乳酸脱氢酶教案资料
乳酸脱氢酶(LDH)测定-标准操作程序

三级文件标准操作程序第2页共3页生效日期:目的:建立乳酸脱氢酶(LDH)测定标准操作规程。
范围:适用于乳酸脱氢酶(LDH)测定的标准操作。
职责:生化部检验人员对本规程的实施负责。
规程:1 测定方法:乳酸脱氢酶在催化乳酸生成丙酮酸的同时将NAD+还原成NADH。
通过测定NADH在340nm处吸光度增加的速度可求得乳酸脱氢酶的活力。
LDHL-乳酸+ NAD+─────→丙酮酸+ NADH + H+2 仪器设备GS200全自动生化分析仪3 试剂3.1 乳酸脱氢酶(LDH)试剂盒,包括试剂1(R-1)、试剂2(R-2)。
试剂成份含量R-1 L-乳酸锂≥76mmol/LR-2 NAD+≥31mmol/l3.2 分析用人基质质控血清(RANDOX)、血清3.3 试剂稳定性与贮存乳酸脱氢酶(LDH)试剂盒在2-8℃避光保存可稳定一年;试剂R-1、R-2开启后在2-8℃避光保存可稳定一个月。
3.4 样本稳定性与贮存3.4.1 分析用人基质质控血清:该血清自生产之日起,在2-8℃下保持可稳定4年;该血清一旦复融,在25℃下可稳定24小时,在2-8℃下可稳定7天,在-20℃可稳定1个月。
3.4.2 待测血清:2-8℃保存可稳定7天;-20℃保存可稳定3个月。
样本不可反复冻融。
不可使用已被污染的样本。
4 操作步骤4.1 打开全自动生化仪,按照GS200全自动生化分析仪操作维护保养程序,完成普三级文件准操作程序第3页共3页生效日期:通测试流程。
4.2 检验方法分析方法:速率A;主波长:340nm;副波长:405nm;样品量:8.0ul;R-1:320ul,R-2:80ul;校准方式:K因子;反应方向:上升;测定温度:37℃。
样本与R-1混匀后反应5分钟,加入R-2混合后延迟53秒,测定104秒。
样本8.0ul 主波长340nmR-1 320ul R-2 80ul 副波长405nm测光测光K=81990 5 6 8 min4.3 计算△A/min×Vt×1000ALT(U/L)= ─────────────6.22×Vs×d△A/min = 每分钟吸光度变化率Vt = 反应液总体积(ml)1000 =U/ml到U/L的转换系数 6.22 = NADH的毫摩尔吸光系数Vs = 样本体积(ml) d = 比色杯光径(cm)5 检验结果的解释抗坏血酸≤50mg/dl、游离胆红素≤684umol/L(40mg/dl),结合胆红素≤855umol/L (50mg/dl)、乳糜微粒≤2500浊度单位对测定无影响。
乳酸脱氢酶测定(精)

乳酸脱氢酶测定(2,4-二硝基苯肼法)
实验原理:在PH8.9的环境下,LDH催化乳酸形成丙酮
酸,同时使氧化型辅酶Ⅰ(NAD+)受氢形成还原型辅酶 Ⅰ(NADH),后者在340nm波长下吸光度的增加与 LDH的活力成正比(速率法).丙酮酸与2,4-二硝基苯肼 在碱性条件下显色,在510纳米波长下测吸光度值.(终 点法) 实验准备: 工作试剂配制:每瓶干粉均用5ML缓冲液溶解,混合均 匀为工作试剂. 4N氢氧化钠用蒸馏水5倍稀释,即4份蒸馏水1份4N氢 氧化钠.
临床意义
在急性心肌梗死后8~18小时乳酸脱氢酶开始升高,
24~72小时达高峰,持续4~16天恢复正常,平均 10天,峰值可高达正常水平的10倍。乳酸脱氢酶同 工酶LDH,,主要存在于心肌中,如LDH1>LDH2, 则表示有心肌梗死。乳酸脱氢酶及其同工酶检测,对 某些心电图诊断作用不大,而对发病后较迟就医的急 性心肌梗死患者的诊断,有较大的意义。还有,肝脏 疾病、恶性肿瘤液 样品 0.5 标准管 0.5 0.02 样品管 0.5 0.02
混合37℃水浴15分钟,然后各管加显色剂500 μL, 37℃水浴15分钟取 出,各管加稀释氢氧化钠2.0ml,室温放置3分钟510纳米波长测定.
