圆的方程练习及答案
高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。
圆的方程

圆的方程活动一:基础检测1.方程x 2+y 2+4mx -2y +5m =0表示圆时,m 的取值范围为______________. 2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是________.3.点P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是______________.4.已知点(0,0)在圆:x 2+y 2+ax +ay +2a 2+a -1=0外,则a 的取值范围是________.5.过圆x 2+y 2=4外一点P (4,2)作圆的切线,切点为A 、B ,则△APB 的外接圆方程为________.6、(2015年江苏高考)在平面直角坐标系xoy 中,以点(1,0)为圆心且与直线210mx y m ---= ()m R ∈相切的所有圆中,半径最大的圆的标准方程为_______________。
7、(2014年江苏高考)在平面直角坐标系xOy 中,直线032x =-+y 被圆4)1(2x 22=++-y )(截得的弦长为8、在平面直角坐标系xoy 中,已知⊙C:5)1(22=-+y x,A为⊙C与x 负半轴的交点,过A 作⊙C的弦AB ,记线段AB 的中点为M.则直线AB 的斜率为 。
活动二:探究点一 求圆的方程例1 已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为________.变式1 根据下列条件,求圆的方程.(1)与圆O :x 2+y 2=4相外切于点P (-1,3),且半径为4的圆的方程; (2)圆心在原点且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程.变式2在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60︒,求圆M 的方程。
(完整版)圆的一般方程练习题

(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。
圆的标准方程(经典练习及答案详解)

2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
基础练习-圆的一般方程

2.3.2 圆的一般方程一、选择题1.圆的方程为(x -1)(x +2)+(y -2)(y +4)=0,则圆心坐标为( )A .(1,-1)B .⎝ ⎛⎭⎪⎫12,-1C .(-1,2)D .⎝ ⎛⎭⎪⎫-12,-1 2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( )A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <233.圆x 2+y 2-2x +6y +8=0的周长等于( ) A.2π B .2π C .22π D .4π4.方程2x 2+2y 2-4x +8y +10=0表示的图形是( )A .一个点B .一个圆C .一条直线D .不存在5.若直线mx +2ny -4=0始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1]6.如果圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)关于直线y =x 对称,则有( )A .D +E =0B .D =EC .D =F D .E =F7.如果直线l 将圆x 2+y 2-2x -6y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A .[0,3]B .[0,1]C .⎣⎢⎡⎦⎥⎤0,13D .⎣⎢⎡⎭⎪⎫0,13 8.已知圆x 2+y 2+kx +2y +k 2=0,当该圆的面积取最大值时,圆心坐标是( )A .(0,-1)B .(1,-1)C .(-1,0)D .(-1,1)二、填空题9.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________10.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =________.11.若x 20+y 20+Dx 0+Ey 0+F >0,则点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的12.已知圆x2+y2-2x+4y-20=0上一点P(a,b),则a2+b2的最小值是________.三、解答题13.经过两点P(-2,4)、Q(3,-1),且在x轴上截得的弦长为6的圆的方程.14.圆C通过不同三点P(k,0)、Q(2,0)、R(0,1),已知圆C在点P的切线的斜率为1,试求圆C的方程.15.求经过点A(-2,-4)且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.16.已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的标准方程.1. [答案] D[解析] 圆的方程(x -1)(x +2)+(y -2)(y +4)=0可化为x 2+y 2+x +2y -10=0,∴圆心坐标为⎝ ⎛⎭⎪⎫-12,-1. 2. [答案] D[解析] 由题知a 2+(2a )2-4(2a 2+a -1)>0,即(3a -2)(a +2)<0,因此-2<a <23.3. [答案] C[解析] 圆的方程x 2+y 2-2x +6y +8=0可化为(x -1)2+(y +3)2=2,∴圆的半径r =2,故周长l =2πr =22π.4. [答案] A[解析] 方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0,即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).5. [答案] D[解析] 可知直线mx +2ny -4=0过圆心(2,1),有2m +2n -4=0,即n =2-m ,则mn =m ·(2-m )=-m 2+2m =-(m -1)2+1≤1.6. [答案] B[解析] 由圆的对称性知,圆心在直线y =x 上,故有-E 2=-D 2,即D =E .7. [答案] A[解析] l 过圆心C (1,3),且不过第四象限.