七年级数学(上)探索规律类-问题及答案
新初一规律探索题参考答案

前言:七年级上册数学期中考试,主要考察书本前2章,想要考试取得好的成绩,首先应一般能力:①基本知识、基本技能;②计算能力;其次要想获得高分必须具备高分能力:①观察、猜想、推理、验证的能力;②数形结合思想的建立;③分类讨论思想的建立;④方程思想的建立;对于重点中学学生,尤为重要。
高分能力是今后学习领先的有力保障,需要大量练习、总结、体会,七年级涉及的仅仅是一部分。
一、规律探索类题型规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形等条件,要求学生通过:①读题②观察③分析④猜想⑤验证,来探索对象的规律。
它体现了“特殊到一般”、“数形结合”等数学思想方法,考察学生的分析、解决问题能力。
题型可涉及填空、选择或解答。
【题型分类】【1、数字问题】最好具备数列的有关知识(小学奥数有涉及),实际考察的是:经历探索事物间的数量关系,用字母表示数和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。
如:1、正整数规律1、2、3、4、5、、、、可以表示为n (其中n 为正整数)2、奇数规律1、3、5、7、9、、、、可以表示为21n -(其中n 为正整数)3、偶数规律2、4、6、8、10、、、、可以表示为2n (其中n 为正整数)4、正、负交替规律变化一组数,不看他们的绝对值,只看其性质,为正负交替(1)、-、+、-、+、-、+、-、+可以表示为(1)n -(2)、+、-、+、-、+、-、+、-可以表示为1(1)n +-5、平方数规律1、4、9、16、、、、可以表示为2n (其中n 为正整数),能看得出:上面的规律数+1、+2、-1、-26、等差数列常识按一定次序排列的一列数就叫数列。
例如:(1)1,2,3,4,5,6,…(2)1,2,4,8,16,32;A 、一个数列中从左至右的第n 个数,称为这个数列的第n 项。
2021年七年级数学上册 期末培优复习 探索规律题型专项练习(含答案)

2021年七年级数学上册期末培优复习探索规律题型专项练习一、选择题1.下图是一个运算程序的示意图,若开始输入x的值为125,则第2 016次输出的结果为( )A.125B.25C.1D.52.如图,下面是按照一定规律画出的“树形图”,经观察可以发现,图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个3.观察如图所示图形,则第n个图形中三角形的个数是( )A.2n+2B.4n+4C.4nD.4n-44.观察下列各式: - 2x,4x2, - 8x3,16x4, - 32x5,…则第n个式子是( )A.- 2n - 1x nB.( - 2)n - 1x nC.- 2n x nD.( - 2)n x n5.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )A.22B.24C.26D.286.下列是由一些火柴搭成的图案,图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n○个图案用多少根火柴( )A.4n+3B.5n-1C.4n+1D.5n-47.小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形,其颗数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数,下列数既是三角形数又是正方形数的是 ( )A.2010B.2012C.2014D.20168.如图是由一些点组成的图形,按此规律,第n个图形中点的个数为( )A.n2+1B.n2+2C.2n2+2D.2n2 - 19.如图,下列每个图都是由若干个点组成的形如三角形的图案,每条边(包括两个顶点)有n个点,每个图案的总点数是S,按此推断S与n的关系式为( )A.S=3nB.S=3(n - 1)C.S=3n - 1D.S=3n+110.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21B.24C.27D.3011.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为( )A.135B.170C.209D.25212.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( )A. B. C. D.13.探索规律:根据如图1中箭头指向的规律,可知从2020到2022箭头的方向图是( )14.a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是( )A.5 B.﹣ C. D.15.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955B.4955C.-4950D.4950二、填空题16.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为 .17.下面由火柴棒拼出的一列图形中,摆第1个图形要4根火柴棒,摆第二个图形需要7根火柴棒,按照这样的方式继续摆下去,摆第n 个图形时,需要________根火柴棒.18.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 个.19.观察下列式子: 12-02=1+0=1;22-12=2+1=3,32-22=3+2=5;42-32=4+3=7;52-42=5+4=9,….若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .20.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…它们是按一定规律排列的,那么这列式子的第n 个单项式是____________.21.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放, 则第n 个图案中共有小三角形 个.22.观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …请猜测,第n 个算式(n 为正整数)应表示为 . 23.已知f(x)=1+x 1,其中f(a)表示当x=a 时代数式的值,如f(1)=1+11,f(2)=1+21,f(a)=1+a1,则f(1)·f(2)·f(3)·…·f(50)=________. 24.已知:,,,…,观察上面的计算过程,寻找规律并计算C 106= .25.