标准值:400U/L 波长510纳米,试剂空白调零,按公式计 算结果. 参考范围:150-350U/L 样本要求:最适样本为当日空腹采集 的无溶血、无乳糜的血清或肝素抗凝 血浆及时测定。
乳酸脱氢酶乳酸底物法_概述及解释说明

乳酸脱氢酶乳酸底物法概述及解释说明1. 引言1.1 概述乳酸脱氢酶乳酸底物法是一种常用的生化实验方法,通过利用乳酸脱氢酶催化反应,将乳酸转化为丙酮酸,并同时生成NADH。
该实验方法可以用来测定样品中乳酸的含量,广泛应用于医学、生物学和食品工业等领域。
1.2 文章结构本文主要分为五个部分进行介绍。
首先,在引言部分将对乳酸脱氢酶乳酸底物法进行概述。
接下来,第二部分将详细介绍乳酸脱氢酶的基本原理以及乳酸底物法的工作原理。
第三部分将介绍该实验方法的具体步骤和执行要点。
在第四部分,我们将展示和解读实验结果,并对数据进行分析与讨论。
最后,在第五部分中给出本次实验的主要结论,并对未来进一步研究和应用进行展望。
1.3 目的本文旨在向读者提供关于乳酸脱氢酶乳酸底物法的全面了解。
通过介绍该实验方法的原理、步骤和结果分析,读者将能够掌握该方法的基本操作技巧,并了解其在不同领域中的应用场景和价值。
对于有意开展相关研究或者需要使用该方法的科研人员和实验室来说,本文将提供一份有用的参考资料。
2. 乳酸脱氢酶乳酸底物法概述:2.1 乳酸脱氢酶简介:乳酸脱氢酶(Lactate Dehydrogenase,简称LDH)是一种重要的代谢酶,存在于多种生物体内。
它主要参与细胞内的糖酵解过程,在无氧条件下将产生的乳酸转化为丙酮酸,从而供能给细胞。
LDH在各种组织中广泛分布,包括肝脏、肌肉、心脏等,因此具有广泛的应用价值。
2.2 乳酸底物法原理:乳酸底物法利用了LDH对乳酸的催化作用。
该方法通过将待测样品中的乳酸与辅助底物(如双硫苏糖)反应,同时加入LDH作为催化剂,在一定条件下观察和测定产生的反应物(如NADH)含量变化。
由于LDH能够特异性地催化乳酸生成丙酮酸的反应,所以可以通过测量NADH生成速率来间接确定待测样品中乳酸浓度的高低。
2.3 应用场景和价值:乳酸脱氢酶乳酸底物法具有一定的应用价值。
首先,该方法操作简便、快速,不需要复杂的设备和步骤,适用于实验室中对乳酸浓度进行初步检测与筛选。
医学检验·检查项目:乳酸脱氢酶(LDH,LD)_课件模板

骨的原发性淋巴瘤、老年人心肌梗死、心 肌梗死、急性心肌梗死、肝硬化、心肌梗 死后心包炎、严重急性呼吸综合征、心房 心肌梗死、右室心肌梗死、非ST段抬高心 肌梗死、无痛性心肌梗死、妊娠性心肌梗 死、青年心肌梗死。
谢谢!
