥体的主视图是三角形.64.(2017陕西,2,3分)如图所示的几何体是由一个长方体和一个圆柱组成的,则它的主视图为A .B .C .D .答案:B ,解析:主视图是从前面看,看到的应该是上下两个长方形.故选B .65. (2017年湖南长沙,7,3分)某几何体的三视图如图所示,因此几何体是A.长方体B.圆柱C.球D 正三棱柱答案:B ,解析:长方体的俯视图不是圆,错;C 球的三视图都是圆,对;D 正三棱柱的主视图是三角形,错。
2017年高考数学(第02期)小题精练系列 专题21 三视图 理(含解析)

2017年高考数学(第02期)小题精练系列专题21 三视图理(含解析)专题21 三视图,521. 如图,是某几何体的三视图,其中矩形的高为圆的半径,若该几何体的体积是,则此几何体的表面3积为( )A( B( C( D( 33,34,36,42,【答案】A【解析】考点:几何体的三视图及表面积与体积(2. 某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( )25,425,A(2 B(4 C( D( 【答案】C1【解析】考点:几何体的三视图及其面积的计算(3. 有一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的表面积为( )48,36,24,12,A( B( C( D(【答案】C【解析】r,3l,5试题分析:由题意得,根据给定的三视图可知,该几何体表示一个底面半径为,母线长的一个22Srrl,,,,,,,,,,,,,33524圆锥,所以该圆锥的表面积为,故选C( 考点:几何体的三视图及表面积的求解(4. 一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为( )2【答案】D【解析】考点:空间几何体的三视图.5. 已知三棱锥的三视图如图所示,则它的外接球表面积为( )16,4,2,,A( B( C. D(【答案】B【解析】RtACB,试题分析:由图中的三视图分析可知,三棱锥的直观图如下图所示,为斜边的中点,MMAMBMC,,,1ABC,又底面,根据主视图的高为,所以,则点到三棱锥四个顶PM,1MP,1MPABC,,,点的距离都相等,所以M为三棱锥外接球的球心,外接球半径R,1,所以表面积为2SR,,44,,,故选B.3考点:三棱锥的外接球.2cm6. 若某多面体的三视图如图所示(单位:),则此多面体的体积是 ( cm5【答案】6【解析】考点:三视图.7. 一个几何体的三视图如图所示,則此几何体的体积是_________.4【答案】80【解析】考点:几何体的三视图及体积的计算.8. 某空间几何体的三视图如图所示,则该几何体的体积为( )78,,87,, B( C( D( A(3333【答案】B【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为1118,,2. ,,,,,,,,22212,3233考点:三视图.9. 一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( )92736,9,,A( B( C(, D( 525【答案】C【解析】考点:球的外接几何体.10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 ( )8842,,4,,A( B( C( D( ,,,,233【答案】D【解析】611试题分析:由三视图可知,该几何体由三棱柱和半个圆柱组成,故体积为. ,,,,,,,,,2222422考点:三视图.11. “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )【答案】B【解析】考点:1、阅读能力及空间想象能力;2、几何体的三视图.12. 某几何体的三视图如图所示,该几何体的体积为( )7068A(24 B( C.20 D( 33【答案】D【解析】试题分析:由三视图可知,该几何体由一个直四棱柱(底面为直角梯形)截去一个三棱锥而得,它的直观111682图如图所示,故其体积为,故选D.VVV,,,,,,,,,,,,242422,,四棱柱三棱锥23237考点:1、几何体的三视图;2、棱柱及棱锥的体积公式.13. 某椎体的三视图如图所示,则该棱锥的最长棱的棱长为( )A( B( C( D( 33174142【答案】C【解析】考点:简单几何体的三视图(MNQ、、ABCDABCD,aADBCCD14. 如图1,已知正方体的棱长为,动点分别在线段上,,11111111QBMN,QBMN,上,当三棱锥的俯视图如图2所示时,三棱锥的正视图面积等于( )823112222A. B( C. D( aaaa4424【答案】B【解析】考点:三视图.15. 已知某几何体的三视图如图所示,俯视图中正方形的边长为2,正视图中直角梯形的两底长为1和2,则此几何体的体积为( )1011A(3 B( C. D(4 33【答案】B【解析】91110试题分析:几何体是由正方体截掉两个四棱锥得到.( VV82423,,V,V,,,,,,,,12正方体333考点:三视图及体积求法.16. 某几何体的三视图如图所示,则该几何体的体积为( )43536383A( B( C. D( 【答案】A【解析】考点:三视图求体积.17. 已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )A( B( C. D(【答案】C【解析】试题分析:由俯视图可知三棱锥的底面是个边长为的正三角形,由侧视图可知三棱锥的一条侧棱垂直于2底面,且其长度为2,故其主视图为直角边长为2的等腰直角三角形,且中间有一虚线,故选C(10考点:三视图.18. 某几何体的三视图如图所示,则该几何体的表面积为( )A(50 B(50.5 C(51.5 D(60【答案】D【解析】考点:由三视图求面积、体积.19. 已知某棱锥的三视图如图所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是_____.1182【答案】 ,3【解析】考点:由三视图求面积、体积.20. 正方体中为棱的中点(如图),用过点,,的平面截去该正方体的上ABCDABCD,BBCEAE111111半部分,则剩余几何体的左视图为( )【答案】C【解析】试题分析:由已知可得剩余几何体的左视图应是选项C.12考点:1、组合体;2、几何体的三视图.13。
高考数学中的三视图与投影相关知识点

高考数学中的三视图与投影相关知识点在几何学的领域中,三视图与投影是十分重要的一部分,它们不仅仅是应用于让我们更好地看清三维物体,也是高考数学常见的考点之一。