按如图所示的程序计算,若开始输入x的值为6,我们发现第一次得到的结果为3,第2次得到的结果为10,第3次得到的结果为5…,请你探索第10次得到的结果为.26.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是______.27.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数,-2017应排在A、B、C、D、E中的位置.28.有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为 (n为正整数).29.如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是;“﹣2016”在射线上.30.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.参考答案1.答案为:D.2.答案为:C;3.答案为:C4.答案为:D5.答案为:C.6.答案为:C7.答案为:D8.答案为:B9.答案为:B.10.答案为:B.11.答案为:C12.答案为:B13.答案为:A14.答案为:D.15.答案为:B16.答案为:10.17.答案为:(3n+1);18.答案为:800.19.答案为:n2-(n-1)2=n+(n-1)=2n-120.答案为:(2n+1)an2+121.答案为:(3n+4);22.答案为:[10(n- 1)+5]×[10(n- 1)+5]=100n(n- 1)+25.23.答案为:51.24.答案为:21025.答案为:6.26.答案为:4n+1.27.答案为:-29,A;28.答案为:(1)﹣27;(2)29.答案为:﹣32,OD.30.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1=n2+2n+1+n2=2n2+2n+1.故答案为:2n+1;2n2+2n+1.。
七年级数学人教课标(上册)38规律探索

规律探索一、选择题1.(5分)(2014•毕节地区,第18题5分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.个数是故答案为:2.(2014•武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()3. (2014•株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()二.填空题1. (2014•湘潭,16题,3分)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014.2. (2014•扬州,第18题,3分)设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是165.,得到方程组二.填空题1. (2014•珠海,第10题4分)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.OA,=;=2OA2.(2014年四川资阳,第16题3分)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是(,).考点:规律型:点的坐标;等边三角形的性质.菁优网分析:根据O(0,0)A(2,0)为顶点作△OAP1,再以P1和P1A的中B为顶点作△P1BP2,再P2和P2B的中C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.解答:解:由题意可得,每一个正三角形的边长都是上个三角形的边长的,第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是=,P6的纵坐标为,故答案为:(,).点评:本题考查了点的坐标,根据规律解题是解题关键.3.(2014年云南省,第14题3分)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=.(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.4.(2014•邵阳,第18题3分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动28 次后该点到原点的距离不小于41.≥5.(2014•孝感,第18题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).6.(2014•滨州,第18题4分)计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= 102014.先计算得到,=100=10=1000=10,=1000=10=100=10=1000=10=1000=107.(2014•德州,第17题4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).(((8.(2014•菏泽,第14题3分)下面是一个某种规律排列的数阵:根据数阵的规律,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是(用含n的代数式表示)故答案为:9.(2014年山东泰安,第24题4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.菁优网分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.。
七年级数学探索规律——图形规律(人教版)(专题)(含答案)

试题难度:三颗星知识点:略
4.有一长条型链子,其外型由边长为1的正六边形排列而成.如图是此链子的任意一段示意图,其中每个黑色六边形与6个白色六边形相邻.若此链子上共有35个黑色六边形,则共有( )个白色六边形.
A.140 B.142
C.210 D.212
答案:B
解题思路:
分析:按照分类的思想来考虑,第1个黑色六边形周围的6个白色六边形可以分成两类,左边的2个白色六边形是一类,剩余的4个白色六边形是一类.黑色六边形每增加1个,白色六边形就增加4个.
第3个图中三角形个数为 ;
将上述规律标序号,如下:
① ;
② ;
③ ;
…
所以第 个图中三角形个数为 ;
当 时, ,
所以第20个图中三角形个数为77.
故选C.
试题难度:三颗星知识点:略
7.下列图形是由同样大小的五角星按一定的规律排列组成,其中第1个图形共有2个五角星,第2个图形共有8个五角星,第3个图形共有18个五角星,…,则第10个图形中五角星的个数为( )
当 时, ,
即此链子上共有35个黑色六边形时,共有142个白色六边形.
故选B.
