2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

合集下载

2021届山东高考数学一轮讲义:第2章 第2讲 函数的单调性与最值 Word版含解析

2021届山东高考数学一轮讲义:第2章 第2讲 函数的单调性与最值 Word版含解析

第2讲函数的单调性与最值[考纲解读] 1.掌握求函数单调性与单调区间的求解方法,并能利用函数的单调性求最值.(重点)2.理解函数的单调性、最大值、最小值及其几何意义.(重点)3.能够运用函数图象理解和研究函数的性质.(难点)[考向预测]从近三年高考情况来看,本讲是高考中的一个热点.预测2021年高考将主要考查函数单调性的应用、比较大小、函数最值的求解、根据函数的单调性求参数的取值范围等问题.对应学生用书P0131.函数的单调性(1)增函数、减函数增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的□01任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是□02增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是□03减函数图象描述自左向右看图象是□04上升的自左向右看图象是□05下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)□06单调性.区间D叫做函数y=f(x)的□07单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有□01f(x)≤M;②存在x0∈I,使得□02f(x0)=M①对于任意x∈I,都有□03f(x)≥M;②存在x0∈I,使得□04f(x0)=M 结论M为函数y=f(x)的最大值M为函数y=f(x)的最小值1.概念辨析(1)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).()(2)设任意x1,x2∈[a,b]且x1≠x2,那么f(x)在[a,b]上是增函数⇔f(x1)-f(x2)x1-x2>0⇔(x1-x2)[f(x1)-f(x2)]>0.()(3)若函数y=f(x),x∈D的最大值为M,最小值为m(M>m),则此函数的值域为[m,M].()(4)闭区间上的单调函数,其最值一定在区间端点取到.()答案(1)×(2)√(3)×(4)√2.小题热身(1)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案[-1,1],[5,7]解析由图可知函数的单调递增区间为[-1,1]和[5,7].(2)函数y=4x-x2+3,x∈[0,3]的单调递增区间是________,最小值是________,最大值是________.答案[0,2]37解析 因为y =4x -x 2+3=-(x -2)2+7,所以函数y =4x -x 2+3,x ∈[0,3]的单调递增区间是[0,2]. 当x =2时,y max =7;当x =0时,y m i n =3.(3)函数f (x )=(2a -1)x -3是R 上的减函数,则a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-∞,12解析 因为函数f (x )=(2a -1)x -3是R 上的减函数,所以2a -1<0,解得a <12. (4)函数f (x )=3x +1(x ∈[2,5])的最大值与最小值之和等于________. 答案32解析 因为函数f (x )=3x +1在[2,5]上单调递减,所以f (x )max =f (2)=1,f (x )m i n =f (5)=12,f (x )max +f (x )m i n =32.对应学生用书P014题型1.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A.(-∞,-2) B .(-∞,1) C.(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间.∵函数t =x 2-2x -8在(-∞,-2)上单调递减,在(4,+∞)上单调递增,∴函数f (x )的单调递增区间为(4,+∞). 2.函数f (x )=|x -2|x 的单调递减区间是( ) A.[1,2] B .[-1,0] C.[0,2] D .[2,+∞)答案 A解析 f (x )=|x -2|x =⎩⎨⎧(x -2)x ,x ≥2,(2-x )x ,x <2.作出此函数的图象如下.观察图象可知,f (x )=|x -2|x 的单调递减区间是[1,2].条件探究 将本例中“f (x )=|x -2|x ”改为“f (x )=x 2-2|x |”,则f (x )的单调递减区间是________,单调递增区间是________. 答案 (-∞,-1]和(0,1] (-1,0]和(1,+∞)解析 f (x )=x 2-2|x |=⎩⎨⎧x 2-2x ,x ≥0,x 2+2x ,x <0.作出此函数的图象如图,观察图象可知,此函数的单调递减区间是(-∞,-1]和(0,1];单调递增区间是(-1,0]和(1,+∞). 3.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 解法一:设-1<x 1<x 2<1, f (x )=a ·x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1). 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.解法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a (x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.1.确定函数单调性(区间)的三种常用方法(1)定义法:一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性).如举例说明3可用此法. (2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.如举例说明2.(3)导数法:利用导数取值的正负确定函数的单调性.如举例说明3可用此法. 2.熟记函数单调性的三个常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.如举例说明1.1.