理科数学2010-2018高考真题分类专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积答案
理科数学2010-2019高考真题分类训练专题八立体几何第二十四讲空间向量与立体几何答案

专题八 立体几何第二十四讲 空间向量与立体几何答案部分 2019年1.解析:(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA uu u r的方向为轴正方向,建立如图所示的空间直角坐标系D -y ,1则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-uuu r,1(12)A M =--uuuu r,1(1,0,2)A N =--uuu r ,1(1,0,2)A N =--uuu r.设(,,)x y z =m 为平面A 1MA 的法向量,则110A M A A ⎧⋅=⎪⎨⋅=⎪⎩uuuu ruuu rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n , 所以二面角1A MA N --. 2.解析:(I )因为PA ⊥平面ABCD ,所以PA CD ⊥. 又因为AB CD ⊥,所以CD ⊥.平面PAD ,(II )过A 作AD 的垂线交BC 于点M ,因为PA ⊥平面ABCD ,所以,PA AM ⊥PA AD ⊥,如图建立空间直角坐标系A -y ,则A (0,0,0),B (2,-1,0),C (2,2,0), D (0,2,0),P (0,0,2),因为E 为PD 的中点,所以E (0,1,1).所以()0,1,1AE =uu u r ,()2,2,2PC =-uu u r , ()0,0,2AP =uu u r. 所以1222,,3333PF PC ⎛⎫==- ⎪⎝⎭uu u r uu u r ,224,,333AF AP PF ⎛⎫=+= ⎪⎝⎭uu u r uu u r uu u r设平面AEF 的法向量为(),,x y z =n ,则00AE AF ⎧⋅=⎪⎨⋅=⎪⎩uu u v uu u v n n ,即02240333y z x y z +=⎧⎪⎨++=⎪⎩. 令=1,则y =-1,=-1.于是()1,1,1=--n .又因为平面PAD 的法向量为()1,0,0=p,所以cos 3⋅==-⋅n p <n,p >n p . 因为二面角F-AE-P为锐角,所以其余弦值为3z yxBG P FEDCMA(III )直线AG 在平面AEF 内,因为点G 在PB 上,且2,3PG PB =()2,1,2,PB =--uu r所以2424,,3333PG PB ⎛⎫==-- ⎪⎝⎭uu u r uu r ,422,,333AG AP PG ⎛⎫=+=- ⎪⎝⎭uuu r uu u r uuu r .由(II )知,平面AEF 的法向量为()1,1,1=--n ,所以4220333AG ⋅++=uuu r n =-,所以直线AG 在平面AEF 内.3.解析:方法一:(I )连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥A C. 又平面A 1ACC 1⊥平面ABC ,A 1E 平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥B C.(Ⅱ)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故AE 1⊥EG ,所以平行四边形EGFA 1为矩形. 由(I )得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故1152A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(Ⅰ)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E 平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,轴的正半轴,建立空间直角坐标系E –y .不妨设AC =4,则A 1(0,0,3B 3,1,0),1(3,3,23)B ,33(,3)22F ,C (0,2,0). 因此,33(,23)22EF =u u u r ,(3,1,0)BC =u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥.(Ⅱ)设直线EF 与平面A 1BC 所成角为θ,由(Ⅰ)可得(3,1,0)BC =-u u u r,1(0,2,23)AC =-u u u r , 设平面A 1BC 的法向量为(,,)x y z =n ,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n ,得3030x y y z⎧-+=⎪⎨-=⎪⎩, 取(1,3,1)=n ,故4sin cos ,5EF EF EF θ⋅=〈〉==⋅u u u ru u u ru u ur n n n . 因此直线EF 与平面A 1BC 所成角的余弦值为35. 4.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .32.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.5.解析(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH=3.以H 为坐标原点,HC u u u r的方向为轴的正方向,建立如图所示的空间直角坐标系–H xyz ,则A (–1,1,0),C (1,0,0),G (2,03),CG u u u r =(1,03),AC u u u r=(2,–1,0).设平面ACGD 的法向量为n =(,y ,),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0),所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.6.解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA u u u r的方向为轴正方向,||DA uuu r 为单位长,建立如图所示的空间直角坐标系D -y ,zyx则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =u u u r ,(1,1,1)CE =-u u u r,1(0,0,2)CC =u u u u r.设平面EBC 的法向量为n =(,y ,),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩u u ur n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(,y ,),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩u u ur m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --7.解析:(I )因为PA ⊥平面ABCD ,所以PA CD ⊥. 又因为AB CD ⊥,所以CD ⊥.平面PAD ,(II )过A 作AD 的垂线交BC 于点M ,因为PA ⊥平面ABCD ,所以,PA AM ⊥PA AD ⊥,如图建立空间直角坐标系A -y ,则A (0,0,0),B (2,-1,0),C (2,2,0), D (0,2,0),P (0,0,2),因为E 为PD 的中点,所以E (0,1,1).所以()0,1,1AE =uu u r ,()2,2,2PC =-uu u r , ()0,0,2AP =uu u r. 所以1222,,3333PF PC ⎛⎫==- ⎪⎝⎭uu u r uu u r ,224,,333AF AP PF ⎛⎫=+= ⎪⎝⎭uu u r uu u r uu u r设平面AEF 的法向量为(),,x y z =n ,则00AE AF ⎧⋅=⎪⎨⋅=⎪⎩uu u v uu u v n n ,即02240333y z x y z +=⎧⎪⎨++=⎪⎩. 令=1,则y =-1,=-1.于是()1,1,1=--n .又因为平面PAD 的法向量为()1,0,0=p,所以cos ⋅==⋅n p <n,p >n p . 因为二面角F-AE-PyB(III )直线AG 在平面AEF 内,因为点G 在PB 上,且2,3PG PB =()2,1,2,PB =--uu r所以2424,,3333PG PB ⎛⎫==-- ⎪⎝⎭uu u r uu r ,422,,333AG AP PG ⎛⎫=+=- ⎪⎝⎭uuu r uu u r uuu r .由(II )知,平面AEF 的法向量为()1,1,1=--n ,所以4220333AG ⋅++=uuu r n =-,所以直线AG 在平面AEF 内.8.解析:方法一:(I )连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥A C. 又平面A 1ACC 1⊥平面ABC ,A 1E 平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥B C.(Ⅱ)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故AE 1⊥EG ,所以平行四边形EGFA 1为矩形. 由(I )得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E 3EG 3由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(Ⅰ)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E 平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,轴的正半轴,建立空间直角坐标系E –y.不妨设AC =4,则A 1(0,0,3B 3,1,0),1(3,3,23)B ,33(,3)2F ,C (0,2,0). 因此,33(,23)22EF =u u u r ,(3,1,0)BC =u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥.(Ⅱ)设直线EF 与平面A 1BC 所成角为θ,由(Ⅰ)可得(3,1,0)BC =-u u u r,1(0,2,23)AC =-u u u r , 设平面A 1BC 的法向量为(,,)x y z =n ,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n ,得3030x y y z ⎧-+=⎪⎨=⎪⎩, 取3,1)=n ,故4sin cos ,5EF EF EF θ⋅=〈〉==⋅u u u ru u u ru u ur n n n . 因此直线EF 与平面A 1BC 所成角的余弦值为35. 9.解析(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH=3.以H 为坐标原点,HC u u u r的方向为轴的正方向,建立如图所示的空间直角坐标系–H xyz ,则A (–1,1,0),C (1,0,0),G (2,03),CG u u u r =(1,03),AC u u u r=(2,–1,0).设平面ACGD 的法向量为n =(,y ,),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0),所以3cos ,||||⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.10.解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA u u u r的方向为轴正方向,||DA uuu r 为单位长,建立如图所示的空间直角坐标系D -y ,zyx则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =u u u r ,(1,1,1)CE =-u u u r,1(0,0,2)CC =u u u u r.设平面EBC 的法向量为n =(,y ,),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩u u ur n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(,y ,),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩u u ur m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --11.解析:(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uu u r的方向为轴正方向,建立如图所示的空间直角坐标系D -y ,1则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-uuu r,1(12)A M =--uuuu r,1(1,0,2)A N =--uuu r ,1(1,0,2)A N =--uuu r.设(,,)x y z =m 为平面A 1MA 的法向量,则110A M A A ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n , 所以二面角1A MA N --的正弦值为5. 12.解析:(I )因为PA ⊥平面ABCD ,所以PA CD ⊥. 又因为AB CD ⊥,所以CD ⊥.平面PAD ,(II )过A 作AD 的垂线交BC 于点M ,因为PA ⊥平面ABCD ,所以,PA AM ⊥PA AD ⊥,如图建立空间直角坐标系A -y ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2),因为E 为PD 的中点,所以E (0,1,1).所以()0,1,1AE =uu u r ,()2,2,2PC =-uu u r , ()0,0,2AP =uu u r. 所以1222,,3333PF PC ⎛⎫==- ⎪⎝⎭uu u r uu u r ,224,,333AF AP PF ⎛⎫=+= ⎪⎝⎭uu u r uu u r uu u r设平面AEF 的法向量为(),,x y z =n ,则00AE AF ⎧⋅=⎪⎨⋅=⎪⎩uu u v uu u v n n ,即02240333y z x y z +=⎧⎪⎨++=⎪⎩. 令=1,则y =-1,=-1.于是()1,1,1=--n .又因为平面PAD 的法向量为()1,0,0=p,所以cos ⋅==⋅n p <n,p >n p . 因为二面角F-AE-PyB(III )直线AG 在平面AEF 内,因为点G 在PB 上,且2,3PG PB =()2,1,2,PB =--uu r所以2424,,3333PG PB ⎛⎫==-- ⎪⎝⎭uu u r uu r ,422,,333AG AP PG ⎛⎫=+=- ⎪⎝⎭uuu r uu u r uuu r .由(II )知,平面AEF 的法向量为()1,1,1=--n ,所以4220333AG ⋅++=uuu r n =-,所以直线AG 在平面AEF 内.13.解析 依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,轴正方向的空间直角坐标系,如图所示,可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(Ⅰ)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u r u u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,即020x y x z -+=⎧⎨-+=⎩,不妨令1z =, 可得(2,2,1)=n .