试题难度:三颗星知识点:略
5.一块瓷砖的图案如图1所示,用这种瓷砖铺设地面,如果铺设成如图2的图案,其中完整的圆一共有5个,如果铺设成如图3的图案,其中完整的圆一共有13个,如果铺设成如图4的图案,其中完整的圆一共有25个,依此规律,第10个图中,完整的圆一共有( )
A.100个B.101个
C.181个D.221个
答案:C
解题思路:
分析:按照分类的思想来考虑,可以分为一块瓷砖自带的圆和多块瓷砖拼成的完整的圆;
第1个图案,自带的圆1个,拼成的圆0个,共 个;
数学找规律题及答案

数学找规律题及答案【篇一:七年级上数学规律发现专题训练习题和答案】.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色地砖块。
..??2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
”如图,在一个边长为1的正方形纸版上,依次贴上面积为1111,n2482第3题的矩形彩色纸片(n为大于1的整数)。
请你用“数形结合”的思想,依数形变化的规律,计算1111?????n。
24823.有一列数:第一个数为x1=1,第二个数为x2=3,第三个数开始依次记为x3,x4,?,xn;从第二个数开始,每个数是它相邻两个数和的一半。
(如:x2=x1?x3) 2(1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x8= ; (3)探索这一列数的规律,猜想第k个数xk=.(k是大于2的整数)4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n次,可以得到条折痕 .5. 观察下面一列有规律的数123456,,,,,,??,根据这个规律可知第n个数是(n是正整数)38152435486.古希腊数学家把数1,3,6,10,15,21,??,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。
7. 按照一定顺序排列的一列数叫数列,一般用a1,a2,a3,?,an 表示一个数列,可简记为2{an}.现有数列{an}满足一个关系式:an+1=an-nan+1,(n=1,2,3,?,n),且a1=2.根据已知条件计算a2,a3,a4的值,然后进行归纳猜想an=_________.(用含n 的代数式表示)8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,那么第10行从左边第9个数是 . -1 2-34 -56-7-9 10-1112-1314-15169.观察下列等式9-1=8 (8)16-4=12 25-9=16 36-16=20 ????这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为10.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色。
七年级上册数学找规律试题

初一数学找规律:1 .(2013山东滨州,18,4分)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…… ……请猜测,第n 个算式(n 为正整数)应表示为____________________________.【答案】 [10(n -1)+5]×[10(n -1)+5]=100n(n -1)+25.2. (2013山东莱芜,17,4分)已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数种从左往右数第2013位上的数字为 . 【答案】73.(3分)(2013•青岛)要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切 6 次;分割成64个小正方体,至少需要用刀切 9 次.4.(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A .0B .1C .3D .7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C .点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.5.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ).A.40B.45C.51D.56答案:C .考点:新定义问题.点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.6.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)答案:n 2+4n考点:本题是一道规律探索题,考查了学生分析探索规律的能力.点评:解决此类问题是应先观察图案的变化趋势,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出黑白正方形个数增加的变化规律,最后含有n 的代数式进行表示.7.(3分)(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A . 502B . 503C . 504D . 505考点: 规律型:图形的变化类.分析: 根据正方形的个数变化得出第n 次得到2013个正方形,则4n+1=2013,求出即可.解答: 解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n 次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B .点评: 此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.8、(2013安徽)如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个。
七年级数学(上)探索规律类-问题及答案

七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到1条 2条 3条 图1 图2 图 3 O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。