若函数f(x)=ax+1在R上递减,则函数g(x)=a(x2-4x+3)的增区间是()A.(2,+∞) B.(-∞,2)C.(4,+∞) D.(-∞,4)答案 B解析因为函数f(x)=ax+1在R上递减,所以a<0,所以g(x)=a(x2-4x+3)=a[(x-2)2-1]的增区间是(-∞,2).2.函数f(x)=6x-x2的单调递减区间是________.答案[3,6]解析由6x-x2≥0得0≤x≤6,故函数f(x)的定义域为[0,6],再利用二次函数的性质可得函数f(x)的单调递减区间是[3,6].3.用定义法证明:f(x)=log2(x-2)在(2,+∞)上单调递增.证明∀x1,x2∈(2,+∞)且x1<x2,f(x1)-f(x2)=log2(x1-2)-log2(x2-2)=log2x1-2 x2-2.又由2<x1<x2,得0<x1-2x2-2<1.所以log2x1-2x2-2<0,即f(x1)-f(x2)<0.所以f(x1)<f(x2).所以函数f(x)在区间(2,+∞)上单调递增. 题型二求函数的最值(值域)1.函数f(x)=-x+1x在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是()A.32B.-83C.-2 D.2答案 A解析 因为函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上是减函数,所以f (x )max =f (-2)=2-12=32.2.函数y =x -x -1的最小值为________. 答案 34解析 令t =x -1,则t ≥0且x =t 2+1, 所以y =t 2+1-t =⎝ ⎛⎭⎪⎫t -122+34,t ≥0,所以当t =12时,y m i n =34. 条件探究将本例中“y =x -x -1”改为“y =x +1-x2”,则函数y =x +1-x2的最小值为________. 答案 -1解析 由1-x 2≥0可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,θ∈[0,π],所以-1≤y ≤2,故所求函数的最小值是-1.3.对a ,b ∈R ,记max{a ,b }=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x∈R )的最小值是________. 答案 32解析 由|x +1|≥|x -2|, 得(x +1)2≥(x -2)2.所以x ≥12.所以f (x )=⎩⎪⎨⎪⎧|x +1|,x ≥12,|x -2|,x <12.其图象如图所示.由图象易知,当x =12时,函数有最小值, 所以f (x )m i n =f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12+1=32.4.函数f (x )=2a x -2020a x +1的值域为________.答案 (-2020,2)解析 解法一:f (x )=2a x -2020a x +1=2(a x +1)-2022a x +1=2-2022a x +1,因为a x >0,所以a x +1>1,所以0<2022a x +1<2022, 所以-2020<2-2022a x +1<2, 故函数f (x )的值域为(-2020,2). 解法二:令y =f (x )=2a x -2020a x +1,得y ·a x +y =2a x -2020, 所以(y -2)a x =-y -2020, a x =-y +2020y -2, 由a x >0得y +2020y -2<0, 故-2020<y <2,所以函数f (x )=2a x -2020a x +1的值域为(-2020,2).求函数的最值(值域)的常用方法(1)单调性法:若所给函数为单调函数,可根据函数的单调性求最值.如举例说明1.(2)换元法:求形如y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.如举例说明2.(3)数形结合法:若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值.如举例说明3.(4)有界性法:利用代数式的有界性(如x 2≥0,x ≥0,2x >0,-1≤sin x ≤1等)确定函数的值域.如举例说明4可用此法. (5)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解.如举例说明4可用此法.另外,基本不等式法、导数法求函数值域或最值也是常用方法,在后面章节中有重点讲述.1.(2019·厦门质检)函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 2.函数y =3x +1x -2的值域为________.答案 {y |y ∈R 且y ≠3} 解析 y =3x +1x -2=3(x -2)+7x -2=3+7x -2, 因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}. 3.函数y =|x +1|+|x -2|的值域为________.答案 [3,+∞)解析函数y =⎩⎨⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 题型 三 函数单调性的应用角度1 比较函数值的大小1.(2019·郑州模拟)已知定义在R 上的函数f (x )满足f (-x )=f (x ),且函数f (x )在(-∞,0)上是减函数,若a =f (-1),b =f ⎝ ⎛⎭⎪⎫log 214,c =f (20.3),则a ,b ,c 的大小关系为( ) A.c <b <a B .a <c <b C .b <c <a D .a <b <c 答案 B解析 ∵函数f (x )满足f (-x )=f (x ), ∴c =f (20.3)=f (-20.3).∵1<20.3<2,∴-1>-20.3>-2, 即-1>-20.3>log 214.∵函数f (x )在(-∞,0)上是减函数, ∴f (-1)<f (-20.3)<f ⎝ ⎛⎭⎪⎫log 214,即a <c <b .角度2 解不等式2.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则不等式f (1-x 2)>f (2x )的x 的取值范围是( )A.(0,2-1) B .(-1,2+1) C.(0,2+1) D .(-1,2-1)答案 D解析 作出函数f (x )的图象如图所示.