因此有4cos ,9||||CE CE CE⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(,,)x y z =m 为平面BDF 的法向量,则0BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rm m ,即020x y y hz -+=⎧⎨+=⎩, 不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===⨯+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF 的长为87.2010-2018年1.【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uuu r 为单位长,建立如图所示的空间直角坐标系-H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE又PF =1,EF =2,故PE ⊥PF .可得=PH ,32=EH . 则(0,0,0)H,P ,3(1,,0)2--D,3(1,2=u u u r DP ,HP =u u u r 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin ||||||HP DP HP DP θ⋅===⋅u u u r u u u ru u u r u u u r .所以DP 与平面ABFD. 2.【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, ∴AC ⊥EF . ∵AB BC =. ∴AC ⊥BE , ∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥1CC . 又1CC ⊥平面ABC ,∴EF ⊥平面ABC . ∵BE 平面ABC ,∴EF ⊥BE . 如图建立空间直角坐称系E xyz -.x由题意得(0,2,0)B ,(1,0,0)C -,(1,0,1)D ,(0,0,2)F ,(0,2,1)G . ∴=(201)CD ,,uu u r ,=(120)CB ,,uur, 设平面BCD 的法向量为()a b c =,,n ,∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uur n n ,∴2020a c a b +=⎧⎨+=⎩,令2a =,则1b =-,4c =-, ∴平面BCD 的法向量(214)=--,,n , 又∵平面1CDC 的法向量为=(020)EB uu r,,,∴cos =||||EB EB EB ⋅<⋅>=uu ruu r uu r n n n . 由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为. (3)平面BCD 的法向量为(214)=--,,n ,∵(0,2,1)G ,(0,0,2)F , ∴=(021)GF -uuu r ,,,∴2GF ⋅=-uu u r n ,∴与GF uu u r不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交. 3.【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.A由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)-A ,(0,2,0)C,(0,0,P ,=AP u u u r,取平面PAC 的法向量(2,0,0)OB =u u u r . 设(,2,0)(02)-<≤M a a a ,则(,4,0)AM a a =-u u u r.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|2OB =uu u r n ..解得4a =-(舍去),43a =.所以4()3=-n.又(0,2,PC =-u u u r,所以cos ,PC =uu u r n . 所以PC 与平面PAM所成角的正弦值为4. 4.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.当三棱锥M ABC -体积最大时,M 为»CD的中点.由题设得(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,1,1)M ,(2,1,1)AM =-u u u u r ,(0,2,0)AB =u u u r ,(2,0,0)DA =u u u r设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA u u u r是平面MCD 的法向量,因此cos ,5||||DA DA DA ⋅==u u u ru u u r u u u r n n n ,sin ,5DA =u u u r n ,所以面MAB 与面MCD5.【解析】依题意,可以建立以D 为原点,分别以DA u u u r ,DC u u u r ,DG u u u r的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得(0,0,0)D ,(2,0,0)A ,(1,2,0)B ,(0,2,0)C ,(2,0,2)E ,(0,1,2)F ,(0,0,2)G ,3(0,,1)2M ,(1,0,2)N .(1)证明:依题意(0,2,0)DC =u u u r ,(2,0,2)DE =u u u r.设0(,,)x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r ,,n n 即20220y x z =⎧⎨+=⎩,,不妨令1z =-,可得0(1,0,1)=-n .又3(1,,1)2MN =-u u u u r ,可得00MN ⋅=u u u u r n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得(1,0,0)BC =-u u u r ,(122)BE =-u u u r ,,,(0,1,2)CF =-u u u r.设(,,)x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u ur ,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令1z =,可得(0,1,1)=n .设(,,)x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r ,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令1z =,可得(0,2,1)=m .因此有cos ,||||⋅<>==m n m n m n,于是sin ,<>=m n 所以,二面角E BC F --. (3)设线段DP 的长为h ([0.2]h ∈),则点P 的坐标为(0,0,)h ,可得(12)BP h =--u u u r,,.易知,(0,2,0)DC =u u u r为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>==u u u r u u u r u u u r u u u r u u u r u u u rsin 602==o,解得[0,2]h =.所以线段DP6.【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以1,{},OB OC OO u u u r u u u r u u u u r为基底,建立空间直角坐标系O xyz -. 因为12AB AA ==,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.A(1)因为P 为11A B的中点,所以1,2)2P -,从而11(,2)(0,2,22),BP AC ==-u u u r u u u u r ,故111|||cos ,|||||BP AC BP AC BP AC ⋅===⋅u u u r u u u u ru u u r u u u u r u u u r u u u u r .因此,异面直线BP 与AC 1. (2)因为Q 为BC的中点,所以1,0)2Q ,因此3,0)2AQ =u u u r ,11(0,2,2),(0,0,2)AC CC ==u u u u r u u u u r .设n =(,y ,)为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=u u u r u u u u r n n即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CC CC CC |θ==⋅⋅==u u u u ru u u u r u u u u r n n n所以直线CC 1与平面AQC 1. 7.【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)在平面PAD 内做PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A,(0,0,2P,2B,(2C -.所以(22PC =--u u u r,CB =u u u r,)22PA =-u u u r , (0,1,0)AB =u u u r.设(,,)x y z =n 是平面PCB 的法向量,则00PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n,即0220x y z ⎧-+-=⎪⎨=,可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m,即00x z y =⎪=⎩, 可取(1,0,1)=n .则cos ,||||⋅==<>n m n m n m ,所以二面角A PB C --的余弦值为3-. 8.【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=o 得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC =u u u r ,(1,0,0)AB =u u u r.x设(,,)M x y z (01)x <<,则(1,,)BM x y z =-u u u u r,(,1,PM x y z =-u u u u r.因为BM 与底面ABCD 所成的角为45o,而(0,0,1)=n 是底面ABCD 的法向量,所以|cos ,|sin 45BM <>=ou u u u r n2=, 即222(1)0x y z -+-=. ①又M 在棱PC 上,设PM PC λ=u u u u r u u u r,则x λ=,1y =,z =. ②由①,②解得1212x y z ⎧=+⎪⎪⎪=⎨⎪⎪=-⎪⎩(舍去),1212x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩所以(122M -,从而(122AM =-u u u u r . 设000(,,)x y z =m 是平面ABM 的法向量,则0=0AM AB ⎧⋅=⎪⎨⋅⎪⎩u u u u ru u ur m m,即0000(2200x y x ⎧+=⎪⎨=⎪⎩,所以可取(0,2)=m,于是cos ,||||5⋅<>==m n m n m n . 因此二面角M AB D --9.【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=o . 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r的方向为x 轴正方向,OA u u u r为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1(0,)22E .故 (1,0,1)AD =-u u u r ,(2,0,0)AC =-u u u r,1(1,,)22AE =-u u u r设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩u u u r g u u u r g 0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取(1,,1)3=n 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩u u u r g u u u rg m m同理可得(0,=-m则cos ,==g 7n m n m n m 所以二面角D AE C --10.【解析】如图,以A 为原点,分别以AB u u u r ,AC u u u r,AP u u u r 方向为轴、y 轴、轴正方向建立空间直角坐标系.依题意可得(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,(0,0,4),(0,0,2)D ,(0,2,2)E ,(0,0,1)M ,(1,2,0)N .(Ⅰ)证明:DE u u u r =(0,2,0),DB u u u r=(2,0,2)-.设(,,)x y z =n ,为平面BDE 的法向量, 则00DE DB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rn n ,即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又MN u u u u r =(1,2,1-),可得0MN ⋅=u u u u rn .因为MN ⊄平面BDE ,所以MN //平面BDE .(Ⅱ)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的法向量,则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u u rn n ,因为(0,2,1)EM =--u u u u r ,(1,2,1)MN =-u u u u r ,所以2020y z x y z --=⎧⎨+-=⎩.不妨设1y =,可得2(4,1,2)=--n . 因此有121212cos ,|||21⋅<>==n n n n |n n 12105sin ,<>=n n . 所以,二面角C —EM —N 105(Ⅲ)依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得(1,2,)NH h =--u u u u r,(2,2,2)BE =-u u u r .由已知,得2||7|cos ,|||||523NH BE NH BE NH BE h ⋅<>===+⨯u u u u r u u u ru u u u r u u u r u u u u r u u u r ,整理得2102180h h -+=,解得85h =,或12h =. 所以,线段AH 的长为85或12.11.【解析】(Ⅰ)设,AC BD 交点为E ,连接ME .因为PD ∥平面MAC ,平面MAC I 平面PBD ME =,所以PD ME ∥. 因为ABCD 是正方形,所以E 为BD 的中点,在PBC ∆中,知M 为PB 的中点.(Ⅱ)取AD 的中点O ,连接OP ,OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则(0,0,2)P ,(2,0,0)D ,(2,4,0)B -,(4,4,0)BD =-u u u r ,(2,0,2)PD =-u u u r.设平面BDP 的法向量为(,,)x y z =n ,则00BD PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,即440220x y x z -=⎧⎪⎨-=⎪⎩. 令1x =,则1y =,2z =.于是(1,1,2)=n .平面PAD 的法向量为(0,1,0)=p ,所以1cos ,||||2⋅==<>n p n p n p .由题知二面角B PD A --为锐角,所以它的大小为3π.(Ⅲ)由题意知2(1,2,2M -,(2,4,0)D ,2(3,2,)2MC =-u u u u r .