医学检验·各论 乳酸脱氢酶(LDH,LD)
内容课件模板
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
别名: 乳酸脱氢酶。
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
简介: 乳酸脱氢酶是一种糖酵解酶。乳酸脱
氢酶存在于机体所有组织细胞的胞质内, 其中以肾脏含量较高。
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
相关检查: 血清乳酸脱氢酶(LDH)、血清乳酸脱氢 酶同工酶(LDHI)、乳酸脱氢酶同工酶、 心肌酶谱。
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
相关症状: 肌梗死、心肌坏死广泛、心肌缺氧、虹 膜表面形成灰白色肿瘤结节、腰背痛、关 节疼痛。
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
临床意义:
增高:见于肝炎、肝硬化、肝癌、心 肌梗死、横纹肌损伤、心肌炎、恶性肿瘤、 肾病、肺梗死、巨幼细胞贫血、白血病、 恶性淋巴瘤及妊娠等。
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
正常值: 血清:100~300U/L; 尿:560~
2050U/L; 脑脊液含量为血清的1/10。
医学检验·各论:乳酸脱氢酶(LDH,LD) >>>
实验三十一亲和层析纯化乳酸脱氢酶

实验三十一亲和层析纯化乳酸脱氢酶乳酸脱氢酶(1actate dehydrogenase,LDH)是机体代谢中一个很重要的酶,它催化下述反应:LDH丙酮酸+NADH+H+=乳酸+NAD+现已明了,大多数动物体内的LDH含有5种同工酶。
它们是由两种亚基(H亚基与M 亚基)按不同组合形成的四聚体,其中LDH–1和LDH-5分别为四个H亚基和四个M亚基组成的纯合体。
后来在很多动物睾丸和精子中,又发现了另一种LDH同工酶命名为LDH-X,由四个x亚基组成。
已经证明,形成不同LDH同工酶的上述三种亚基是由三个不同的基因所编码。
LDH的各种同工酶的蛋白质组成与结构,生物体内的组织分布、酶学性质与生理功能均各有差异。
因此,纯化LDH的各同工酶并对其进行比较酶学的研究,对于进一步认识蛋白质结构与功能的关系,机体内代谢的调控以及基因的进化等均有重要意义。
在这方面,国外学者已做了很多工作,已取得不少有意义的结果。
早期的LDH纯化比较繁琐,周期长,收率低。
20世纪70年代以来,由于有Axen等人的开创性工作,亲和层析技术得到迅速发展,由于其专一性强,操作简捷,回收率高等特点,已成为分离纯化生物大分子的强有力的手段。
由于使用了能与酶专一结合的配基,尽管各种同工酶在电荷效应或肘,上存有差异,均能得到较高的回收率。
这对于LDH同工酶的研究是很有意义的,尤其对纯化体内含量甚微的某些LDH同工酶如LDH-X,亲和层析更是最为理想的手段。
实验原理亲和层析(affinity chromatography)是在一种对目的分子具有专一吸附能力的吸附剂上进行的层析。
这种专一吸附能力是由于共价偶联在惰性载体上的物质[通常称为配基(1igand)]与需要纯化的物质之间存在一种专一的可逆的亲和力。
相互具有这种亲和力的生物分子有:抗体与抗原,酶与其底物或抑制剂,激素与其受体等。
将具有这种亲和关系的两种分子(A、B)中的一种(比方A)以共价偶联到载体上,则可成为纯化另一种分子B的亲和吸附剂。
乳酸脱氢酶_990_概述及解释说明

乳酸脱氢酶990 概述及解释说明1. 引言1.1 概述乳酸脱氢酶(Lactate Dehydrogenase,LDH)是一种重要的酶类蛋白质,在人体和其他生物体内广泛存在。