则不等式f (1-x 2)>f (2x )等价于⎩⎨⎧1-x 2>0,2x ≤0或⎩⎨⎧1-x 2>0,2x >0,1-x 2>2x ,解得-1<x <2-1.角度3 求参数的值或取值范围3.已知函数f (x )=⎩⎨⎧(a -3)x +5,x ≤1,2a -log a x ,x >1,对于任意x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是( ) A.(1,3] B .(1,3) C .(1,2] D .(1,2)答案 C解析 根据题意,由f (x 1)-f (x 2)x 1-x 2<0,易知函数f (x )为R 上的单调递减函数,则⎩⎨⎧a -3<0,a >1,(a -3)+5≥2a ,解得1<a ≤2.故选C.函数单调性应用问题的常见类型及解题策略 (1)比较大小.如举例说明1.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.如举例说明2. (3)利用单调性求参数①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意:若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.如举例说明3.1.(2019·广州模拟)已知函数f(x)在(-∞,+∞)上单调递减,且当x∈[-2,1]时,f(x)=x2-2x-4,则关于x的不等式f(x)<-1的解集为()A.(-∞,-1) B.(-∞,3)C.(-1,3) D.(-1,+∞)答案 D解析因为f(-1)=-1,所以f(x)<-1,等价于f(x)<f(-1).又函数f(x)在(-∞,+∞)上单调递减.所以x>-1,所以关于x的不等式f(x)<-1的解集为(-1,+∞).2.(2020·贵阳市高三摸底)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是()A.a=-3 B.a<3 C.a≤-3 D.a≥-3 答案 C解析y=x-5x-a-2=x-a-2+a-3x-a-2=1+a-3x-(a+2),所以当a-3<0时,y=x-5x-a-2的单调递增区间是(-∞,a+2),(a+2,+∞);当a-3≥0时不符合题意.又y=x-5x-a-2在(-1,+∞)上单调递增,所以(-1,+∞)⊆(a+2,+∞),所以a+2≤-1,即a≤-3,综上知,a的取值范围是(-∞,-3].3.已知f (x )=2x -2-x ,a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,c =log 279,则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B .f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b ) D .f (b )<f (c )<f (a )答案 B解析 a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715>1,c =log 279<0,所以c <b <a .因为f (x )=2x-2-x=2x-⎝ ⎛⎭⎪⎫12x在R 上单调递增,所以f (c )<f (b )<f (a ).对应学生用书P223组 基础关1.(2020·河北大名一中月考)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A.f (x )=x 12 B .f (x )=x 3 C.f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x答案 D解析 f (x )=x 12,f (y )=y 12,f (x +y )=(x +y )12,不满足f (x +y )=f (x )f (y ),故A 错误;f (x )=x 3,f (y )=y 3,f (x +y )=(x +y )3,不满足f (x +y )=f (x )f (y ),故B 错误;f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调递减函数,故C 错误;f (x )=3x ,f (y )=3y ,f (x +y )=3x +y ,满足f (x +y )=f (x )f (y ),且f (x )在R 上是单调递增函数,故D 正确.故选D.2.函数y =⎝ ⎛⎭⎪⎫132x 2-3x +1的单调递增区间为( )A.(1,+∞)B.⎝ ⎛⎦⎥⎤-∞,34C.⎝ ⎛⎭⎪⎫12,+∞D.⎣⎢⎡⎭⎪⎫34,+∞ 答案 B解析 令μ=2x 2-3x +1=2⎝ ⎛⎭⎪⎫x -342-18,因为μ=2⎝ ⎛⎭⎪⎫x -342-18在⎝ ⎛⎦⎥⎤-∞,34上单调递减,函数y =⎝ ⎛⎭⎪⎫13μ在R 上单调递减.所以y =⎝ ⎛⎭⎪⎫132x 2-3x +1在⎝ ⎛⎦⎥⎤-∞,34上单调递增.3.已知f (x )在R 上是减函数,a ,b ∈R 且a +b ≤0,则下列结论正确的是( ) A.f (a )+f (b )≤-[f (a )+f (b )] B.f (a )+f (b )≤f (-a )+f (-b ) C.f (a )+f (b )≥-[f (a )+f (b )] D.f (a )+f (b )≥f (-a )+f (-b ) 答案 D解析 a +b ≤0可转化为a ≤-b 或b ≤-a ,由于函数f (x )在R 上是减函数,所以f (a )≥f (-b ),f (b )≥f (-a ),两式相加得f (a )+f (b )≥f (-a )+f (-b ). 4.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B .c >b >a C.a >c >b D .b >a >c答案 D解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,且2<52<3,所以b >a >c .5.(2020·河南鹤壁高中月考)若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ( ) A.增函数 B .减函数 C.先增后减 D .先减后增 答案 B解析∵y=ax与y=-bx在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴方程x=-b2a<0,∴y=ax2+bx在(0,+∞)上为减函数.6.