设直线MC 与平面BDP 所成角为α,则||sin |cos ,|9||||MC MC MC α⋅===u u u u ru u u u r u u u u r <>n n n .所以直线MC 与平面BDP所成角的正弦值为9. 12.【解析】(1)∵面PAD I 面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD , ∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,Oxyz PABC D则(111)PB =-u u u v ,,,(011)PD =--u u u v ,,,(201)PC =-u u u v ,,,(210)CD =--u u u v,,, 设n v为面PDC 的法向量,令00(,1)n x y =v ,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨ ⎪⎝⎭⋅=⎪⎩v u u u v v v u u uv ,,则PB 与面PCD 夹角θ有,sin cos ,n θ=<v u u (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-u u u r ,()1,1,0B ,()0,'1,'AM y z =-u u u u r有()0,1,AM AP M λλλ=⇒-u u u u r u u u r∴()1,,BM λλ=--u u u u r∵BM ∥面PCD ,n u u r为PCD 的法向量, ∴0BM n ⋅=u u u u r r ,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 13.【解析】(Ⅰ)连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC ⊂平面ABC ,MH ⊄平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH ⊂平面GHM ,所以//GH 平面ABC .(Ⅱ) 连结OB , AB BC =Q OB A ⊥∴O ,以为O 原点,分别以,,OA OB OO '为z y,x,轴,建立空间直角坐标系.12EF FB AC ===Q ,AB BC =. 3)(22=--='FO BO BF O O ,于是有A,(C -,B,F ,可得平面FBC中的向量(0,BF =-u u u r,CB =u u u r,于是得平面FBC的一个法向量为1(n =u r, 又平面ABC 的一个法向量为2(0,0,1)n =u u r,B设二面角F BC A --为θ,则7771cos ===θ. 二面角F BC A --的余弦值为77. 14.【解析】(1)证明:找到AD 中点I ,连结FI ,∵矩形OBEF ,∴EF OB ∥∵G 、I 是中点,∴GI 是ABD ∆的中位线,∴GI BD ∥且12GI BD =,∵O 是正方形ABCD 中心,∴12OB BD =,∴EF GI ∥且EF GI =.∴四边形EFIG 是平行四边形,∴EG FI ∥ ∵FI ⊂面ADF ,∴EG ∥面ADF(2)O EF C --正弦值,如图所示建立空间直角坐标系O xyz -z xA()00B ,,)00C,,()02E ,,()002F ,, 设面CEF 的法向量()1n x y z =u r,,()()()()110000220n EF x y z n CF x y z z ⎧⋅=⋅=⎪⎨⋅=⋅=+=⎪⎩u r u u u ru r u u u r,,,,,得:01x y z ⎧=⎪=⎨⎪=⎩∴)101n =u r ,∵OC ⊥面OEF ,∴面OEF 的法向量()2100n =u u r,,121212cos n n n n n n ⋅<>===u u r u u ru u r u u r u u r u u r ,21263sin 13n n ⎛⎫<>=-= ⎪⎪⎝⎭u r u u r , (3)∵23AH HF =,∴()222242020555AH AF ⎛⎫=== ⎪ ⎪⎝⎭u u u u r u u u r ,,,, 设()H x y z ,,,∴()224205AH x y z ⎛⎫=+= ⎪ ⎪⎝⎭u u u u r ,,,,,得:32045x y z ⎧-=⎪⎪⎪=⎨⎪⎪=⎪⎩32425BH ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,, 12164755cos 2235BH n BH n BH n -+⋅<>===⋅u u u r u r u u u r u u r u u u r u r ,15.【解析】(Ⅰ)连接BD ,设BD AC G =I ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB =,由120∠=oABC ,可得3AG GC =由⊥BE 平面ABCD ,AB BC =可知,AE EC =, 又∵⊥AE EC ,∴3EG =,⊥EG AC ,在Rt EBG ∆中,可得2BE 22DF =.在Rt FDG ∆中,可得62FG =. 在直角梯形BDFE 中,由2BD =,2BE 22DF =,可得322EF =, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG =G ,∴EG ⊥平面AFC , ∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-y ,由(Ⅰ)可得A (0,-3,0),E (1,0,2),F (-1,0,22),C (0,3,0), ∴AE u u u r =(1,3,2),CF uuu r =(-1,-3,22).故3cos ,3||||<>==-u u u r u u u ru u u r u u u r g u u u r u u u r AE CF AE CF AE CF .所以直线AE 与CF 所成的角的余弦值为33. 16.【解析】解法一:(Ⅰ)如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点,1//=2GH AB GH AB 所以,且, 又F 是CD 中点,1=2DF CD 所以, 由四边形ABCD 是矩形得,AB ∥CD ,=AB CD , 所以GH ∥DF ,且=GH DF .从而四边形HGFD 是平行四边形,所以GF ∥DH ,又DH ADE GF ADE ⊂⊄平面,平面,所以GF ∥平面ADE .(Ⅱ)如图,在平面BEG 内,过点B 作BQ ∥EC ,因为BE CE BQ BE ⊥⊥,所以.又因为AB ⊥平面BEC ,所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以,,BE BQ BA u u u r u u u r u u u r的方向为轴,y 轴,z 轴的正方向,建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1)因为AB ⊥平面BEC ,所以A=(B u u u r0,0,2)为平面BEC 的法向量, 设(,,)n x y z =r 为平面AEF 的法向量.又(2,0,2)AE =-u u u r ,=(2,2,1)AF -u u u r,由AE 0220,220,AF 0n x z x y z n ⎧=-=⎧⎪⎨⎨+-==⎩⎪⎩r u u u rg r u u u rg ,得,取2z =得=(2,1,2)n -r . 从而A 42cos,A =,323|||A |n B n B n B 〈〉==⨯⋅r u u u rr u u u r g r u u u r 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. 解法二:(Ⅰ)如图,取AB 中点M ,连接MG ,MF ,又G 是BE 的中点,可知GM //AE , 又AE ADE GM ADE ⊂⊄平面,平面, 所以GM //平面ADE .在矩形ABCD 中,由,M F 分别是AB ,CD 的中点得//MF AD . 又AD ADE MF ADE ⊂⊄平面,平面,所以//MF ADE 平面. 又因为GM MF M =I ,GM ⊂GMF MF GMF ⊂平面,平面 所以GMF 平面P 平面ADE ,因为GF GMF ⊂平面,所以//GF ADE 平面 (Ⅱ)同解法一.17.【解析】(Ⅰ)证法一:连接CD DG ,,设O GF CD =I ,连接OH .在三棱台ABC DEF -中,DE AB 2=,G 为AC 的中点, 可得GC DF GC DF =,//, 所以四边形DFCG 为平行四边形,则O 为CD 的中点,又H 为BC 的中点,所以OH ∥BD , 又⊂OH 平面FGH ,⊄BD 平面FGH ,所以BD ∥平面FGH . 证法二:在三棱台ABC DEF -中,由EF BC 2=,H 为BC 的中点, 可得BH ∥EF ,BH EF =,所以四边形BHFE 为平行四边形, 可得 BE ∥HF ,在ABC ∆中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB , 又H HF GH =I ,所以平面FGH ∥平面ABED , 因为⊂BD 平面ABED ,所以 BD ∥平面FGH . (Ⅱ)解法一:设2=AB ,则1=CF , 在三棱台ABC DEF -中,G 为AC 的中点, 由GC AC DF ==21,可得四边形DGCF 为平行四边形, 因此DG ∥FC ,又⊥FC 平面ABC ,所以 ⊥DG 平面ABC , 在ABC ∆中,由BC AB ⊥,ο45=∠BAC ,G 是AC 中点, 所以 GC GB BC AB ⊥=,,因此 GD GC GB ,,两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系xyz G -,A所以)100(),0,20()00,2()000(,,,,,,,,D C B G 可得)0,20()0,2222(,,,F H ,故)0,20(),0,2222(,,=, 设),,(z y x n =是平面FGH 的一个法向量,则由00n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r可得0x y z +=⎧⎪+= 可得 平面FGH 的一个法向量)2,1,1(-=n ,因为GB uuu r是平面ACFD的一个法向量,GB =u u u r ),所以1cos ,2||||GB n GB n GB n ⋅===⋅u u u ru u u r u u u r ,所以平面FGH 与平面ACFD 所成角(锐角)的大小为ο60. 解法二:作AC HM ⊥与点M ,作GF MN ⊥与点N ,连接NH .M N HACBDE FG由⊥FC 平面ABC ,得FC HM ⊥,又C AC FC =I ,所以⊥HM 平面ACFD , 因此NH GF ⊥,所以MNH ∠即为所求的角, 在BGC ∆中,MH ∥BG,12MH BG == 由GCF GNM ∆∆~,可得GFGM FC MN =,从而66=MN ,由 ⊥HM 平面ACFD ,⊂MN 平面ACFD ,得 MN HM ⊥, 因此 3tan ==∠MNHMMNH ,所以 ︒=∠60MNH , 所以 平面FGH 与平面ACFD 所成角(锐角)的大小为︒60.18.【解析】(Ⅰ)在图1中,因为1AB BC ==,2AD =,E 是AD 的中点,∠BAD=2π,所以BE⊥AC.即在图2中,BE⊥1OA,BE⊥OC.从而BE⊥平面1A OC.又CD∥BE,所以CD⊥平面1A OC.(Ⅱ)由已知,平面1A BE⊥平面BCDE,又由(Ⅰ)知,BE⊥1OA,BE⊥OC.所以1A OC∠为二面角1--CA BE的平面角,所以1OC2Aπ∠=.如图,以O为原点,建立空间直角坐标系,因为111A B A E BC ED====,BC EDP所以2B,2(E,12A,2C.得22BC(-u u u r122A-u u u u r,CD BE(2,0,0)==-u u u r u u u r.设平面1BCA的法向量1111(,,)n x y z=u r,平面1CDA的法向量2222(,,)n x y z=u u r,平面1BCA与平面1CDA夹角为θ,则111n BCn A C⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u r,得1111x yy z-+=⎧⎨-=⎩,取1(1,1,1)n=u r,221n CDn A C⎧⋅=⎪⎨⋅=⎪⎩u u r u u u ru u r u u u r,得222xy z=⎧⎨-=⎩,取2(0,1,1)n=u u r,从而126cos|cos,|332n nθ=〈〉==⨯u r u u r,即平面1BCA与平面1CDA夹角的余弦值为6319.【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(Ⅱ)因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB u u u r的方向为x 轴的正方向,AP u u u r 为单位长,建立空间直角坐标系A xyz -,则D 1),2E 1)2AE =uu u r . 设(,0,0)(0)Bm m >,则(C m (AC m =u u u r.设1(,,)x y z =n 为平面AEC 的法向量,则110,0,AC AE ⎧⋅=⎪⎨⋅=⎪⎩u u ur u u u r n n 即0,10,2mx y z ⎧+=+=,可取1,m =-n . 又2(1,0,0)=n 为平面DAE 的法向量,由题设121cos ,2=n n 12=,解得32m =. 因为E 为PD 的中点,所以三棱锥EACD -的高为12.三棱锥E ACD -的体积11313222V =⨯⨯=. 20.【解析】(Ⅰ)证明:∵四边形ABCD 为等腰梯形,且2AB CD =,所以AB MA ∥且CD MA =,连接1AD1111D C B A ABCD -Θ为四棱柱,11//D C CD ∴ 11D C CD =又M Θ为AB 的中点,1=∴AMAM CD //∴,AM CD = 11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形,11//MC AD ∴又111ADD A M C 平面⊄Θ ,111ADD A AD 平面⊂,111//ADD A AD 平面∴. (Ⅱ)方法一: 由(Ⅰ)知 平面11D C M I 平面ABCD =AB 作AB CN ⊥,连接N D 1则NC D 1∠即为所求二面角1C AB C --的平面角.在Rt BNC ∆中,1BC =060NBC ∠= 23=∴CN12ND ==在1Rt D CN ∆中,11cos 5CN D NC D N ∠==. 方法二:连接,AC MC ,由(Ⅰ)知CD AM ∥且CD AM =∴AMCD 为平行四边形.可得BC AD MC ==,由题意60ABC DAB ∠=∠=o, 所以MBC ∆为正三角形.因此22,AB BC CA ===,∴CA CB ⊥.1。
超实用高考数学专题复习:第八章立体几何与空间向量 立体几何中的截面问题及球的切接问题

题型三 内切球问题
【例 3】 (一题多解)已知棱长为 a 的正四面体 ABCD,证明:其内切球的半径为126a. 证明 法一 如图,设 AH⊥平面 BCD,则 H 为△BCD 外心,可得外接球球心在 AH 上,设外接球球心为 O, 外接球半径为 R,则 AO=BO=R,在△BCD 中,可得
BH= 33a, 在 Rt△ABH 中,AH= AB2-BH2= 36a, 在Rt△BHO中,BO2=BH2+OH2, ∴BO2=BH2+(AH-OA)2,
①外接球:球心是正方体中心;半径
r=
3 2 a(a
为正方体的棱长);
②内切球:球心是正方体中心;半径 r=a2(a 为正方体的棱长);
③与各条棱都相切的球:球心是正方体中心;半径
r=2 2 a(a来自为正方体的棱长).(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分)
①外接球:球心是正四面体的中心;半径
∴R2= 33a2+ 36a-R2,∴R= 46a, 因内切球球心与外接球球心重合,所以内切球半径 r=OH=AH-AO= 36a-
46a= 126a.