该酶参与了细胞内的糖代谢过程,在乳酸产生和清除中发挥着关键作用。
近年来,随着对乳酸代谢的深入研究,人们对乳酸脱氢酶进行了广泛的关注和探索。
1.2 文章结构本文将围绕乳酸脱氢酶展开全面而深入的讨论。
首先,我们将介绍乳酸脱氢酶的概述,包括其定义、功能以及分类和分布等方面内容。
然后,我们将详细阐述乳酸脱氢酶在人体生理作用中的角色,并分析其在疾病发展过程中所表现出的异常表达与调控相关性。
接下来,我们将探讨乳酸脱氢酶在医学领域中的应用与意义,包括其作为诊断疾病标志物以及肿瘤治疗和运动生理学领域中的重要性和应用前景等方面。
最后,我们将对乳酸脱氢酶的重要性和作用机制等主要观点进行总结,并展望未来相关研究的发展方向。
1.3 目的本文的目的在于全面概述乳酸脱氢酶的相关知识,深入解释其功能、生理作用以及在医学领域中的应用与意义。
通过系统地整合已有研究成果,并提供对未来乳酸脱氢酶相关研究发展趋势的展望,旨在加深人们对乳酸脱氢酶这一重要生物分子的认识并促进相关领域的进一步探索和应用。
2. 乳酸脱氢酶概述:2.1 定义和功能:乳酸脱氢酶(Lactate Dehydrogenase, LDH)是一种广泛存在于细胞内的酶类,它在许多生物体中都起着重要的功能。
乳酸脱氢酶能够催化乳酸与双瓣糖转换为丙酮酸和NADH,同时在反向反应中也起到同样作用。
这种双向催化反应使得乳酸脱氢酶在能量代谢过程中起到了关键的角色。
2.2 类型和分布:乳酸脱氢酶可以根据其组成亚基的类型进行分类,常见的有两种主要类型:LDH-1和LDH-5。
LDH-1由四个M亚基组成,主要分布在心肌和红血球等组织中;而LDH-5则由四个H亚基组成,主要存在于肝脏、肾脏和肌肉等组织中。
此外,在不同动物物种和人类身体各部位也会有不同类型的乳酸脱氢酶的存在。
乳酸脱氢酶的作用实验报告

乳酸脱氢酶的作用实验报告乳酸脱氢酶的作用实验报告引言:乳酸脱氢酶(lactate dehydrogenase,简称LDH)是一种重要的酶类,广泛存在于动物和植物细胞中。
它在生物体内发挥着关键的代谢功能,参与乳酸的产生和消耗过程。
本实验旨在探究乳酸脱氢酶的作用机制及其在细胞代谢中的重要性。
材料与方法:1. 实验仪器:分光光度计、离心机、培养皿、试管等。
2. 实验试剂:乳酸、NADH、乳酸脱氢酶提取液等。
3. 实验样本:从新鲜牛血中提取的乳酸脱氢酶。
实验步骤:1. 提取乳酸脱氢酶:将新鲜牛血置于离心管中,离心10分钟,收集上清液。
2. 酶活测定:取一定量乳酸脱氢酶提取液,加入适量的乳酸和NADH,混合均匀。
3. 光密度测定:将混合液转移到分光光度计比色皿中,设置波长为340nm,记录初始吸光度。
4. 反应开始:向比色皿中加入适量的乳酸,立即开始计时。
5. 吸光度测定:每隔30秒记录一次吸光度值,连续记录5分钟。
结果与讨论:实验结果显示,乳酸脱氢酶在催化反应中起到了重要的作用。
初始吸光度值为A1,随着反应时间的增加,吸光度值逐渐增加,最终稳定在A2。
通过计算吸光度的变化量(ΔA=A2-A1),可以得到乳酸脱氢酶的活性。
乳酸脱氢酶的作用机制是将乳酸氧化为丙酮酸,同时还还原了辅酶NAD+为NADH。
这个过程是一个氧化还原反应,乳酸被氧化,NAD+被还原。
乳酸脱氢酶作为催化剂,加速了这个反应的进行。
乳酸脱氢酶在细胞内广泛存在,并参与多种生物过程,如乳酸的产生和消耗、细胞呼吸等。
乳酸脱氢酶的活性受到多种因素的影响,如温度、pH值、金属离子等。
本实验中,我们选择了适宜的温度和pH值,以保证乳酸脱氢酶的最佳催化活性。
此外,乳酸脱氢酶的活性还受到底物浓度的影响,底物浓度越高,反应速率越快。
乳酸脱氢酶在医学领域有着广泛的应用。
它可以作为临床诊断的一个指标,用于检测乳酸水平的异常情况。
例如,在乳酸酸中毒的病例中,乳酸脱氢酶的活性会显著增加。