北师大版七年级(上)数学第17讲:探索规律(教师版)——王琪

探索规律本节内容是在学生学习了“用字母表示数”、“列代数式”、“去括号”、“合并同类项”等知识的基础上进行的,它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸,对学生体会数学建模具有重要的作用。
1.观察如图所示前三个图形及数的规律,则第四个□的数是()A.B.3 C.D.解:由两个三角里数字之和除以两个圆里数字之差等于方块里的数字,得(2+)÷(﹣)=3÷(3﹣)=3÷2=,故选:D。
2.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选A。
3.求1+2+22+23+…+22016的值,可设S=1+2+22+23+…+22016,于是2S=2+22+23+…+22017,因此2S﹣S=22017﹣1,所以S=22017﹣1.我们把这种求和方法叫错位相减法.仿照上述的思路方法,计算出1+5+52+53+…+52016的值为()A.52017﹣1 B.52016﹣1 C.D.解:设S=1+5+52+53+...+52016,则5S=5+52+53+ (52017)∴5S﹣S=52017﹣1,∴S=.故选C。
4.如图,是蜘蛛结网过程示意图,一只蜘蛛先以O为起点结六条线OA,OB,OC,OD,OE,OF后,再从线OA上某点开始按逆时针方向依次在OA,OB,OC,OD,OE,OF,OA,OB…上结网,若将各线上的结点依次记为:1,2,3,4,5,6,7,8,…,那么第2016个结点在()A.线OA上B.线OB上C.线OC上D.线OF上解:根据数的排布发现:1在OA上,2在OB上,3在OC上,4在OD上,5在OE上,6在OF上,7在OA上,…,射线上的数字以6为周期循环,∵2016÷6=336,∴2016与6在同一条射线上,即2016在射线OF上.故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1条 2条 3条 七年级数学(上)探索规律类 问题班级 七(8) 姓名 袁野 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 31/49 .2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是1^3+2^3+3^3+4^3+5^3=15^2.3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 n^2+n=n*(n+1) 。
4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 1+2+3+…+n+(n-1)+(n-2)+…+1=n^2 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为_41___。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 -50 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 An 。
9、(2005年江苏泰州)如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 6n+2 根. …… 10、(05年广西玉林市)观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○● ………… 从第1个球起到第2005个球止,共有实心球 603 个. 11、(2005年重庆市)如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的d c ba 4 5 6 7 8 9 10 11 12 1314 15 16 17 1819 20 21 22 2324 25 26 27 28『第2题图』三角形共有 2n+1 个(用含n 的代数式表示)。
12、(2005年宁夏回族自治区)“◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植. 按此规律第六个图案中应种植乙种植物 _49__ 株.★ ★ ★ ★★ ★ ★ ◆ ◆ ◆★ ★ ◆ ◆ ★ ★ ★ ★ ◆ ★ ★ ★ ◆ ◆ ◆ ★ ★ ◆ ◆ ★ ★ ★ ★ 图 1 ★ ★ ★ ◆ ◆ ◆图 2 ★ ★ ★ ★图 3 13、(2005年江苏南通市)已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示). (1)当n = 5时,共向外作出了 9 个小等边三角形(2)当n = k 时,共向外作出了3(k-2) 个小等边三角形(用含k 的式子表示). 14、(2005年广东茂名)用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 4n+4 枚(用含有n 的代数式表示) ……… 序号 123… n 图形…(此空不填)的个数 8 16 24 … 8n 的个数149…n^2与数阵有关的问题1、(2005年四川省)如下图所示是一个数表,现用一个矩形在数表中任意框出4个数 则: (1)、a 、c 的关系是:_a+5=c_; (2)、当a +b +c +d =32时,a =___5__. 第 一题图 2、(2005年湖南常德)上面给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( D )A .69B .54C .27D .403、(2005年河南省)将连续的自然数1至36按下图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9个数的和n =3 n =4n =5(第13题)……日 一 二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31为 9a 。
(第3题图) 第4题图 4、(2005恩施自治州)下图的数阵是由全体奇数排成(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于2006吗?,1017呢?若能,请写出这九个数中最小的一个,若不能,请说出理由。