法二 如图, 设AH⊥平面BCD,设外接球球心为O,则点O也是内切
球球心,
由于内切球球心到各个面的距离相等,都为内切球半径,设为r,
∵VA-BCD=VO-ABC+VO-ACD+VO-ABD+VO-BCD.
题型二 外接球问题
【例2】 (1)(2017·新课标全国Ⅱ)长方体的长、宽、高分别为3、2、1,其顶点都在球
O的球面上,则球O的表面积为________.
(2)已知底面边长为 1,侧棱长 2的正四棱柱的各个顶点均在同一个球的球面上,则
该球的体积为( )
32π A. 3
文科数学2010-2019高考真题分类训练专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积

专题八 立体几何第二十二讲 空间几何体的三视图、表面积和体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C −的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D −挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D −的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.322010-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O,2O,过直线12O O的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.12πC.D.10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BAA.B.C.3D.23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D−中,2AB BC==,1AC与平面11BB C C所成的角为30︒,则该长方体的体积为A.8B.C.D.4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC −体积的最大值为 A.B.C.D.6.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A.1 B.2 C.3 D.48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A.60 B.30 C.20 D.1010.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图侧视图正视图A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .133+ C .136π+ D .16+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .81 16.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1+B .2+C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为 (材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
2010-2019北京高考数学(文)真题分类汇编专题八空间几何体的三视图、表面积和体积

2010-2019北京高考数学(文)真题分类汇编专题八空间几何体的三视图、表面积和体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .322010-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A.B .12πC.D .10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. B. C .3 D .23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B.C.D.4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是BA5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC 体积的最大值为A.B.C.D.6.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为俯视图正视图俯视图侧(左)视图正(主)视图A .πB .34π C .2π D .4π 9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A .60B .30C .20D .1010.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为俯视图侧视图正视图A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .13+ C .13+ D .1+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+.90 D .81 16.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1.2 C .1+.21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
2018高考数学文人教新课标大一轮复习配套文档:第八章

8.2 空间几何体的表面积与体积1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S直棱柱侧=____________,S正棱锥侧=____________,S正棱台侧=__________(其中C,C′为底面周长,h为高,h′为斜高).(2)圆柱、圆锥、圆台的侧面积S圆柱侧=________,S圆锥侧=________,S圆台侧=________(其中r,r′为底面半径,l为母线长).(3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体、锥体、台体的体积(1)棱柱、棱锥、棱台的体积V棱柱=__________,V棱锥=__________,V棱台=__________(其中S,S′为底面积,h为高).(2)圆柱、圆锥、圆台的体积V圆柱=__________,V圆锥=__________,V圆台=__________(其中r,r′为底面圆的半径,h为高).3.球的表面积与体积(1)半径为R的球的表面积S球=________.(2)半径为R的球的体积V球=___________.自查自纠1.(1)Ch 12Ch′12()C+C′h′(2)2πrlπrlπ(r+r′)l(3)侧面积两个底面积侧面积一个底面积2.(1)Sh 13Sh13h()S+SS′+S′(2)πr2h 13πr2h13πh()r2+rr′+r′23.(1)4πR2(2)43πR3已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为( )A.2π2B.2πC.3π3D.3π解:易知圆锥的底面直径为2,母线长为2,则该圆锥的高为22-12=3,因此其体积是13π·12×3=3π3.故选C.一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的体对角线的长是( )A.2 3 B.3 2 C.6 D. 6解:设长方体的长、宽、高分别为a,b,c,则有ab=2,ac=3,bc=6,解得a=1,b=2,c=3,则长方体的体对角线的长l=a2+b2+c2=6.故选D.(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π(解:由三视图作出该四棱柱的直观图如图所示,为等腰梯形.由三视图给出的数据容易求出(1+2)×1=32,所以四棱柱的体积为故填32.类型一 空间几何体的面积问题2016·全国卷Ⅲ)如图,网格纸上小正方,粗实线画出的是某多面体的三视图,36 5 B .54+1890D .81解:由三视图可得该几何体是平行六面体,上下3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为3,该边上的高为B .π+3D.52π+解:由三视图可知,该几何体是半个圆锥,且母解:如图,设球的一条半径与圆柱相应的母线的,圆柱侧面积S =2π×4sin =π4时,S 取最大值球的表面积与该圆柱的侧面积之差为【点拨】根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )B .4πC .2解:该几何体为半圆柱,底面半径为1,高为π×12+2×2+12×2π×1×2=类型三 空间多面体的体积问题如图,在多面体ABCDEF 中,已知边长为1的正方形,且△ADE ,△BCF 均为正三角形,2,则该多面体的体积为( )B.33C.43如图,过A ,B 两点分别作AM ,BN 垂直于,N ,连接DM ,CN ,可证得DM 则多面体ABCDEF 分为三部分,即多面体的体积+V E AMD +V F BNC .依题意知AEFB 为等腰梯形.△DME Rt △CNF ,所以EM =NF =,所以BN =32. ,则H 为BC 的中点,12 B.18 C.24解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.所以该几何体的体积为×3×4×3=24.故选C.类型四空间旋转体的体积问题已知某几何体的三视图如图所示,其中,视图、侧(左)视图均是由三角形与半圆构成,+12B.4π3+16+16D.2π3+12由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V=12⎭⎪⎫12×1×1×1=2π6+16.故选C.【点拨】根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式(2015·重庆)某几何体的三视图如图所示,则该几何体的体积为( )π B.23+2π D.23+2π解:由三视图容易看出,该几何体是由一个半圆B.2πC.3π解:由三视图可知,该几何体为半径为r=表面积为底面圆面积加上半球面的面积,位置有关 位置有关 Q 位置都有关 Q 位置均无关,是定值=V Q A ′EF =13×⎝ ⎛12×的体积与点E ,F .ABC A 1B 1C 1的底面边长为的中点,则三棱锥A .32C .1 解:在正三棱柱ABC A 1B 1C 1中,易知面面垂直的性质定理可得AD ⊥平面·AD =13×12×2×.22斛 C .36斛 D .解:设圆锥底面半径为r ,因为米锥底部弧长为r =16≈16尺,所以米堆的体积为B.17C.16解:设正方体棱长为a ,则截去部分为三棱锥,其体积VA A 1B 1D 1=13×12a 3=16a 3,剩余部分的56a 3,所以截去部分体积与剩余部分体故选D .是球O 半径OP 上的两点,且解:由三视图作出该几何体的直观图如图所示,ABC 是等腰三角形.点D 为底边AC 的中点.3,BD ⊥AC ,BD =1,SD ⊥底面ABC ,SD =ABC =13SD ·S △ABC =13×1×12×1×23=33.故填.(2014·江苏)设甲、乙两个圆柱的底面积分别S 2,体积分别为V 1,V 2.若它们的侧面积相等,,则V 1V 2的值是____________. 解:设两圆柱底面半径为r 1,r 2,两圆柱高为=94,r 1r 2=32,又两圆柱侧面积相等,所以2πr 2πr解:由题意可设直角梯形上底、下底和高为,它们分别为圆台的上、下底半径和高.如OA 于C ,则Rt △ABC =2x ,BC =O ′O =2+(5x )2=3x .9.·上海)底面边长为其表面展开图是三角形P 1P 2P 3.如图,的边长及三棱锥的体积V .解:由正三棱锥P ABC 的性质及其表面展开图是,C 分别是△P 1P 2P 3三边的中点,且依三角形中位线定理可得易判断正三棱锥P ABC 为棱长为V =212×23=223. ·全国卷Ⅱ)如图,长方体10,AA 1=8,点E ,F 4.过点E ,F 的平面的面相交,交线围成一个正方形.,垂足为M ,则AM =A 1E 为正方形,所以EH =EF =2-EM 2=6,AH =10,HB 因为长方体被平面α分成两个高为所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确.一个几何体的三视图如图所示,从上到下由四个简单几何体组成,其体积分别记为,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )4<V 3 B .V 1<V 3<V 23<V 4D .V 2<V 3<V 1解:由已知条件及三视图可知,该几何体从上到下依次是圆台,圆柱,正方体,棱台,则V 1=4π)=7π3,V 2=π×12×2=1×(4+4×16+16)=283.综上可知,。
高考数学(理)十年真题(2010-2019)专题10 立体几何与空间向量解答题(新课标Ⅰ卷)(解析版)