(2019·兰州模拟)函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a的取值范围是()A.[1,+∞) B.(1,+∞)C.(-∞,1) D.(-∞,1]答案 B解析函数f(x)=2|x-a|+3的增区间为[a,+∞),减区间为(-∞,a],若函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a>1.7.(2019·广东茂名二联)设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=1f(x)在R上为减函数B.y=|f(x)|在R上为增函数C.y=2-f(x)在R上为减函数D.y=-[f(x)]3在R上为增函数答案 C解析A错误,比如f(x)=x在R上为增函数,但y=1f(x)=1x在R上不具有单调性;B错误,比如f(x)=x在R上为增函数,但y=|f(x)|=|x|在(0,+∞)上为增函数,在(-∞,0)上为减函数;D错误,比如f(x)=x在R上为增函数,但y=-[f(x)]3=-x3在R上为减函数;C正确,由复合函数同增异减,得y =2-f(x)在R上为减函数.故选C.8.已知函数f(x)=1a-1x(a>0,x>0),若f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a=________.答案2 5解析由反比例函数的性质知函数f(x)=1a-1x(a>0,x>0)在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,即⎩⎪⎨⎪⎧1a -2=12,1a -12=2,解得a =25.9.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 答案 (3,+∞)解析 ∵函数f (x )=ln x +x 的定义域为(0,+∞),且为单调递增函数,∴f (a 2-a )>f (a +3)同解于⎩⎨⎧a 2-a >0,a +3>0,a 2-a >a +3,解得a >3.所以正数a 的取值范围是(3,+∞).10.已知函数f (x )=4-mxm -1(m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 答案 (-∞,0)∪(1,4]解析 由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤⎝ ⎛⎭⎪⎫4x m i n =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4.当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0.故实数m 的取值范围是(-∞,0)∪(1,4].组 能力关1.(2019·安徽合肥模拟)若2x +5y ≤2-y +5-x ,则有( ) A.x +y ≥0 B .x +y ≤0 C .x -y ≤0 D .x -y ≥0答案 B解析 原不等式可化为2x -5-x ≤2-y -5y ,记函数f (x )=2x -5-x ,则原不等式可化为f (x )≤f (-y ).又函数f (x )在R 上单调递增,所以x ≤-y ,即x +y ≤0. 2.已知函数f (x )=⎩⎨⎧log a x ,x >3,mx +8,x ≤3.若f (2)=4,且函数f (x )存在最小值,则实数a 的取值范围为( ) A.(1,3]B .(1,2]C.⎝ ⎛⎦⎥⎤0,33D .[3,+∞)答案 A解析 因为f (2)=2m +8=4,所以m =-2,所以当x ≤3时,f (x )=-2x +8.此时f (x )≥f (3)=2.因为函数f (x )存在最小值,所以当x >3时,f (x )单调递增,且log a 3≥2,所以⎩⎨⎧ a >1,log a 3≥log a a 2,即⎩⎨⎧a >1,a 2≤3,解得a ∈(1,3]. 3.(2019·郑州模拟)设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________. 答案 [0,1)解析∵函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),∴当x >1时,即x -1>0,g (x )=x 2; 当x =1时,x -1=0,g (x )=0; 当x <1时,x -1<0,g (x )=-x 2;∴g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1,画出函数g (x )的图象,如图所示.根据图象得出,函数g (x )的单调递减区间是[0,1).4.(2020·河北模拟调研)已知函数f (x )=log a (-x +1)(a >0,且a ≠1)在[-2,0]上的值域是[-1,0],则实数a =________;若函数g (x )=a x +m -3的图象不经过第一象限,则实数m 的取值范围为________. 答案 13 [-1,+∞)解析 函数f (x )=log a (-x +1)(a >0,且a ≠1)在[-2,0]上的值域是[-1,0].当a >1时,f (x )=log a (-x +1)在[-2,0]上单调递减,∴⎩⎨⎧f (-2)=log a 3=0,f (0)=log a 1=-1,无解;当0<a <1时,f (x )=log a (-x +1)在[-2,0]上单调递增,∴⎩⎨⎧f (-2)=log a 3=-1,f (0)=log a 1=0,解得a =13. ∵g (x )=⎝ ⎛⎭⎪⎫13x +m -3的图象不经过第一象限,∴g (0)=⎝ ⎛⎭⎪⎫13m-3≤0,解得m ≥-1,即实数m 的取值范围是[-1,+∞).5.已知f (x )=xx -a(x ≠a ).(1)若a =-2,证明:f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解 (1)证明:当a =-2时,f (x )=x x +2. 设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数;(2)若f (3)=-1,求f (x )在[2,9]上的最小值. 解 (1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (2)因为f (x )在(0,+∞)上是单调递减函数, 所以f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.。