解:(1) 设中间的数为a ,则平行四边形框内的九个数之和是中间的数的9倍(2)平行四边形一共有三行,每行的和都为每行中间数的3倍。
每行的中间数都相差16.即: 3(a-16)+3a+3(a+16)=9a 答:这九个数的和依然有这种规律。
(3)答:这九个数的和不可能等于2006,因为它不是9的倍数。
可能等于1017,此时九个数中最小的一个为95。
与视图、展开图有关的问题1、(05年广东佛山)小明从正面观察下图所示的两个物体,看到的是( C )2、(05年江苏南通)“圆柱与球的组合体”如右图所示,则它的三视图是( A )A .B .C .D . 3、2005浙江省)如右图,由三个小立方体搭成的几何体的俯视图是( A )4、如图,水杯的俯视图是( D )5、(2005年荆州市)如图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( A ) 6、(2005年陕西省)下图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是( C )A 、 7B 、 6C 、 5D 、 4 7、(2005年宜宾市)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如上图,是一个正方体的平面展开图,若图中“锦”为前面,“似”为下面,“前”为后面,则“祝”表示正方体的 上 面.8、(05年山东威海)下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是( A ) (A )、7 (B )、8 (C )、9 (D )、 10杂题部分:1、(2005年安徽省)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如上图所示,则电子表的实际时刻是 10:51七年级数学(上)探索规律类 问题答案1、第9个数为10073此体规律:分子为:N²-N+1)2 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 . .1 2 2 1 A D B C 1 2 36 4 5图(12)锦似程前你祝2、13+23+33+43+53=152 此题规律:13+2+33+……+n3=(2nn ) 3、n 2+n=n (n+1)4、由于1+2+3+4+5+4+3+2+1=25中1+4=5,2+3=5…,4+1=5和5共5个5,依此可知1+2+3+…+n+…+3+2+1的值. 解答:解:1+2+3+…+n+…+3+2+1, =[1+(n-1)]+[2+(n-2)]+……+[(n-1)+1]+n =n 25、A (1、2、3、4、3、2)(1、2、3、4、3、2) …… (6个为一组循环)6、分析可得:从上至下依次为1,5,13,25…,5-1=4,13-5=8,25-13=12,可以发现上下两个数相差为4的倍数,可得第十个数为1+4+8+12+16…+36. 解:根据以上规律则第十个数为1+4+8+12+16+…+36=181. 案为181.7、-50 本题公式:每行末尾数=(-1)n+1(n+1)(2n)第九行末尾数=(-1)9+1*(9+1)*(29)= 45由此可得第十行第一个=(45+1)*(-1)=-46 则第十行第五个=-508、第1次跳后距O 点的距离为:1-(21)*OA ;第2次跳后距O 点的距离为:1-(21)*(21)*OA; 第3次跳后距O 点的距离为:1-(21)( 21)( 21)*OA;… … …第n 次跳后距O 点的距离为:1-(21)n *OA 。
所以,第5次跳后距O 点的距离为:1-(21)5*OA9、(6n+2)10、603个 (●○○●●○○○○○)(●○○●●○○○○○)(●○○●●○○○○○) …………10个为一组循环 每组有3个黑球 2005÷10=200(组)…5(个) 3*200+3=603(个) 11、(3n+1)个根据图形结合题目所给数据寻找规律,发现图2比图1多3个互不重叠的三角形,即4+3个;图3比图2多3个互不重叠的三角形,即4+3×2个;依此类推,图n 中互不重叠的三角形的个数是4+3(n-1),即(3n+1)个 解:图1中互不重叠的三角形有4个 图2中互不重叠的三角形有7=4+3个 图3中互不重叠的三角形有10=4+3×2个按此规律图n 中互不重叠的三角形有4+3(n-1)=3n+1个. ∴Sn=3n+1. 12、(6+1)2=49(株) 规律:(n+1)213、分析:根据前三个图形小等边三角形的个数,归纳总结出第k 个图形即n=k 时,共向外2 2 2 作出的小等边三角形的个数,然后利用相似三角形的面积之比等于相似比的平方求出一个小等边三角形的面积,根据归纳出的个数即可求出所有小等边三角形的面积之和. 解答:解:由第1个图形可知:n=3时, 共向外作出了3(3-2)个三角形;由第2个图形可知:n=4时,共向外作出了3(4-2)个三角形; …当n=k 时,共向外作出了3(k-2)个三角形;又∵第k 个图形中的每一个小三角形都与最大的等比三角形相似,相似比为1:k , 所以面积比为1:k2,且最大的等比三角形的面积为S ,则一个小等比三角形的面积为,k1.s∴这些小等边三角形的面积和是s kk )2(3-.故答案为:s kk 63-.14、(n+215、的个数 16 2n ·4=8n的个数 9 n 2与数阵有关的问1、(1)a+5=c(2)a=5 设a=x b=(x+1) c=(x+5) d=(x+6)则 X+(x+1)+(x+5)+(x+6)=32 解得 x=5 2、D 3、9a4、(1)和是中间数的9倍(2)有设中间数为x ,则x-18 x-16 x-14x-2 x x+2x+14 x+16 x+18(3)设这就个数分别是x-18,x-16,x-14,x-2,x,x+2,x+14,x+16,x+18 则(x-18)+(x-16)+(x-14)+(x-2)+x+(x+2)+(x+14)+(x+16)+(x+18)=2006解得2006x=9设这就个数分别是x-18,x-16,x-14,x-2,x,x+2,x+14,x+16,x+18 则(x-18)+(x-16)+(x-14)+(x-2)+x+(x+2)+(x+14)+(x+16)+(x+18)=1017解得x=113与视图、展开图有关的问题1、 C2、 A3、 A4、 D5、 D6、 C 在俯视图上标个数7、上8、9杂题部分1、10:51。