专题10立体几何与空间向量解答题历年考题细目表历年高考真题汇编1.【2019年新课标1理科18】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.【解答】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且,又MB∥AA1,MB,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(,,2),M(,1,2),A1(,﹣1,4),,,设平面A1MN的一个法向量为,由,取x,得,又平面MAA1的一个法向量为,∴cos.∴二面角A﹣MA1﹣N的正弦值为.2.【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE,又因为,所以PH,所以在△PHD中,sin∠PDH,即∠PDH为DP与平面ABFD所成角的正弦值为:.3.【2017年新课标1理科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP =90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴P A⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵P A∩PD=P,且P A⊂平面P AD,PD⊂平面P AD,∴AB⊥平面P AD,又AB⊂平面P AB,∴平面P AB⊥平面P AD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面P AD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由P A=PD,∠APD=90°,可得△P AD为等腰直角三角形,设P A=AB=2a,则AD.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面P AD,AD⊂平面P AD,∴AB⊥PD,又PD⊥P A,P A∩AB=A,∴PD⊥平面P AB,则为平面P AB的一个法向量,.∴cos.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.【2016年新课标1理科18】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴(0,2a,0),(,﹣2a,a),(﹣2a,0,0)设平面BEC的法向量为(x1,y1,z1),则,则,取(,0,﹣1).设平面ABC的法向量为(x2,y2,z2),则,则,取(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ,则二面角E﹣BC﹣A的余弦值为.5.【2015年新课标1理科18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG,且EG⊥AC,在直角△EBG中,可得BE,故DF,在直角三角形FDG中,可得FG,在直角梯形BDFE中,由BD=2,BE,FD,可得EF,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD••1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,,0),E(1,0,),F(﹣1,0,),C(0,,0),即有(1,,),(﹣1,,),故cos,.则有直线AE与直线CF所成角的余弦值为.6.【2014年新课标1理科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB ⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴(0,,),(1,0,),(﹣1,,0),设向量(x,y,z)是平面AA1B1的法向量,则,可取(1,,),同理可得平面A1B1C1的一个法向量(1,,),∴cos,,∴二面角A﹣A1B1﹣C1的余弦值为7.【2013年新课标1理科18】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则(1,0,),(﹣1,,0),(0,,),设(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得(,1,﹣1),故cos,,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.8.【2012年新课标1理科19】如图,直三棱柱ABC﹣A1B1C1中,AC=BC AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°9.【2011年新课标1理科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面P AD.故P A⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).(﹣1,,0),(0,,﹣1),(﹣1,0,0),设平面P AB的法向量为(x,y,z),则即,因此可取(,1,)设平面PBC的法向量为(x,y,z),则,即:可取(0,1,),cos故二面角A﹣PB﹣C的余弦值为:.10.【2010年新课标1理科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m ,n =1,故C (),设(x ,y ,z )为平面PEH 的法向量则即因此可以取,由,可得所以直线P A 与平面PEH 所成角的正弦值为.考题分析与复习建议本专题考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以解答题题型出现,重点考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值. 【答案】(1)详见解析;(2. 【解析】解:(1)连接1AB 交1A E 于点G ,连接FG . 因为11AGA B GE ∆∆,所以1112AA AG GB EB ==,又因为2AF FC=,所以1AF AG FC GB =,所以1//FG CB ,又1CB ⊄面1A EF ,FG ⊂面1A EF ,所以1//CB 面1A EF .(2)过C 作CO AB ⊥于O ,因为CA CB =,所以O 是线段AB 的中点. 因为面CAB ⊥面11ABB A ,面CAB面11ABB A AB =,所以CO ⊥面1ABA .连接1OA ,因为1ABA ∆是等边三角形,O 是线段AB 的中点,所以1OA AB ⊥.如图以O 为原点,OA ,1OA ,OC 分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标,不妨设2AB =,则(1,0,0)A,1A ,(0,0,1)C ,(1,0,0)B -,12(,0,)33F ,由11AA BB =,得(B -,1BB的中点3(2E -,13(,2A E =-,112(,)33A F =-.设面1A FE 的一个法向量为1111(,,)n x y z =,则111100A E n A F n ⎧⋅=⎪⎨⋅=⎪⎩,即11112033302x z x y ⎧-+=⎪⎪⎨⎪-=⎪⎩,得方程的一组解为11115x y z =-⎧⎪=⎨⎪=⎩1(1n =-.面1ABA 的一个法向量为2(0,0,1)n =,则121212529cos ,n n n n n n⋅<>==, 所以二面角1F A E A --的余弦值为29.2.如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF 平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F --的大小. 【答案】(1)见证明;(2) 4π 【解析】(1)∵菱形ABCD ,∴AC BD ⊥, ∵FD ⊥平面ABCD ,∴FD AC ⊥, ∵BD FD D ⋂=,∴AC ⊥平面BDF , ∵AC ⊂平面ACF ,∴平面ACF ⊥平面BDF . (2)设ACBD O =,以O 为原点,OB 为x 轴,OA 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则B ,()0,1,0C -,(F ,(1,0)BC =-,(BF =-,设平面BCF 的法向量(,,)n x y z =,则3020n BC y n BF ⎧⋅=--=⎪⎨⋅=-+=⎪⎩,取1x =,得(1,3,2)n =-, 平面ABC 的法向量(0,0,1)m =, 设二面角A BC F --的大小为θ, 则||cos ||||28m n m n θ⋅===⋅ ∴4πθ=.∴二面角A BC F --的大小为4π. 3.如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.【答案】(Ⅰ)证明见解析;. 【解析】(Ⅰ)因为11B A ⊥平面11ADD A , 所以111B A DD ⊥,又11111111DD D A B A D A A ⊥⋂=,, 所以1DD ⊥平面1111D C B A , 又因为11//DD CC ,所以1CC ⊥平面1111D C B A ,11B C ⊂平面1111D C B A ,所以111CC B C ⊥,因为平面11ADD A ⊥平面11CDD C , 平面11ADD A ⋂平面111CDD C DD =,111C D DD ⊥,所以11C D ⊥平面11ADD A ,经计算可得1111B E BC EC 从而2221111B E B C EC =+,所以在11B EC 中,111B C C E ⊥,又11CC C E ⊂,平面1111CC E CC C E C ⋂=,,所以11B C ⊥平面1CC E .(Ⅱ)如图,以点A 为原点建立空间直角坐标系,依题意得()()()10001,0,00,2,2A C B ,,,,,()()11,2,10,1,0C E ,.∵1(1,1,1)(1,2,1)CE B C =--=--,,设平面1B CE 的一个法向量(,,)m x y z =则100m B C m CE ⎧⋅=⎨⋅=⎩,, 即200x y z x y z --=⎧⎨-+-=⎩,,消去x 得20y z +=, 不妨设1z =,可得()3,2,1m =--,又()111,0,1B C =-, 设直线11B C 与平面1B CE 所成角为θ,于是111111sin cos ,14||m B C m B C m B C θ⋅====⋅,故直线11B C 与平面1B CE . 4.如图,在四凌锥P ABCD -中,PC ABCD ⊥底面,底面ABCD 是直角梯形,AB AD ⊥,AB CD ∥,222AB AD CD ===,4PC =,E 为线段PB 上一点(1)求证:EAC PBC ⊥平面平面;(2)若二面角P AC E --,求BE BP 的值【答案】(1)见解析(2)13BE BP = 【解析】(1)如图,由题意,得AC BC ==2AB =,∴BC AC ⊥∵ABCD PC ⊥底面,∴PC AC ⊥又∵PC BC C ⋂=,∴AC ⊥底面PBC∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC(2)如图,以C 为原点,取AB 中点M ,以CM ,CD ,CP 所在直线为,,x y z 轴建立空间直角坐标系则()1,1,0B -,()0,0,4P ,()1,1,0A ,设(),,E x y z ,且()01BE BP λλ=<<,得 ()()1,1,1,1,4x y z λ-+=-,即()1,1,4E λλλ--()()1,1,0,1,1,4CA CE λλλ==--,设平面EAC 的法向量为(),,n x y z =,由00CE n CA n ⎧⋅=⎪⎨⋅=⎪⎩即()()11400x y z x y λλλ⎧-+-+=⎨+=⎩,令1x =,得11,1,2n λλ-⎛⎫=- ⎪⎝⎭ 又BC AC ⊥,且BC PC ⊥,所以BC ⊥平面PAC故平面PAC 的法向量为()1,1,0m BC ==-,由二面角P AC E --cos ,m n m n m n⋅===⋅,解得1λ=-或13,由01λ<<得13λ=,即13BE BP = 5.如图,在三棱锥P ABC -中,20{ 28x x ->-≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值。
【理.2010-2018.高考真题分类】八 立体几何第二十四讲 空间向量与立体几何【有答案】

C1
A1
B1
D
C
A
M
B
(Ⅰ)求证: C1M / /平面A1ADD1 ;
(Ⅱ)若 CD1 垂直于平面 ABCD 且 CD1= 3 ,求平 面 C1D1M 和平面 ABCD 所成的
角(锐角)的余弦值.
21.(2014 辽宁)如图, ∆ABC 和 ∆BCD 所在平面互相垂直,且 AB = BC = BD = 2 ,
点.
(Ⅰ)求证: BC //平面 FGH ;
(Ⅱ)若 CF ⊥平面 ABC , AB ⊥ BC ,CF = DE ,∠ BAC = 45o ,求平面 FGH 与 平面 ACFD 所成的角(锐角)的大小.
18.(2015 陕西)如图1,在直角梯形 ΑΒCD 中, ΑD//ΒC ,∠ΒΑD = π , ΑΒ = ΒC = 1 , 2
D
C
E
B
25.(2014 广东)如图 4,四边形 ABCD 为正方形, PD ⊥ 平面 ABCD , ∠DPC = 300 , AF ⊥ PC 于点 F , FE / /CD ,交 PD 于点 E .
精品文档
9
(Ⅰ)证明: CF ⊥ 平面ADF (Ⅱ)求二面角 D − AF − E 的余弦值.