2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)

2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)

【例
2-1】(2020·安徽省六安一中高一月考)若函数
f
x
2x2 1
3 x2
,则
f
x
的值域为(

A. ,3
B. 2,3
C. 2,3
D.3,
【答案】C 【分析】
利用分子分离法化简 f x ,再根据不等式的性质求函数的值域.
【详解】
f
x
2x2 3 1 x2
2(x2 1) 1 1 x2
2
1
1 x
考点一 确定函数的单调性(区间)
【例 1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数 f(x)在[a,b]上是增函数,
对于任意的 x1,x2∈[a,b](x1≠x2),下列结论不正确的是( )
A.
f
x1
x1
f x2
x2
>0
B.f(a)<f(x1)<f(x2)<f(b)
C.(x1-x2) [f(x1)-f(x2)]>0
取到.
(2)开区间上的“单峰”函数一定存在最大值(或最小值). 2.函数 y=f(x)(f(x)>0)在公共定义域内与 y=-f(x),y= 1 的单调性相反.
f(x) 3.“对勾函数”y=x+a(a>0)的增区间为(-∞,- a),( a,+∞);单调减区间是[- a,0),
x (0, a].
三、 经典例题
的最大值为( )
A.-2
B.-3
C.-4
D.-6
10.(2020·安徽省六安一中高一月考)已知函数 f (x) log 1 (3x2 ax 5) 在 (1, ) 上是减函数,则实数 a
2