因此,在这篇文章中,我们将深入探讨高考数学中的三视图与投影相关知识点,帮助大家更好地理解和应用相关内容。
一、三视图概述在现实生活中,很多物体都是三维的,它们有长度、宽度和高度等特征,但我们任何时候都无法同时看到物体的所有信息,因为我们的眼睛只能看到一个角度。
为了更好地看清三维物体,我们可以将其分解为三个不同的投影角度,即正面视图、左视图和顶视图,这就是三视图的概念。
在数学中,我们可以通过三个二维的视图来表示三维物体的形状,三个视图分别呈现物体的正面、左侧和顶部,这些视图给我们提供了关于物体轮廓形状的详细信息。
三维物体的三视图可以通过投影的方式得到,这也是三视图和投影密不可分的原因。
二、投影概述投影是基于投影面和投影线进行的,是将三维物体在二维平面上展示的一种方式。
在投影中,投影面和投影线的位置非常重要,它们决定了最终投影的效果和质量。
在平行投影中,投影线是垂直于投影面的直线,这种投影方式可以得到准确的形状和大小,但是它的透视感比较弱,在某些情况下无法展示物体的深度,因此在我们画高考数学的题目时需要注意使用透视投影来展示物体的深度。
透视投影是一种根据物体在空间中的位置、大小、形状等特征进行的投影方式。
在透视投影中,物体的前方向是远离投影面的方向,反之则是物体的后方向,这种方式可以更好地表现物体的深度和透视效果。
三、三视图和投影的联系三视图和投影密不可分,因为三视图是通过投影方式得到的,我们可以通过三视图来确定物体在三维空间中的位置和方向,从而得到正确的投影。
在绘制三视图时,我们需要利用的是三个视图的交点来确定物体的位置,然后再根据物体的大小和形状来确定它的轮廓。
同样,在投影中,我们也需要确定三维物体在空间中的位置和方向,然后再根据其大小和形状进行投影。
(完整word版)高考数学三视图题型总结,推荐文档

1 .某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+ 【答案】A 2 .一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C3 .某四棱台的三视图如图所示,则该四棱台的体积是()A.4B.14 3C.163D.6【答案】B4.某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C5.一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A6.某几何体的三视图如图所示, 则其体积为___3π_____.12211正视图俯视图侧视图第5题图1121【答案】3π 7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】248.某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-9.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________43 233正视图侧视图俯视图(第12题图)【答案】12π2 .已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是()A.1cm3 B.2cm3C.3cm3D.6cm35 .将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为7 .如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A.6B.9C.12D.1813.某三棱锥的三视图如图所示,该三棱锥的表面积是()+A.2865+B.3065+C.56125D.60125+15.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是DCBA正、侧视图18. (立体几何)某几何体的三视图如图1所示,它的体积为()A.12πB.45πC.57πD.81π22.一个几何体的三视图如图所示(单位:m),则该几何体的体积________3m.36.一个几何体的三视图如图所示,则该几何体的表面积为______________.第7题图。
高考数学中的三视图及相关方法

高考数学中的三视图及相关方法在高考数学中,三视图是一个常见的概念。
三视图是一个物体分别从三个不同的方向所观测到的图形,通过三个视图可以确定一个物体的形状、尺寸及空间位置。
在学习三视图时,需要掌握一些相关的知识和方法。
一、投影法与投影面在学习三视图之前,需要先掌握投影法和投影面的相关概念。
投影法是指从物体上某一点出发,将光线对着投影面射出,所形成的投影。
投影面是指用来做投影的平面。
在三视图中,通常使用前、上、侧三个平面来进行投影,这三个平面分别称为主平面。
二、主视图主视图是指在三视图中,以物体的正面朝前、上面朝上、左面朝左的方向所形成的视图。
主视图常常是确定一个物体的形状和尺寸的主要依据。
三、侧视图侧视图是指在三视图中,以物体左侧面朝上、物体正面朝前、物体下侧面朝下的方向所形成的视图。
侧视图和主视图相结合,可以确定一个物体的整体形状和尺寸。
四、俯视图俯视图是指在三视图中,以物体的上部朝上、物体的前面朝下、物体的左侧面朝左的方向所形成的视图。
俯视图主要用来确定一个物体的上部结构,例如天棚、台面等。
五、三视图的绘制方法在学习三视图时,需要掌握三视图的绘制方法。
绘制三视图时,需要确定主平面,然后将物体在主平面上分别绘出主视图、侧视图、俯视图。
在绘制时,需要按比例绘制,保持各个视图之间的比例关系一致。
六、三视图的应用在实际生活中,三视图有很多应用。
例如在工程设计中,可以通过三视图来确定一个建筑物或机械设备的形状和尺寸,以便进行制造和施工。
在家具设计方面,通过三视图可以确定家具的形状和尺寸,以便进行制造和销售。
总之,三视图在数学中是一个非常重要的概念。
通过学习三视图,可以帮助我们更好地了解物体的形状、尺寸和空间位置,从而更好地进行设计、制造和施工。
通过掌握三视图的相关知识和方法,我们可以在高考数学中取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考立体几何三视图
1(2017全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A .π90
B .π63
C .π42
D .π36
【答案】B 【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.