26.(2014 湖南)如图,四棱柱 ABCD − A1B1C1D1 的所有棱长都相等, AC I BD = O ,
3.(2018 全国卷Ⅱ)如图,在三棱锥 P − ABC 中, AB = BC = 2 2 , PA = PB = PC =
AC = 4 , O 为 AC 的中点. (1)证明: PO ⊥ 平面 ABC ;
精品文档
1
(2)若点 M 在棱 BC 上,且二面角 M − PA − C 为 30° ,求 PC 与平面 PAM 所成角的
专题八立体几何第二十二讲空间几何体的三视图、表面积和体积答案十年高考数学(理科)真题题型分类汇编

专题八 立体几何初步第二十二讲空间几何体的三视图、表面积和体积答案部分 2019年ABCD A 1B 1C 1D 1,挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心, E ,F ,G , H,分别为所在棱的中点,ABBC6cm ,AA 1 4cm ,所以该模型体积为:VABCD ABCD VOEFGH6 6 4 1 (4 6413 2) 3144 12 132(cm 3),1 1 1 1323D 打印所用原料密度由于为3,不考虑打印消耗,所以制作该模型所需原料的质量为: 132 118.8(g).2.分析由于长方体ABCD A 1B 1C 1D 1的体积是 120,E 为CC 1的中点,所以VABCDABCD 1 1 AB BC DD 1 120 ,所以 三棱锥 E 的体积:11BCD VEBCD 1 S BCD CE 1 1 BC DC 1 AB BCDD 1 10. 3 3 2 CE123.分析由题可知,四棱锥底面正方形的对角线长为2,且垂直订交均分,由勾股定理得,正四棱锥的高为2.由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,则圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于1,由相像比可得圆柱的高为正四棱锥高的一半,为1. 22所以该圆柱的体积为VSh 1 1.2 44.PBPC 及△ABC 是边长为 2的正三角形可知,三棱锥PABC 为正 分析:由PA 三棱锥,则极点P在底面的射影O为底面三角形的中心.连结BO并延伸,交AC于G,则AC BG,又PO AC,POIBG O,可得AC⊥平面PBG,则PB⊥AC.由于E,F分别是PA,AB的中点,所以EFPPB.又CEF90,即EF⊥CE,所以PB⊥CE,得PB⊥平面PAC.所以PB⊥PA,PB⊥PC.又由于PA PB PC,△ABC是正三角形,所以△PAC≌△PBC≌△PAB,故PA PC所以正三棱锥P ABC的三条侧棱两两相互垂直.把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为正方体的体对角线的长度,即3dPA2PB2PC26,半径为6,2则球O的体积为4π66π.应选D.325.分析:由三视图复原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即S五边形ABCDE1(46)31(26)327,高为6,22则该柱体的体积是V276162.应选B.6.分析:由三视图复原原几何体如下图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V V正方体-V四棱柱444-12+424=40.22010-2018年1.C【分析】解法一将三视图复原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如下图,PA DB C易知,BC∥AD,BC1,AD AB PA2,AB AD,PA 平面ABCD,故PAD,PAB为直角三角形,∵PA平面ABCD,BC平面ABCD,PA BC,又BC AB,且PA AB A,∴BC平面PAB,又PB平面PAB.BCPB,∴PBC为直角三角形,简单求得PC3,CD5,PD22,故PCD不是直角三角形,应选C.解法二在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,应选C.PD CAB2.B【分析】由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长16.画出该圆柱的侧面睁开图,如图②所示,连结MN,则MS2,SN4,则从M 到N的路径中,最短路径的长度为MS2SN2224225.应选B.MMNS N图①图②3.A【分析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,联合榫头的地点知选A.4B【分析】设等边三角形ABC的边长为x,则1x sin6093,得x6..226设ABC的外接圆半径为r,则2r,解得r23,所以球心到ABC所sin60在平面的距离d42(23)22,则点D到平面ABC的最大距离d1d46,所以三棱锥D ABC体积的最大值V1SABC61936183.应选B.max335.D【分析】如图以AA1为底面矩形一边的四边形有AACC AA1B1B、AA1D1D AA1E1E411、、个,每一个面都有4个极点,所以阳马的个数为16个.应选D.ED11B1C1A1EDBCA6.C【分析】由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V1(12)226.应选C.27.B【分析】由题意可知,该几何体是由一个三棱锥和一个三棱柱构成,则表面全部梯形之和为21(24)212.选B.28.B 【分析】解法一 由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高 为4的圆柱,其体积V 1 324 36 ,上半部分是一个底面半径为3,高为6的圆 柱的一半,其体积V 1( 326) 27 , 2 2故该组合体的体积 V V 1 V 2 36 27 63 .应选B .解法二该几何体能够看作是高为 14,底面半径为 3的圆柱的一半,所以体积为1(32) 14 63.选B .29.B 【分析】圆柱的轴截面如图, AC 1,AB 1,所以圆柱底面半径 rBC3, 22那么圆柱的体积是Vr 2h( 3)2 1 3 ,应选B .2 410.A 【分析】该几何体是由一个高为 3的圆锥的一半,和高为3的三棱锥构成(如图),其体积为:11 2 11 1 ( 13) (213) 3 2 32 .选A .211.B 【分析】借助正方体可知粗线部分为该几何体是四棱锥,2 22最长的棱长是体对角线,所以 22 22 222 3.选B .12.C 【分析】由三视图可知,四棱锥的底面是边长为 1的正方形,高为 1,其体积V 11 121 1 .设半球的半径为 R ,则2R 2,即R2 ,3 32所以半球的体积V 21 4 (2)3 2 .2 3 2 6故该几何体的体积VV 1V 21 2 .应选C .3 613.A 【分析】由三视图可得此几何体为一个球切割掉1后剩下的几何体,设球的半径为r ,故74 288r 3,所以r 2,8 3 3表面积S7 4r 23 r 217 ,选A .8 414.C 【分析】该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为 l ,圆柱高为h .r 22 2由图得 , ,由勾股定理得:l 234,c2πr4π2S 表πr 2ch 1cl 4π16π8π 28π,应选C .215.B 【分析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为 3、该边上的高为6,故面积都为 18,左右两个侧面是矩形,边长为35和3,故面积都为9 5,则该几何体的表面积为2(9 +18+95)=54+18 5.16.C 【分析】由题意得,该几何体为一立方体与四棱锥的组合,∴体积V231 222 32 ,应选C .3 317.D 【分析】由三视图知:该几何体是半个圆柱,此中底面圆的半径为1,母线长为 2,所以该几何体的表面积是12112223 4,应选D . 218.A 【分析】这是一个三棱锥与半个圆柱的组合体,V1 122 1 (112)1 1,选A .2 3 2 31, 19.D 【分析】如图,设正方形的棱长为 1,则截取部分为三棱锥A-A 1B 1D 1,其体积为5,故所求比值为1. 6 又正方体的体积为 1,则节余部分的体积为6 5D 1C 1A 1B 1DCA B20.B 【分析】在长、宽、高分别为 2、1、1的长方体中,该四周体是如下图的三棱锥P-ABC ,表面积为11 22 3 ( 2)2223.241 P 11CB1A21.A 【分析】由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此长方体底面对角线长为 2x ,高为h ,则由三角形相像可得, x 2 h ,所以h 22x , 12x(0,1),长方体体积V长方体( 2x)2h 2x 2(2 2x ) ≤2(x x 22x )3 16, 2 12 3 27 当且仅当 x2 2x ,即 x V 2 2 ,时取等号, 1圆锥3 3316 8故资料利用率为 27 ,选A .2 9322.B 【分析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为r 2 2r 2 4r 2 2r 220 16,所以r 2.23.B 【分析】如图,DCBA设协助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD(4 2)2 226,选B.24.C【分析】原毛坯的体积V (32) 6 54,由三视图可知该部件为两个圆柱的组合体,其体积V V1V2(22) 4 (32) 2 34,故所求比值为V10 1.V2725.A【分析】如图,将边长为2的正方体截去两个角,∴S表22611123(2)22132426.A【分析】圆柱的正视图是矩形,∴选A.27.D【分析】由三视图画出几何体的直观图,如下图,则此几何体的表面积S S1 S正方形S2 2S3S斜面,此中S1是长方体的表面积,S 2是三棱柱的水平搁置的一个侧面的面积,S3是三棱柱的一个底面的面积,可求得S138(cm2),选D.28.C【分析】由题意可知ADBC,由面面垂直的性质定理可得AD平面DB1C1,又AD2sin603,所以V ABDC11ADSBDC131231,131132应选C.29.A 【分析】圆柱的底面半径为1,母线长为1,S 侧211 2.30.B 【分析】直观图为棱长为 2的正方体割去两个底面半径为 l 的 1圆柱,所以该几何体1 4的体积为232 12 2 8 .431.C 【分析】由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为 1,其侧面 积S2rh2.32.B 【分析】由直观图可知,该几何体由一个长方体和一个截角三棱柱构成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连结的两个三角形.33.A 【分析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上面放一个 长为4宽为2高为2长方体,故其体积为1 224 4 2 2=168,应选A . 234.A 【分析】复原后的直观图是一个长宽高挨次为 10,6 ,5的长方体上面是半径为 3高为2的半个圆柱. 35.C 【分析】几何体是圆柱与圆锥叠加而成它的体积为V 3 2 1 2 52 3257 5 33 136.B 【分析】由三视图可知该几何体的体积: V 12 2 1223.237.D 【分析】经过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥的组合体,故侧视图能够为D .38.C 【分析】由三视图可知该几何体是底面为等腰梯形的放倒的一个直四棱柱,如图,所以该四棱柱的表面积S 2 1 (2 4) 4 4 4 2 4 2 1 16 4 48 8 17.239.D 【分析】选项A 正确,∵SD 平面ABCD ,而 AC 在平面 ABCD 内,所以 ACSD ABCD 为正方形,所以 ACBD ,而 BD 与 SD 订交,所以 AC.由于平面SBD ,所以AC SB ;选项B 正确,由于AB CD ,而CD 在平面SCD内,AB 不在平面SCD 内,所以AB 平面SCD ;选项C 正确,设AC 与BD 的交点为O ,连结SO ,则SA 与平面SBD 所成的角 ASO ,SC 与平面SBD 所成的角CSO ,易 知这两个角相等;选项 D 错误, AB 与 SC 所成的角等于 SCD ,而 DC 与 SA所成的角等于SAB ,易知这两个角不相等.40.C 【分析】该几何体由两个长方体组合而成,其表面积等于下边长方体的全面积加上面长方体的4个侧面积之和.S 2(108 10 28 2) 2(6 8 8 2) 360 . 41.B 【分析】该几何体上半部是底面边长为 4cm ,高为 2cm ,的正四棱柱,其体积为44232(cm 3);下半部分是上、下底面边长分别为4cm ,8cm ,高为2cm 的正四 棱台,其体积为1 (16 48 64)2 224 ,故其整体积为32 224 320 . 