乳酸脱氢酶LDH乳酸法作业指导书

乳酸脱氢酶LDH乳酸法作业指导书
1、前言
试验名称:乳酸脱氢酶测定,英文名称:LDH,
本文件适用于安阳鼎城糖尿病医院检验科生化实验室,目的是指导工作人员正确的在全自动生化分析仪上测定血清、血浆样本中的乳酸脱氢酶活力,以保证测定结果的准确可靠。
本试验用体外定量测定人血清或血浆样本中乳酸脱氢酶的活力。
LDH广泛存在于人各组织,以肝、心肌、肾、骨骼肌、胰腺和肺最多,组织中酶活力约比血清中高1000倍,所以少量组织损伤即可引起血清LDH升高。
但其特异差,在心肌梗塞的诊断中LDH出现较CK晚,阳性率也较低,但维持时间长。
因此仍将此酶与CK、CK-MB、AST、α-HBDH同时测定做为心肌梗塞的诊断和监控的指标。
2、测定原理
本试验测定原理以IFCC推荐的方法为基础,实验分两步进行测定原理如下:
L-乳酸+ NAD+LDH丙酮酸+ NADH
在上述反应中NADH生成的速率与LDH的活性相关,监测340nm波长处吸光度的变化,即可计算出样本中LDH的活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乳酸脱氢酶乳酸脱氢酶乳酸脱氢酶是一种糖酵解酶。
乳酸脱氢酶存在于机体所有组织细胞的胞质内,其中以肾脏含量较高。
乳酸脱氢酶是能催化丙酮酸生成乳酸的酶,几乎存在于所有组织中。
同工酶有六种种形式,即LDH-1(H4)、LDH-2(H3M)、LDH-3(H2M2)、LDH-4(HM3)、LDH-5(M4)及LDH-C4,可用电泳方法将其分离。
LDH同功酶的分布有明显的组织特异性,所以可以根据其组织特异性来协用诊断疾病。
正常人血清中LDH2,〉LDH1。
如有心肌酶释放入血则LDH1〉LDH2,利用此指标可以观察诊断心肌疾病。
基本信息英文名称: LDH(lactate dehydrogenase)序列信息:1 gsgcnldsar frylmg长度:16 aa{物种来源:Homo sapiens (human)}正常范围:血清135.0~215.0U/L;脑脊液含量为血清的1/10。
乳酸脱氢酶A简介乳酸脱氢酶(LDH)分子量为130~140KDa,由两种亚单位组成:H(表示heart)和M(表示muscle)。
它们按不同的形式排列组合形成含4个亚基的5种同工酶,即:LDH1(H4)、LDH2(H3M1)、LDH3(H2M2)、LDH4(HM3)、LDH5(M4)。
LDH催化丙酮酸与乳酸之间还原与氧化反应,在碱性条件下促进lactic acid向pyruvic acid方向的反应,而在中性条件下促进pyruvic acid向lactic acid的转化(为逆反应)。
LDH 是参与糖无氧酵解和糖异生的重要酶。
由于LDH几乎存在于所有体细胞中,而且在人体组织中的活性普遍很高,所以血清中LDH的增高对任何单一组织或器官都是非特异的。
在AMI时升高迟、达峰晚,故对早期诊断价值不大。
由于半寿期长(10~163小时),多用于回顾性诊断,如对入院较晚的AMI病人、亚急性MI的诊断和病情监测。
LDH在组织中的分布特点是心、肾以LDH1为主,LDH2次之;肺以LDH3.LDH4为主;骨骼肌以LDH5为主;肝以LDH5为主,LDH4次之。
血清中LDH含量的顺序是LDH2>LDH1>LDH3>LDH4>LDH5.正常参考值人组织中的乳酸脱氢酶(LDH)用电泳法可以分离出5种同工酶区带,根据其电泳迁移率的快慢,依次命名为LDH1,LDH2,LDH3,LDH4,LDH5。
不同组织的乳酸脱氢酶同工酶分布不同,存在明显的组织特异性,人心肌、肾和红细胞中以LDH1和LDH2最多,骨骼肌和肝中以LDH4和LDH5最多,而肺、脾、胰、甲状腺、肾上腺和淋巴结等组织中以LDH3最多。
后来从睾丸和精子中发现了LDHx,其电泳迁移率介于LDH4和LDH5之间。