高三高考数学复习课件2-2函数的单调性与最值

高三高考数学复习课件2-2函数的单调性与最值

【答案】
1 x0<x<3
或1<x<3
角度三 求参数范围
【例 6】 (1)如果函数 f(x)=ax2+2x-3 在区间(-∞,4)上是
单调递增的,则实数 a 的取值范围是( )
A.a>-41
B.a≥-14
C.-41≤a<0
D.-41≤a≤0
(2)已知 f(x)=( ax,2-x≥a)1 x+1,x<1,满足对任意 x1≠x2,都有 f(x1)x1- -fx(2 x2)>0 成立,那么 a 的取值范围是________.
对称,当 x2>x1>1 时,[f(x2)-f(x1)]·(x2-x1)<0 恒成立,设 a=f-12, b=f(2),c=f(3),则 a,b,c 的大小关系为( )
A.c>a>b
B.c>b>a
C.a>c>b
D.b>a>c
【解析】根据已知可得函数 f(x)的图象关于直线 x=1 对称, 且在(1,+∞)上是减函数,因为 a=f-21=f25,且 2<52<3,所 以 b>a>c.
§2.2 函数的单调性与最值
1.函数的单调性 (1)单调函数的定义
(2)单调区间的定义 如果函数y=f(x)在区间D上是增_函__数____或减_函__数_____,那 么 就 说 函 数 y = f(x) 在 这 一 区 间 具 有 ( 严 格 的 ) 单 调 性 , __区__间__D__叫做y=f(x)的单调区间.
跟踪训练 2 (1)函数 y= x-x(x≥0)的最大值为________.
(2)(2016·北 京 高 考 ) 函 数

2021高考数学2.2 函数的单调性与最值

2021高考数学2.2 函数的单调性与最值

函数的概念与基本性质高考第一轮复习 第 二节 函数的单调性与最值1高考引航2必备知识3关键能力高考引航f (x 1)<f (x 2)f (x 1)>f (x 2)答案知识清单必备知识增函数减函数区间Df(x)≤M(或f(x)≥M)f(x0)=M答案基础训练C(-∞,-2)22题型归纳题型一 判断(证明)函数的单调性关键能力点拨:利用定义法判断函数的单调性,作差后的变形是关键,先要变形为几个因式的积或平方和的形式,再与0比较大小.题型二 求函数的单调区间答案D(-∞,-3][2,+∞)点拨:单调区间只能用区间表示,不能用不等式表示.如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接,只能用“,”或“和”隔开.AC题型三 单调性的应用CDD点拨:1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接列出参数满足的方程(组)或不等式(组),或先得到其图象的增减性,再结合图象求解.对于分段函数,要注意衔接点的取值.2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性比较大小.(2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f”.答案D(0,3]题型四 求函数的最值(值域)答案解析AC点拨:求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.解析方法突破方法一 巧用函数图象,妙求最值答案解析方法二 变量换元法解析谢谢观赏。