1【分析】连结3 3 3 342. AD 1,CD 1,B 1A ,B 1C ,AC ,由于E ,H 分别为AD 1,CD 1的 121AC ,由于F ,G 分别为B 1A ,B 1C 的中点, 中点,所以EH ∥AC ,EH 2所以FG ∥AC ,FG 1AC ,所以EH∥FG,EH FG ,所以四边形EHGF 为 2平行四边形,又EG HF ,EH HG ,所以四边形EHGF 为正方形,又点 M 到平 面EHGF 的距离为1,所以四棱锥 MEFGH 的体积为1( 2)2 1 1 .23 22 12 43.4【分析】正方体的棱长为2,以其全部面的中心为极点的多面体是正八面体,此中正3 八面体的全部棱长都是 2,则该正八面体的体积为 1 (2)22 4 . 33 44.415【分析】如图连结OE 交AC 于G ,由题意OE AC ,设等边三角形 ABC 的 边长为x (0 x5),则OG3x ,GE53x .66E A G FOCBD由题意可知三棱锥的高h GE2OG2(53x)2(3x)22553x663底面SABC3x2,4三棱锥的体积为V13x22553x155x43x5,343123设h(x)5x43x5,则h(x)20x3533x4(0x5),3令h(x)0,解得x43,当x (0,43)时,h(x)0,h(x)单一递加;当x(43,5)时,h(x)0,h(x)单一递减,所以x43是h(x)获得最大值h(43)(43)4所以Vmax 15h(43)15(43)2415.1212.9π【分析】设正方体边长为a,由6a218,得a23,4524π4π279π外接球直径为2R3a3,V33R382.46.2【分析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半2径为1,所以V2112π1212π4.247.3【分析】设球的半径为r,则V1r22r3.2V24r32348.2【分析】依据三视图可知该四棱锥的底面是底边长为2m,高为1m的平行四边形,四棱锥的高为3m,故其体积为12132(m3).8349.1,高为2的圆柱,两【分析】由三视图可知,该几何体是中间为一个底面半径为3端是底面半径为1,高为1的圆锥,所以该几何体的体积V122211218.3350.12【分析】由题意知,该六棱锥是正六棱锥,设该六棱锥的高为h,则16 3 22h23 ,解得h 1,底面正六边形的中心到其边的距离为 3,3 4故侧面等腰三角形底边上的高为31 2,该六棱锥的侧面积为112212 .251.22【分析】由题意可知直观图如下图,联合三视图有PA平面ABC ,PA 2,AB BC 2,CA 2,所以PB PA 2AB 26 ,PCPA 2 AC 222,∴三棱锥最长棱的棱长为 2 2.PA CB52. 3【分析】设甲、乙两个圆柱的底面半径分别是r 1,r 2,母线长分别是l 1,l 2.2则由S19 ,可得r13 .又两个圆柱的侧面积相等,即 2 rl 112r 2l 2,S 24 r 2 2则l1 r 1 2,所以V1S 1l 1 9 2 3 .l 2 r 2 3V 2S 2l 2 43253.3【分析】设正方体的棱长为 a ,则正方体的体对角线为直径,即3a2r ,即球半径r 3 a .若球的体积为 9 ,即4( 3 a ) 39 ,解得a 3.2 23 2 254.1:24【分析】三棱锥F ADE 与三棱锥A 1 ABC 的相像比为1:2,故体积之比为1:8.又因三棱锥 A 1 ABC 与三棱柱A 1B 1C 1 ABC 的体积之比为1:3.所以,三棱锥 F ADE 与三棱柱A 1B 1C 1ABC 的体积之比为1:24. 另:V 1 1 1 1 SABC 1 1 1 S ADE h 1 3 4 h 2 V 2,所以V 1:V 2 .3 2 2424 55.38【分析】由三视图知,此几何体为一个长为 4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积为 2 4 3+4 1+31+2 -2 =38. 56.92【分析】该几何体是底面是直角梯形,高为4的直四棱柱几何体的表面积是S21(25)4(25442(52)2)492.2111 57.PAS ABC22sin603,答案应填3.3【分析】V33321【分析】由圆锥底面面积是这个球面面积的3,得r23r358.4R2,所以R,则316162小圆锥的高为R,大圆锥的高为3R,所以比值为1.22359.【分析】(Ⅰ)证明:PD平面ABCD,PD PCD,∴平面PCD平面ABCD,平面PCD平面ABCD CD,MD平面ABCD,MD CD,∴MD平面PCD,CF平面PCD,CF MD,又CF MF,MD,MF平面MDF,MD MF M,∴CF平面MDF.(Ⅱ)CF平面MDF,CF DF,又易知PCD600,CDF300,进而CF=1CD=1,221EF∥DC,DE CF,即DE=2,DE3,PE33, DP CP3244 S CDE1CDDE3,28MD ME2DE2PE2DE2(33)2(3)26, 442V MCDE1SCDE MD1362.33821660.【分析】(Ⅰ)由已知得ABC DBC,所以AC DC,又G为AD的中点,CG AD;同理BGAD;所以AD平面BCG,又EF∥AD,∴EF平面BCG.AEGC O BDF(Ⅱ)在平面ABC内,做AOCB,交CB的延伸线于O,由平面ABC平面BCD,知AO平面BCD,又G为AD的中点,所以G到平面BCD的距离h是AO 的一半,在AOB中,AO AB sin603,所以V DBCG V GBCD 11 S DBG h.3261.【分析】(Ⅰ)连结AC1,交A1C于点O,连结DO,则O为AC1的中点,由于D为AB 的中点,所以OD∥BC1,又由于OD平面A1CD,BC1平面A1CD,所以BC1//平面A1CD;(Ⅱ)由题意知CD 平面ABB1A1.再由AA1AC CB2,AB22得ACB90,CD2,A1D6,DE3,A1E3.故A1D2DE2A1E2,即DEA1D所以V CA1DE116321.3262.【分析】(Ⅰ)证明:连结AC,交于BD 于O点,连结PO.由于底面ABCD是菱形,所以AC BD,BODO,由PBPD知,POBD.再由POACO知,BD 面APC,所以BDPC .(Ⅱ)解:由于E 是PA 的中点,所以VP BCE V CPEB1V CPAB1V BAPC22由PB PD AB AD 2 知,ABD PBD由于BAD60,所以PO AO 3,AC 23,BO1.又PA 6,PO 2AO 2PA 2,即PO AC.故S APC1PO AC3. 2BO 面APC,所以V PBCE 1 1 1 1 .由(1)知, 2V BAPC 2 3BOSAPC 263.【分析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又由于EF=5,所以可得EG GF ,又由于CF 底面EGF,可得CF EG ,即EG 面CFG 所以平(面DEG 平面CFG.2)过G 作GO 垂直于EF ,GO 即为四棱锥G-EFCD 的高,所以所求体积为1S CDEF GO 1 45 12 16.3 3 564.【分析】(I )由条件知 PDAQ 为直角梯形由于 QA 平面ABCD ,所以平面PDAQ 平面ABCD ,交线为AD .又四边形 ABCD 为正方形,DC AD ,所以DC 平面PDAQ ,可得PQ DC .在直角梯形 2 PD ,则PQQDPDAQ 中可得DQ=PQ=2所以PQ 平面DCQ.(II )设AB=a. 由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积V 1a 3. 1 3由(I )知PQ 为棱锥P —DCQ 的高,而PQ=2a ,△DCQ 的面积为 2a 2 ,2 所以棱锥P —DCQ 的体积为V 1a 3.2 3故棱锥Q —ABCD 的体积与棱锥 P —DCQ 的体积的比值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八 立体几何初步第二十二讲 空间几何体的三视图、表面积和体积答案部分1.C 【解析】解法一 将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示,DCBA P易知,BC AD ∥,1BC =,2AD AB PA ===,AB AD ⊥,PA ⊥平面ABCD ,故PAD ∆,PAB ∆为直角三角形,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,PA BC ⊥,又BC AB ⊥,且PA AB A =,∴BC ⊥平面PAB ,又PB ⊂平面PAB .BC PB ⊥,∴PBC ∆为直角三角形,容易求得3PC =,CD =,PD =,故PCD ∆不是直角三角形,故选C .解法二 在正方体中作出该几何体的直观图,记为四棱锥P ABCD -,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C .PDCBA2.B 【解析】由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长16.画出该圆柱的侧面展开图,如图②所示,连接MN ,则2=MS ,4=SN ,则从M 到N=B .SNM图① 图②3.A 【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A .4.B 【解析】设等边三角形ABC 的边长为x ,则21sin 60932x =6x =. 设ABC ∆的外接圆半径为r ,则62sin 60r=,解得r =,所以球心到ABC ∆所在平面的距离2d ==,则点D 到平面ABC 的最大距离146d d =+=,所以三棱锥D ABC -体积的最大值max 116633ABC V S ∆=⨯=⨯=B .5.D 【解析】如图以1AA 为底面矩形一边的四边形有11AAC C 、11AA B B 、11AA D D 、11AA E E 4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D .E 1E AA 1D CD 1C 1B 1B6.C 【解析】由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积1(12)2262V =⨯+⨯⨯=.故选C . 7.B 【解析】由题意可知,该几何体是由一个三棱锥和一个三棱柱构成,则表面所有梯形之和为12(24)2122⨯+⨯=.选B .8.B 【解析】解法一 由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半, 其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .解法二 该几何体可以看作是高为14,底面半径为3的圆柱的一半,所以体积为21(3)14632ππ⨯⨯=.选B . 9.B 【解析】圆柱的轴截面如图,1AC =,12AB =,所以圆柱底面半径r BC ==,那么圆柱的体积是22314V r h πππ==⨯⨯=,故选B . 10.A 【解析】该几何体是由一个高为3的圆锥的一半,和高为3的三棱锥组成(如图),其体积为:21111(13)(213)132322ππ⨯⨯⨯+⨯⨯⨯=+.选A .11.B 【解析】借助正方体可知粗线部分为该几何体是四棱锥,2=B .12.C 【解析】由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积21111133V =⨯⨯=.设半球的半径为R,则2R =2R =,所以半球的体积32142326V π=⨯⨯=.故该几何体的体积1213V V V =+=+.故选C .13.A 【解析】由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为r ,故37428833r ππ⨯=,所以2r =, 表面积227341784S r r πππ=⨯+=,选A .14.C 【解析】该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .15.B 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右两个侧面是矩形,边长为3,故面积都为2(9 +18+16.C 【解析】由题意得,该几何体为一立方体与四棱锥的组合,∴体积3322231223=⨯⨯+=V ,故选C . 