LDH是由H(心肌型)和M(骨骼肌型)两类亚基组成,分别形成LDH1(H4)、LDH2(H3M)、LDH3(H2M2)、LDH4(HM3)、LDH5(M4)。
正常参考值(1)琼脂糖电泳法:LDH1(28.4±5.3)%;LDH2(41.0±5.0)%;LDH3(19.0±4.0)%;LDH4(6.6±3.5)%;LDH5(4.6±3.0)%。
(2)醋酸纤维素薄膜法:LDH1(25.32±2.62)%LDH2(34.36±1.57)%LDH3(21.86±1.38)%LDH4(11.3±1.84)%LDH5(7.97±1.59)%(3)聚丙烯酰胺法:LDH1(26.9±0.4)%LDH2(36.0±0.5)%LDH3(21.9±0.4)%LDH4(11.1±0.4)%LDH5(4.1±0.3)%总之,健康成人血清LDH同工酶有如下的规律:LDH2>LDH1>LDH3>LDH4>LDH5。
临床意义(1)心肌细胞LDH活性远高于血清数百倍,尤以LDH1和LDH2含量最高,LDH2占主导地位。
急性心肌梗塞时,血清LDH1和LDH2显著升高,约95%的病例的血清LDH1和LDH2比值大于1,且LDH1升高早于LDH总活性升高。
LDH在心肌梗死后上升速度比肌酸激酶慢很多,所以LDH上升在血液中存在时间较长,使得LDH成为诊断心肌梗死发生一周以上的有效工具。
病毒性和风湿性心肌炎及克山病,出现心肌损害时,病人的血清LDH同工酶的改变与心肌梗塞相似。
LDH1/LDH2比值>1还见于溶血性贫血、地中海贫血、恶性贫血、镰形细胞性贫血、肾脏损伤、肾皮质梗塞、心肌损伤性疾病、瓣膜病等。
(2)脑干含LDH1较高。
颇脑损伤仅累及大脑半球时,只有血清同工酶谱的绝对值增高,而不影响同工酶的相互比值,如果累及脑干时,病人血清LDH1的含量也增高。
(3)急性心肌梗塞发病后12~24小时,血清LDH1也已升高。
若同时测定LDH总活性,可发现LDH1/总LDH的比值升高。
早期血清中LDH1和LDH2活性均升高,但LDH1增高更早,更明显,导致LDH1/LDH2的比值升高。
对急性心肌梗塞诊断的阳性率和可靠性优于单纯测定LDH1或CK-MB。
(4)胚胎细胞瘤病人的血清LDH1活性升高。
(5)急性肝炎,肝细胞损伤或坏死后,向血流释入大量的LDH4和LDH5,致使血中LDH5/LDH4比值升高,故LDH5/LDH4>1可做为肝细胞损伤的指标。
急性肝炎以LDH5明显升高,LDH4不增,LDH5/LDH4>1为特征;若血清LDH5持续升高或下降后再度升高,则可认为是慢性肝炎;肝昏迷病人的血清LDH5.LDH4活性极高时,常示预后不良;原发性肝癌以血清LDH4>LDH5较为常见。
(6)肾皮质以LDH1和LDH2含量较高,肾髓质以LDH4和LDH5活性较强。
患急性肾小管坏死(ATN)、慢性肾盂肾炎、慢性肾小球肾炎以及肾移植排异时,血清LDH5均可增高。
(7)肺含LDH3较多,肺部疾患时血清LDH3常可升高。
肺梗塞时LDH3和LDH4相等,LDH1明显下降;肺脓肿病人的血清LDH3.LDH4常与LDH5同时升高。
煤矿、钨矿矽肺病人的血清LDH1.LDH2下降,LDH4.LDH5升高。
(8)血清LDH总活性升高而同工酶谱正常(LDH1/LDH2<1)的病例,临床出现率依次为;心肺疾病、恶性肿瘤、骨折、中枢神经系统疾患、炎症、肝硬化、传染性单核细胞增多症、甲状腺功能减退、尿毒症、组织坏死、病毒血症、肠梗阻等。
(9)肌营养不良病人肌肉中LDH1.LDH2明显增高,LDH5显著下降;而血清则相反,LDH1.LDH2明显减少,LDH4.LDH5显著,表明血清LDH同工酶主要来自肌肉组织。
(10)恶性病变时LDH3常增高。
升高的原因乳酸脱氢酶偏高的原因至于乳酸脱氢酶高的原因,有以下方面:1.当乙肝病毒携带者病情恶化成乙肝患者时,部分肝细胞受损,血清中LDH4和LDH5含量就会有不同程度的增高。