由数形结合法易知:0≤k ≤3.8. [答案] A[解析] 圆的半径r =124-3k 2,要使圆的面积最大,即圆的半径r 取最大值,故当k =0时,r 取最大值1,∴圆心坐标为(0,-1).9. [答案] 在圆C 外部[解析] 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0,∴点P 在圆C 外部.10. [答案] 4[解析] 由题意,知D =-4,E =8,r =(-4)2+82-4F 2=4,∴F =4. 11. [答案] 外部[解析] ∵x 20+y 20+Dx 0+Ey 0+F >0,∴点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的外部.12. [答案] 30-10 5[解析] 原点到圆心的距离为5,半径r =5,则a 2+b 2最小值为(5-5)2=30-10 5.13. [解析] 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P 、Q 两点的坐标分别代入,得⎩⎨⎧2D -4E -F =203D -E +F =-10①② 又令y =0,得x 2+Dx +F =0.由已知,|x 1-x 2|=6(其中x 1,x 2是方程x 2+Dx +F =0的两根),∴D 2-4F =36,③①、②、③联立组成方程组,解得⎩⎨⎧ D =-2E =-4F =-8, 或⎩⎨⎧D =-6E =-8F =0.∴所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.14. [解析] 设圆C 的方程为x 2+y 2+Dx +Ey +F =0,∵点P (k,0)、Q (2,0)在圆上,∴k 、2为方程x 2+Dx +F =0的两根.∴k +2=-D,2k =F .即⎩⎨⎧ D =-(k +2)F =2k ,又因圆过点P (0,1),故1+E +F =0.∴E =-F -1=-2k -1,故圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0.∴圆心C 的坐标为⎝ ⎛⎭⎪⎫k +22,2k +12.又∵圆在点P 的切线斜率为1,∴2k +12-0k +22-k=-1,即k =-3,从而D =1,E =5,F =-6.即圆的方程为x 2+y 2+x +5y -6=0.15. [解析] 解法一:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2.∴k CB =6+E 28+D 2,由k CB ·k l =-1,得6+E 28+D 2·⎝ ⎛⎭⎪⎫-13=-1,①又有(-2)2+(-4)2-2D -4E +F =0,②82+62+8D +6E +F =0.③由①②③联立可得D =-11,E =3,F =-30.∴圆的方程为x 2+y 2-11x +3y -30=0.解法二:设圆的圆心为C ,则CB ⊥l ,从而可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0.①由于A (-2,-4)、B (8,6),则AB 的中点坐标为(3,1),又k AB =6+48+2=1, ∴AB 的垂直平分线的方程为y -1=-(x -3),即x +y -4=0②由①②联立后,可解得⎩⎪⎨⎪⎧ x =112y =-32.即圆心的坐标为⎝ ⎛⎭⎪⎫112,-32 ∴所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫6+322=1252. ∴所求圆的方程为⎝ ⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252. 16. [解析] 设圆的一般方程为x 2+y 2+Dx +Ey +F =0.∵圆经过点(4,2)和(-2,-6),∴⎩⎨⎧4D +2E +F +20=0 ①2D +6E -F -40=0 ②设圆在x 轴上的截距为x 1、x 2,它们是方程x 2+Dx +F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1、y 2,它们是方程y 2+Dy +F =0的两个根,得y 1+y 2=-E .由已知,得-D +(-E )=-2,即D +E -2=0.③.由①②③联立解得D =-2,E =4,F =-20.∴所求圆的一般方程为x 2+y 2-2x +4y -20=0,化为标准方程为(x -1)2+(y +2)2=25.。
.1圆的标准方程练习【精选】新人教A版必修2

4.1圆的标准方程练习1.已知点A(2,0)和点B(-4,2),则以AB为直径的圆的方程是().A.(x-1)2+(y+1)2=40B.(x-1)2+(y+1)2=10C.(x+1)2+(y-1)2=40D.(x+1)2+(y-1)2=10【解析】圆心坐标为(-1,1),则半径r==,∴圆的方程为(x+1)2+(y-1)2=10.【答案】D2.已知P是圆x2+y2=1上的动点,则P点到直线l:x+y-2=0的距离的最小值为().A.1B.C.2D.2【解析】由题知距离的最小值为圆心到直线l的距离减去半径.∴d min=-1=1.【答案】A3.圆心在原点,并与直线3x-4y-10=0相切的圆的方程为.【解析】∵半径r==2,∴圆的方程为x2+y2=4.【答案】x2+y2=44.求与x轴相交于A(1,0)和B(5,0)两点且半径为的圆的标准方程.【解析】(法一)设圆的标准方程为(x-a)2+(y-b)2=5.