17.D 【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 18.A 【解析】这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A .19.D 【解析】如图,设正方形的棱长为1,则截取部分为三棱锥111AA B D ,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.A 1AC20.B 【解析】在长、宽、高分别为2、1、1的长方体中,该四面体是如图所示的三棱锥PABC ,表面积为21122222⨯⨯⨯⨯=+21.A【解析】由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此长方体底面对角线长为2x,高为h,则由三角形相似可得,2 12 x h-=,所以22h x=-,(0,1)x∈,长方体体积2232216)2(22)2()327x x xV h x x++-==-=长方体≤,当且仅当22x x=-,即23x=时取等号,2121233Vππ=⨯⨯=圆锥,故材料利用率为16827293ππ=,选A.22.B【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为22222422016r r r rππππ+++=+,所以2r=.23.B【解析】如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A - BCD,最长的棱为6AD==,选B.24.C【解析】原毛坯的体积2(3)654Vππ=⨯⨯=,由三视图可知该零件为两个圆柱的组合体,其体积2212(2)4(3)234V V Vπππ'=+=⨯⨯+⨯⨯=,故所求比值为10127VV'-=.25.A【解析】如图,将边长为2的正方体截去两个角,∴212261122124S=⨯⨯-⨯⨯+⨯=+表26.A 【解析】圆柱的正视图是矩形,∴选A .27.D 【解析】由三视图画出几何体的直观图,如图所示,则此几何体的表面积1232S S S S S S =-+++正方形斜面,其中1S 是长方体的表面积,2S 是三棱柱的水平放置的一个侧面的面积,3S 是三棱柱的一个底面的面积,可求得2138()S cm =,选D .28.C 【解析】由题意可知AD BC ⊥,由面面垂直的性质定理可得AD ⊥平面11DB C ,又2sin 603AD =⋅=11111113231332A B DC B DC V AD S -∆=⋅=⨯=, 故选C .29.A 【解析】圆柱的底面半径为1,母线长为1,2112S ππ=⨯⨯=侧. 30.B 【解析】直观图为棱长为2的正方体割去两个底面半径为l 的14圆柱,所以该几何体的体积为321221284ππ-⨯⨯⨯⨯=-. 31.C 【解析】由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积22S rh ππ==.32.B 【解析】由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.33.A 【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 34.A 【解析】还原后的直观图是一个长宽高依次为10,6 ,5的长方体上面是半径为3高为2的半个圆柱.35.C 【解析】几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=36.B 【解析】由三视图可知该几何体的体积:221121232V πππ=⨯⨯+⨯⨯⨯=. 37.D 【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥的组合体,故侧视图可以为D .38.C 【解析】由三视图可知该几何体是底面为等腰梯形的放倒的一个直四棱柱,如图,所以该四棱柱的表面积12(24)444242S =⨯⨯+⨯+⨯+⨯24+48=+39.D 【解析】选项A 正确,∵SD ⊥平面ABCD ,而AC 在平面ABCD 内,所以AC SD ⊥.因为ABCD 为正方形,所以AC BD ⊥,而BD 与SD 相交,所以AC ⊥平面SBD ,所以AC SB ⊥;选项B 正确,因为AB CD ,而CD 在平面SCD 内,AB 不在平面SCD 内,所以AB平面SCD ;选项C 正确,设AC 与BD 的交点为O ,连结SO ,则SA 与平面SBD 所成的角ASO ∠,SC 与平面SBD 所成的角CSO ∠,易知这两个角相等;选项D 错误,AB 与SC 所成的角等于SCD ∠,而DC 与SA 所成的角等于SAB ∠,易知这两个角不相等.40.C 【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.2(10810282)2(6882)360S =⨯+⨯+⨯+⨯+⨯=. 41.B 【解析】该几何体上半部是底面边长为4cm ,高为2cm ,的正四棱柱,其体积为344232()cm ⨯⨯=;下半部分是上、下底面边长分别为4cm ,8cm ,高为2cm 的正四棱台,其体积为1224(164864)233⨯+⨯+⨯=,故其总体积为2243203233+=.42.112【解析】连接1AD ,1CD ,1B A ,1B C ,AC ,因为E ,H 分别为1AD ,1CD 的中点,所以EH ∥AC ,12EH AC =,因为F ,G 分别为1B A ,1B C 的中点,所以FG ∥AC ,12FG AC =,所以EH FG ∥,EH FG =,所以四边形EHGF 为平行四边形,又EG HF =,EH HG =,所以四边形EHGF 为正方形,又点M 到平面EHGF 的距离为12,所以四棱锥M EFGH -的体积为211132212⨯⨯=. 43.43【解析】正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正,则该正八面体的体积为214233⨯⨯=. 44.OE 交AC 于G ,由题意OE AC ⊥,设等边三角形ABC 的边长为x (05x <<),则OG x =,5GE x =. G ODFECBA由题意可知三棱锥的高h ===底面24ABC S x ∆=,三棱锥的体积为2134V x =⨯=设45()53h x x x =-,则34()203h x x x '=-(05x <<), 令()0h x '=,解得x =(0,x ∈时,()0h x '>,()h x 单调递增;当x ∈时,()0h x '<,()h x 单调递减,所以x =()h x取得最大值4h =所以2max 1212V ==⨯=45.9π2【解析】设正方体边长为a ,由2618a =,得23a =,外接球直径为23R ==,344279πππ3382V R ==⨯=.46.22π+【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+. 47.32【解析】设球的半径为r ,则213223423V r r V r ππ⨯==. 48.2【解析】根据三视图可知该四棱锥的底面是底边长为2m ,高为1m 的平行四边形,四棱锥的高为3m ,故其体积为121323⨯⨯⨯=(3m ). 49.83π【解析】由三视图可知,该几何体是中间为一个底面半径为1,高为2的圆柱,两端是底面半径为1,高为1的圆锥,所以该几何体的体积22181221133V πππ=⨯⨯+⨯⨯⨯⨯=.50.12【解析】由题意知,该六棱锥是正六棱锥,设该六棱锥的高为h ,则21623h ⨯⨯=,解得1h =2=,该六棱锥的侧面积为1122122⨯⨯=. 51.PA ⊥平面ABC ,2PA =,AB BC ==2CA =,所以PB ==,PC ==,∴三棱锥最长棱的棱长为52.32【解析】设甲、乙两个圆柱的底面半径分别是12,r r ,母线长分别是12,l l .则由1294S S =,可得1232r r =.又两个圆柱的侧面积相等,即112222rl r l ππ=, 则112223l r l r ==,所以111222923432V S l V S l ==⨯=.53【解析】设正方体的棱长为a2r =,即球半径2r a =.若球的体积为92π,即349)32ππ=,解得a =54.1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的 相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比 为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24. 另:112211111334224ADE ABC V S h S h V ==⨯⨯=,所以121:24V V =. 55.38【解析】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积为()243+41+31+2-2=38ππ⨯⨯⨯⨯. 56.92【解析】该几何体是底面是直角梯形,高为4的直四棱柱几何体的表面积是12(25)4(2544922S =⨯⨯+⨯++++⨯=.57111322sin 603332ABC V PAS ∆=⋅=⋅⋅⋅⋅⋅=.58.13【解析】由圆锥底面面积是这个球面面积的316,得223416r R ππ=,所以2r R =,则小圆锥的高为2R,大圆锥的高为32R ,所以比值为13.59.【解析】(Ⅰ)证明:PD ⊥平面,,ABCD PD PCD ⊂∴平面PCD ⊥平面ABCD ,平面PCD平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,∴MD ⊥平面PCD ,,,,,,CF PCD CF MD CF MF MD MF MDF ⊂∴⊥⊥⊂平面又平面MD MF M =,∴CF MDF ⊥平面.(Ⅱ)00,,60,30,CF MDF CF DF PCD CDF ⊥∴⊥∠=∴∠=平面又易知11==,22CF CD 从而12,,,2DE CF EF DC DE PE DP CP ∴=∴=∴=∥128CDE S CD DE ∆=⋅=,22MD ====11.338216M CDE CDE V S MD -∆∴=⋅=⋅= 60.【解析】(Ⅰ)由已知得ABC DBC ∆≅∆,因此AC DC =,又G 为AD 的中点,CG AD ⊥;同理BG AD ⊥;因此AD ⊥平面BCG ,又EF AD ∥,∴EF ⊥平面BCG .CD (Ⅱ)在平面ABC 内,做AO CB ⊥,交CB 的延长线于O ,由平面ABC ⊥平面BCD ,知AO ⊥平面BCD ,又G 为AD 的中点,因此G 到平面BCD 的距离h 是AO 的一半,在AOB ∆中,sin 603AO AB =⋅=1132D BCG G BCD DBG V V S h --∆==⨯⨯=. 61.【解析】(Ⅰ)连结1AC ,交1A C 于点O ,连结DO ,则O 为1AC 的中点,因为D 为AB的中点,所以OD ∥1BC ,又因为OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1BC //平面1A CD ;(Ⅱ)由题意知 CD ⊥平面11ABB A .再由12AA AC CB ===,AB =90ACB ∠=,CD =1A D =DE =13A E =.故22211A D DE A E +=,即1DE A D ⊥所以111632132C A DE V -=⨯⨯⨯⨯=. 62.【解析】(Ⅰ)证明:连接AC ,交于BD 于O 点,连接PO .因为底面ABCD 是菱形,所以,AC BD BO DO ⊥=,由PB PD =知,PO BD ⊥.再由PO AC O ⋂=知, BD ⊥面APC ,因此BD PC ⊥.(Ⅱ)解:因为E 是P A 的中点,所以1122P BCE C PEB C PAB B APC V V V V ----=== 由2PB PD AB AD ====知,ABD PBD ≅因为60BAD ∠=, 所以3,23,1PO AO AC BO ====. 又2226,,PA PO AO PA PO AC =+=⊥即. 故132APC S PO AC =•=. 由(1)知,1111,2232P BCE B APC APC BO APC V V BO S --⊥==•••=面因此. 63.【解析】(1)由已知可得AE =3,BF =4,则折叠完后EG =3,GF =4,又因为EF =5,所以可得EG GF ⊥,又因为CF EGF ⊥底面,可得CF EG ⊥,即EG CFG ⊥面所以平面DEG ⊥平面CFG .(2)过G 作GO 垂直于EF ,GO 即为四棱锥G -EFCD 的高,所以所求体积为11124516335CDEF S GO ⋅=⨯⨯⨯=. 64.【解析】(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD .又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC .在直角梯形PDAQ 中可得DQ =PQ =2PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ .(II )设AB =a . 由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a =由(I )知PQ 为棱锥P —DCQ 的高,而PQ ,△DCQ 的面积为22a , 所以棱锥P —DCQ 的体积为321.3V a = 故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.。