2211
π310π3663π
22=
-=⋅⋅-⋅⋅⋅=V V V 总上
2(2017北京文数) 某三棱锥的三视图如图所示,则该三棱锥的体积为 A 60 B 30 C 20 D 10
【答案】D 【解析】该几何体是如图所示的三棱锥P-ABC , 由图中数据可得该几何体的体积为11
5341032
V =⨯⨯⨯⨯=
3(2017北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
A 3
B 2
C 2
D 2
【答案】B 【解析】如下图所示,在四棱锥-P ABCD 中,最长的棱为PA , 所以2222=2(22)23+=+=PA PC AC ,故选B .
232
4(2017山东理数)由一个长方体和两个
1
4
圆柱构成的几何体的三视图如图,则该几何体的体积为 。
【答案】2+
2
π
【解析】由三视图可知,长方体的长、宽、高分别是2、1、1,圆柱的高为1,底面半径
为1,所以2
121121=2+
4
2
V ππ
⨯=⨯⨯+⨯⨯
5(2017全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为
A .10
B .12
C .14
D .16
【答案】B
【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成, 如下图,则该几何体各面内只有两个相同的梯形, 则这些梯形的面积之和为1
2(24)2122
⨯+⨯⨯
=,故选B.
6(2017浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A.
π
+12
B. π+32
C.
3+12π D. 3π
+32
【答案】A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的体积为2111π13232V π=
⨯⨯⨯⨯=,三棱锥的体积为2111
213322
V =⨯⨯⨯⨯=, 所以它的体积为12π1
22
V V V =+=
+ 7.(2016全国卷1文数)如图所示,某几何体的三视图是三个半径相等的圆
及每个圆中两条相互垂直的半径.若该几何体的体积是
28π
3
,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π
【答案】B 【解析】由三视图可知该几何体是
7
8
个球(如图所示),设球的半径为R ,则374π28π833V R =⨯=得R=2,所以它的表面积是22
734π2+21784S 表ππ
=⨯⨯⨯⨯=
8.(2016全国卷2文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ). A.20π B.24π C.28π
D.32π
【答案】C 【解析】由题意可知,圆柱的侧面积为12π2416S π=⨯⨯=
圆锥的侧面积为21
2π2482S π=
⨯⨯⨯=
圆柱的底面积为2
3π24S π=⨯= 该几何体的表面积为123++28S S S S π==
9.(2016全国卷3文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 ( ). A.18365+ B.54185+ C.90 D.81
【答案】B 【解析】 (1)由题意知,几何体为平行六面体,边长分别为3,3,
1
1
1
正(主)视图
俯视图
侧(左)视图
45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5.
10.(2016北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.
【答案】
3
2
【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱, 棱柱的底面积为131+2122S ()=
⨯⨯= 棱柱的高为1,故体积为32
11.(2016山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( ).
A .12
π33
+ B .12π3+
C .
12π3+ D .2
1π+ 【答案】C 【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得22R =
,故22R =
,半球的体积为3222
=326(
)ππ
棱锥的面积为1,高为1,故体积为
1
3
故几何体的体积为12+
36π 12.(2016天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( ).
A.
B.
C.
D.
【答案】B 【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B.
13(2016四川文数)
已知某三棱锥的三视图如图所示,则该三棱锥的体积等于 .
【答案】C 【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形, 底面积1
23132S =
⨯⨯=,高为1h =
棱锥的体积为113
31=
33V Sh ==
14.(2016浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.
【答案】C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体, 其表面积为2
2
2
62244242280S =⨯+⨯+⨯⨯-⨯=
其体积为3
244240V =+⨯⨯=
侧视图
3
3
1
1
3
3
1正视图
1。