∵点A,B在圆上,∴可得到方程组:解得a=3,b=±1.∴圆的标准方程是(x-3)2+(y-1)2=5或(x-3)2+(y+1)2=5.(法二)由A、B两点在圆上可知线段AB是圆的一条弦,根据平面几何知识:这个圆的圆心在线段AB的垂直平分线x=3上,于是可设圆心为C(3,b),又|AC|=,即=,解得b=1或b=-1.因此,所求圆的标准方程为(x-3)2+(y-1)2=5或(x-3)2+(y+1)2=5.5.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为().A.-1或B.1或3C.-2或6D.0或4【解析】∵圆心到直线的距离d=,又d2+()2=22,即d2=2,∴=2,∴(a-2)2=4,∴a=0或4.【答案】D6.圆(x-4)2+(y-5)2=10上的点到原点的距离的最小值是().A. B.-C. D.+【解析】因为圆的圆心为(4,5),半径为,圆心与原点的距离为=,所以圆(x-4)2+(y-5)2=10上的点到原点的距离的最小值为-.【答案】B7.过点P(1,-2)的直线l将圆C:(x-2)2+(y+3)2=16截成两段弧,若其中劣弧的长度最短,那么直线l的方程为.【解析】由题知直线l与PC垂直的时候劣弧最短.∵k PC==-1,∴k l=1,∴直线l的方程为y+2=x-1,即x-y-3=0.【答案】x-y-3=08.已知隧道的截面是半径为4 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m,高为3 m的货车能不能驶入这个隧道?【解析】以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立直角坐标系,如图,那么半圆的方程为x2+y2=16(y≥0).将x=2.7代入,得y==<3.即在离中心线2.7 m 处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.9.圆心在直线2x-y-7=0上且与y轴交于点A(0,-4),B(0,-2)的圆的标准方程为.【解析】由圆与y轴交于点A(0,-4),B(0,-2)可知,圆心在直线y=-3上,由得故圆心坐标为(2,-3),半径r==,∴所求圆的方程为(x-2)2+(y+3)2=5.【答案】(x-2)2+(y+3)2=510.经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上,求圆的标准方程.【解析】设所求的圆的圆心为C(a,b),则解得a=7,b=-3,∴圆心C(7,-3),半径r=|CB|==,∴所求圆的方程为(x-7)2+(y+3)2=65.。
高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点 A(1,4)、B(3,2)且圆心在直线 y 0上的圆的标准方程并判断点 P(2,4)与圆的关系. 分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点 P 与圆的位置关系,只须看点 心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径, 则点在圆内.解法一:(待定系数法)设圆的标准方程为 (x a)2 (y b)2 r 2 . ∵圆心在 y 0 上,故 b 0. ∴圆的方程为 (x a)2 y 2 r 2.又∵该圆过 A(1,4)、 B(3,2)两点.22(1 a)216 r 2 22(3 a)24 r 2解之得: a 1, r 2 20.所以所求圆的方程为 (x 1)2 y 2 20 . 解法二:(直接求出圆心坐标和半径)42 因为圆过 A(1,4) 、 B(3 , 2)两点,所以圆心 C 必在线段 AB 的垂直平分线 l 上,又因为 k AB 4 21AB1 3 斜率为1,又 AB 的中点为 (2,3),故 AB 的垂直平分线 l 的方程为: y 3 x 2即 x y 1 0.又知圆心在直线 y 0上,故圆心坐标为 C( 1,0) ∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P(2 ,4) 到圆心 C( 1,0)的距离为d PC (2 1)2 4225 r .∴点 P 在圆外.例2 求半径为 4,与圆 x 2 y 2 4x 2y 4 0相切,且和直线 y 0相切的圆的方程. 分析: 根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆 C :(x a)2 (y b)2 r 2.圆C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C 1(a, 4)或C 2(a, 4). 又已知圆 x 2 y 2 4x 2y 4 0的圆心 A 的坐标为 (2 ,1) ,半径为 3.P 与圆,故 l 的52t 3tt 2 (3t 5)2 .若两圆相切,则 CA 4 3 7或 CA 4 3 1.2 2 2 2 2 2(1)当C 1(a , 4)时, (a 2)2 (4 1)2 72,或 (a 2)2 (4 1)2 12 (无解),故可得 a 2 2 10.∴所求圆方程为 (x 2 2 10)2 (y 4)2 42,或 (x 2 2 10)2 (y 4)2 42.(2)当C 2 (a , 4)时, (a 2)2 ( 4 1)2 72,或(a 2)2 ( 4 1)2 12 (无解),故 a 2 2 6.∴所求圆的方程为 (x 2 2 6)2 (y 4)2 42 ,或 (x 2 2 6)2 (y 4)2 42. 说明: 对本题,易发生以下误解:由题意,所求圆与直线 y 0相切且半径为 4,则圆心坐标为 C(a,4) ,且方程形如 (x a)2 (y 4)2 42.又 2 2 2 2 2圆x 2 y 2 4x 2y 4 0,即(x 2)2 (y 1)2 3 2 ,其圆心为 A(2 , 1) ,半径为 3.若两圆相切,则 CA 4 3.故 (a 2)2 (4 1)2 72 , 解 之 得 a 2 2 10 . 