2.乙肝治疗方法特别是是用药不当,长期服用同一种药物时造成肾毒现象的产生。
当肾毒现象出现时,血清中乳酸脱氢酶含量会迅速升高。
3.乙肝不进行合适积极的治疗,发展到一定程度时会造成肝脏代谢严重异常,导致肾脏功能衰竭,从而也会引起乳酸脱氢酶含量升高。
4.肺梗塞、恶性贫血、休克及肿瘤转移所致的胸腹水时,会引起乳酸脱氢酶的偏高。
偏低的原因乳酸脱氢酶存在于机体所有组织细胞的胞质内,其中以肾脏含量较高。
血清乳酸脱氢酶正常范围是100~300U/L,当出现乳酸脱氢酶偏低时,常见原因如下。
乳酸脱氢酶偏低的原因1:检查过程中出现误差;乳酸脱氢酶偏低的原因2:内分泌失调;乳酸脱氢酶偏低的原因3:过于劳累、睡眠不好、心情不好等。
总之,乳酸脱氢酶偏低一般不是很严重,经过调理即可恢复。
但如果出现乳酸脱氢酶偏高就要引起重视了。
因为肺梗塞、恶性贫血、休克及肿瘤转移所致的胸腹水时,会引起乳酸脱氢酶的偏高。
LDH实验折叠概述乳酸脱氢酶(LDH)是催化乳酸和丙酮相互转化的同工酶,属于氢转移酶。
该酶存在于所有动物的组织中,在肝脏中活性最高,其次为心脏、骨骼肌、肾脏,在肿瘤组织及白血病细胞中也能检测到。
在大多数动物组织中,它是由两种肽链按一定比例组成的5种四聚体。
它的每条肽链各由一个基因编码,经转录、翻译、修饰加工等过程,最后成为有生物学活性的物质。
不同的动物,不同的组织或器官在不同的发育阶段或不同的生活周期均有其特异性的同工酶酶谱。
自然界中存在L和D两种乳酸脱氢酶。
折叠实验原理用纯化的抗体包被微孔板,制成固相载体,往包被抗D-LDH抗体的微孔中依次加入标本或标准品、生物素化的抗D-LDH抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。
TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。
颜色的深浅和样品中的D-LDH呈正相关。
用酶标仪在450nm波长下测定吸光度(OD 值),计算样品浓度。
折叠试剂盒组成及试剂配制1. 酶联板(Assay plate ):一块(96孔)。
2. 标准品(Standard):2瓶(冻干品)。
3. 样品稀释液(Sample Diluent):1×20ml/瓶。
4. 生物素标记抗体稀释液(Biotin-antibody Diluent):1×10ml/瓶。
5. 辣根过氧化物酶标记亲和素稀释液 (HRP-avidin Diluent):1×10ml/瓶。
6. 生物素标记抗体(Biotin-antibody):1×120μl/瓶(1:100)7. 辣根过氧化物酶标记亲和素(HRP-avidin):1×120μl/瓶(1:100)8. 底物溶液(TMB Substrate):1×10ml/瓶。
9. 浓洗涤液(Wash Buffer):1×20ml/瓶,使用时每瓶用蒸馏水稀释25倍。
10. 终止液(Stop Solution):1×10ml/瓶(2N H2SO4)。
折叠需要而未提供的试剂和器材1. 标准规格酶标仪2. 高速离心机3. 电热恒温培养箱4. 干净的试管和Eppendof管5. 系列可调节移液器及吸头,一次检测样品较多时,最好用多通道移液器6. 蒸馏水,容量瓶等折叠操作步骤实验开始前,请提前配置好所有试剂,试剂或样品稀释时,均需混匀,混匀时尽量避免起泡。
每次检测都应该做标准曲线。
如样品浓度过高时,用样品稀释液进行稀释,以使样品符合试剂盒的检测范围。
1. 加样:分别设空白孔、标准孔、待测样品孔。
空白孔加样品稀释液100μl,余孔分别加标准品或待测样品100μl,注意不要有气泡,加样将样品加于酶标板孔底部,尽量不触及孔壁,轻轻晃动混匀,酶标板加上盖或覆膜,37℃反应120分钟。