所 以 欲 求 圆 的 方 程 为 (x 2 2 10)2 (y 4)2 42 , 或 2 2 2 (x 2 2 10)2 (y 4)2 42 .上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0下方的情形.另外,误解中没有考虑两圆 内切的情况.也是不全面的.例3 求经过点 A(0 , 5) ,且与直线 x 2y 0和2x y 0都相切的圆的方程.分析: 欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点 A ,故只需确定圆心坐标.又圆与两已知直 线相切,故圆心必在它们的交角的平分线上.解: ∵圆和直线 x 2y 0与 2x y 0相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0和 2x y 0 的距离相等.∴x 2y x 2y .∴ 5 5 .∴两直线交角的平分线方程是 x 3y 0或 3x y 0. 又∵圆过点 A(0 ,5) ,∴圆心 C 只能在直线 3x y 0 上. 设圆心 C(t ,3t)∵ C 到直线 2x y 0 的距离等于 AC化简整理得 t 2 6t 5 0 .解得: t 1或 t 5∴圆心是 (1 , 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 . ∴所求圆的方程为 (x 1)2 (y 3)2 5或 (x 5)2 (y 15)2 125.说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过 定点且与两已知直线相切的圆的方程的常规求法.例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2)被 x 轴分成两段弧,其弧长的比为 3:1,在满足条件 (1)(2)的所有圆中, 求圆心到直线 l :x 2y 0 的距离最小的圆的方程.分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个, 其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到 符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一: 设圆心为 P(a ,b) ,半径为 r . 则P 到 x 轴、 y 轴的距离分别为 b 和 a由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2r . 2∴r 2b 2又圆截 y 轴所得弦长为 2.2∴r a 2 1 .又∵ P(a ,b) 到直线 x 2y 0的距离为22a 2 4b 24ab2 2 2 2a 2 4b 2 2(a 2 b 2 )2b当且仅当 a b 时取“ =”号,此时 d mina b这时有2b 2 a 2 1a 1 a1或b 1b1又r22b 22∴ 5d 22a 2b2故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 解法二:同解法一,得a 2bd.5∴ a 2b 5d .2 2 2∴ a2 4b2 4 5bd 5d2.将a2 2b2 1代入上式得:222b2 4 5bd 5d2 1 0 .上述方程有实根,故28(5d 2 1) 0,∴d 5.5将d 5代入方程得b 1.5又2b2 a2 1 ∴ a 1.由a 2b 1 知a 、b 同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例 5 已知圆O:x2 y2 4,求过点P 2,4 与圆O相切的切线.解:∵点P 2,4 不在圆O 上,∴切线PT 的直线方程可设为y k x 2 4根据d r∴2k 4 221 k3解得k343所以y 3 x 2 44即3x 4y 10 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0 解决(也要注意漏解) .还可以运用2x0x y0y r 2,求出切点坐标x0、y0的值来解决,此时没有漏解.例6 两圆C 1:x 2 y 2 D 1x E 1y F 1 0与C 2:x 2 y 2 D 2x E 2yF 2 0相交于 A 、 B 两点,求它们的公共弦AB 所在直线的方程.分析: 首先求 A 、 B 两点的坐标,再用两点式求直线 AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求,可以采用“设而不求”的技巧.解: 设两圆 C 1、C 2 的任一 交点坐标为 (x 0 , y 0) ,则有:22 x 0 y 0 D 1xE 1y 0F 1 0①22 x 0 yD 2x0 E 2 yF 2 0②①-②得: (D 1 D 2)x 0 (E 1 E 2)y 0 F 1F 2 0 .∵ A 、 B 的坐标满足方程(D 1 D 2)x(E 1 E 2)yF 1F 2 0 .∴方程 (D 1 D 2 )x (E 1E 2)yF 1 F 2是过 A 、 B 两点的直线方程又过 A 、 B 两点的直线是唯一的.∴两圆C 1、 C 2的公共弦 AB 所在直线的方程为 (D 1 D 2)x (E 1 E 2)yF 1 F 2 0.说明: 上述解法中,巧妙地避开了求 A 、 B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲 线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了 对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例 7、过圆 x 2 y 2 1外一点 M(2,3) ,作这个圆的两条切线 MA 、 MB ,切点分别是 A 、B ,求直线 AB 的方程。
高一数学必修二第四章圆与方程练习题及答案

高一数学必修二第四章圆与方程练习题及答案高一数学(必修2)第四章圆与方程基础训练一、选择题1.圆(x+2)²+y²=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)²+y²=5B。
x²+(y-2)²=5C。
(x+2)²+(y+2)²=5D。
x²+(y+2)²=52.若P(2,-1)为圆(x-1)²+y²=25的弦AB的中点,则直线AB 的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x²+y²-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1-√2D。
1+2√24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x²+y²+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
2或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x²+y²-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x²+y²+4x-2y+3=0相切,则此直线在y轴上的截距是-2.2.由动点P向圆x²+y²=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为x²+y²-x=0.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为(x-1)²+(y+1)²=4.4.已知圆(x-3)²+y²=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x²+y²-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是3.三、解答题1.点P(a,b)在直线x+y+1=0上,求a²+b²-2a-2b+2的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点四十 圆的方程知识梳理1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 5. 解决与圆有关的最值问题的常用方法(1) 形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题;(2) 形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3) 形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.典例剖析题型一 求圆的方程例1 若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 . 答案 (x -2)2+(y ±3)2=4解析 因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(1-2)2+b 2=4,b 2=3,b =±3.变式训练 (1)圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是 .(2) 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 答案 (1) x 2+y 2-10y =0 (2) (x -2)2+y 2=10解析 (1)设圆心为(0,b ),半径为r ,则r =|b |,∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得:b =5. ∴圆的方程为x 2+y 2-10y =0.(2) 设圆心坐标为(a,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2, 解得a =2,∴圆心为(2,0),半径为10, ∴圆C 的方程为(x -2)2+y 2=10.解题要点 求圆的方程一般用待定系数法,根据题意,可以选择标准方程或一般方程求解. 题型二 点与圆的位置关系例2 已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 . 答案 在圆内解析 因为(3-2)2+(2-3)2=2<4,故点P (3,2)在圆内.变式训练 点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________. 答案 在圆C 外部解析 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0, ∴点P 在圆C 外部.题型三 二次方程表示圆的条件例3 方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件的是 . 答案 m <14或m >1解析 由(4m )2+4-4×5m >0,得m <14或m >1.变式训练 方程2x 2+2y 2-4x +8y +10=0表示的图形是 . 答案 一个点解析 方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0, 即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).解题要点 1.方程x 2+y 2+Dx +Ey +F =0表示圆的条件是D 2+E 2-4F >0. 2.二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件:⎩⎪⎨⎪⎧B =0,A =C ≠0,D 2+E 2-4AF >0.,即方程中不含xy 项, x 2,y 2前系数相同,且D 2+E 2-4AF >0. 题型四 与圆有关的最值问题例4 已知实数x 、y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解析 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx=k ,即y =kx , 则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3,∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,截距b 取最小值,由点到直线的距离公式,得|2-0+b |2=3,即b =-2±6,故(y -x )min =-2- 6.(3)x 2+y 2是圆上点与原点的距离的平方,故连接OC ,与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =|OC ′|2=(2+3)2=7+43, (x 2+y 2)min =|OB |2=(2-3)2=7-4 3.解题要点 (1)与圆相关的最值,若几何意义明显时,可充分利用几何性质,借助几何直观求解.否则可转化为函数求最值.(2)①形如u =y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.当堂练习1.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为.答案(x-2)2+(y-1)2=2解析所求圆与x轴交于A(1,0),B(3,0)两点,故线段AB的垂直平分线x=2过所求圆的圆心,又所求圆的圆心在直线2x-3y-1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为,所以圆的标准方程为(x-2)2+(y -1)2=2.2.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为.答案(x-2)2+(y+2)2=1解析圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1.3. 圆的圆心和半径分别.答案解析将圆配方得:,故知圆心为(2,-1),半径为.4.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是.答案-解析∵原点O在圆(x-m)2+(y+m)2=4的内部,∴(0-m)2+(0+m)2<4,得2m2<4,解得-<m<,即实数m的取值范围为:-<m<.5.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是.答案m<解析∵方程x2+y2-x+y+m=0即表示一个圆,∴-m>0,解得m<.课后作业一、填空题1.以点A(-5,4)为圆心且与x轴相切的圆的标准方程是.答案(x+5)2+(y-4)2=16解析∵所求的圆以点A(-5,4)为圆心,且与x轴相切,∴所求圆的半径R=4,∴圆的标准方程为(x+5)2+(y-4)2=16.2.若一圆的标准方程为,则此圆的的圆心和半径分别为.答案解析圆的标准方程为,表示圆心为,半径为的圆.3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是.答案(x-2)2+(y-1)2=1解析设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.4.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是.答案-<a<1解析由题意,4a2+(a-1)2-2(a-1)-4<0,即5a2-4a-1<0,解之得:-<a<1.5.圆的圆心坐标是.答案(2,-3)解析将方程化为圆的标准方程得,所以圆心是(2,-3).6.圆x2+y2=16上的点到直线x-y=3的距离的最大值为.答案4+解析圆心即原点到直线的距离,所以直线与圆相交,则圆上的点到直线的最大距离为.7.若方程x2+y2-x-2y+c=0(c∈R)是一个圆的一般方程,则c的范围是.答案c<解析化为标准方程为:,由题意得,,∴.8.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是.答案(x-2)2+(y-1)2=1解析由已知设所求圆的圆心坐标为:C(a,b)(a>0且b>0),由已知有:,所以所求圆的方程为:(x-2)2+(y-1)2=1.9.圆的方程过点和原点,则圆的方程为.答案解析设圆的一般方程为,将三点代入得:,解得,所以圆的方程为.10.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.答案(3,0),3解析(x-3)2+y2=9,圆心坐标为(3,0),半径为3.11.从直线x-y+3=0上的点向圆x2+y2-4x-4y+7=0引切线,则切线长的最小值为答案解析把圆的方程化为标准式后,找出圆心坐标和圆的半径,利用图形可知,当圆心A与直线x-y+3=0垂直时,过垂足作圆的切线,切线长最短,连接AB,根据圆的切线垂直于过切点的直径可得三角形ABC为直角三角形,利用点到直线的距离公式求出圆心到直线x -y+3=0的距离即为|AC|的长,然后根据半径和|AC|的长,利用勾股定理即可求出此时的切线长.由于圆心(2,2),半径为1,那么可知圆心到直线的距离为,那么利用勾股定理可知切线长的最小值为二、解答题12.求下列各圆的标准方程:(1)圆心在y=-x上且过两点(2,0),(0,-4)(2)圆心在直线2x+y=0上,且与直线x+y-1=0切于点(2,-1)解析(1)设圆心坐标为(),则所求圆的方程为,∵圆心在上,∴,①又∵圆过(2,0),(0,-4)∴,②,③由①②③联立方程组,可得.∴所求圆的方程为.(2)∵圆与直线相切,并切于点M(2,-1),则圆心必在过点M(2,-1)且垂直于的直线:上,,即圆心为C(1,-2),r=,∴所求圆的方程为:13.求经过三点A(-1,-1),B(-8,0),C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.解析设所求圆的方程为点A(-1,-1),B(-8,0),C(0,6)的坐标满足上述方程,分别代入方程,可得解得:D=8,E=-6,F=0 .于是得所求圆的方程为:,圆的半径r=,圆心坐标是.。