2021高考北师版(理科)数学一轮复习讲义: 第2章 第2节 函数的单调性与最值

2021高考北师版(理科)数学一轮复习讲义: 第2章 第2节 函数的单调性与最值

第二节函数的单调性与最值[考纲] 1.理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.2.会运用函数的图像理解和研究函数的性质.1.函数的单调性(1)增、减函数增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两个数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A上是递减的①如果函数y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.②如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.(3)单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数.2.函数的最值前提函数y=f(x)的定义域为D条件(1)存在x0∈D,使得f(x0)=M;(1)存在x0∈D,使得f(x0)=M;(2)对于任意x∈D,都有f(x)≤M(2)对于任意x∈D,都有f(x)≥M结论M为最大值M为最小值1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)函数y =1x 在其定义域上递减.( )(2)函数y =|x |x +x 在其定义域上递增.( )(3)对于函数f (x ),x ∈D ,假设x 1,x 2∈D 且f (x 2)-f (x 1)x 2-x 1>0,那么函数f (x )在D 上是增加的.( )(4)假设函数f (x )的最大值是M ,最小值是m ,那么函数f (x )的值域一定是[m ,M ].( )[答案] (1)× (2)√ (3)√ (4)×2.(2021·北京高考)以下函数中,在区间(-1,1)上为减函数的是( )【导学号:57962027】A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-xD [选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x 在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;选项D 中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x 在(-1,1)上是减函数.] 3.(教材改编)函数f (x )=2x x +1在[1,2]上的最大值和最小值分别是________. 43,1 [f (x )=2x x +1=2(x +1)-2x +1=2-2x +1在[1,2]上是增加的,∴f (x )max =f (2)=43,f (x )min =f (1)=1.]4.函数y =(2k +1)x +b 在R 上是减函数,那么k 的取值范围是________.【导学号:57962028】⎝ ⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 5.f (x )=x 2-2x ,x ∈[-2,3]的单调增区间为________,f (x )max =________.[1,3] 8 [f (x )=(x -1)2-1,故f (x )的单调增区间为[1,3],f (x )max =f (-2)=8.]函数单调性的判断(1)函数f (x )=log 2(x 2-1)的递减区间为________.(2)试讨论函数f (x )=x +k x (k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的递减区间为(-∞,-1).](2)法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-k x 1x 2. 2分因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0.故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2),即函数在(k ,+∞)上递增.6分 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2),即函数在(0,k )上递减.考虑到函数f (x )=x +k x (k >0)是奇函数,在关于原点对称的区间上具有一样的单调性,故在(-∞,-k )上递增,在(-k ,0)上递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上递增,在(-k ,0)和(0,k )上递减. 12分法二:f′(x)=1-kx2. 2分令f′(x)>0得x2>k,即x∈(-∞,-k)或x∈(k,+∞),故函数的单调增区间为(-∞,-k)和(k,+∞). 6分令f′(x)<0得x2<k,即x∈(-k,0)或x∈(0,k),故函数的单调减区间为(-k,0)和(0,k). 10分故函数f(x)在(-∞,-k)和(k,+∞)上递增,在(-k,0)和(0,k)上递减. 12分[规律方法] 1.利用定义判断或证明函数的单调性时,作差后应注意差式的分解变形要彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.易错警示:求函数的单调区间,应先求定义域,在定义域内求单调区间,如此题(1).[变式训练1](1)(2021·深圳二次调研)以下四个函数中,在定义域上不是单调函数的是()A.y=x3B.y=xC.y=1x D.y=⎝⎛⎭⎪⎫12x(2)函数f(x)=log 12(x2-4)的递增区间是()A.(0,+∞) B.(-∞,0)C.(2,+∞) D.(-∞,-2)(1)C(2)D[(1)选项A,B中函数在定义域内均为递增函数,选项D为在定义域内为递减函数,选项C中,设x1<x2(x1,x2≠0),那么y2-y1=1x2-1x1=x1-x2x1x2,因为x1-x2<0,当x1,x2同号时x1x2>0,1x2-1x1<0,当x1,x2异号时x1x2<0,1x2-1x1>0,所以函数y=1x在定义域上不是单调函数,应选C.(2)由x2-4>0得x>2或x<-2,所以函数f(x)的定义域为(-∞,-2)∪(2,+∞),因为y=log12t在定义域上是减函数,所以求原函数的递增区间,即求函数t =x 2-4的递减区间,可知所求区间为(-∞,-2).] 利用函数的单调性求最值f (x )=x 2+2x +a x,x ∈[1,+∞),且a ≤1. (1)当a =12时,求函数f (x )的最小值;(2)假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.【导学号:57962029】[思路点拨] (1)先判断函数f (x )在[1,+∞)上的单调性,再求最小值;(2)根据f (x )min >0求a 的范围,而求f (x )min 应对a 分类讨论.[解] (1)当a =12时,f (x )=x +12x +2,f ′(x )=1-12x 2>0,x ∈[1,+∞),即f (x )在[1,+∞)上是增函数,∴f (x )min =f (1)=1+12×1+2=72. 4分 (2)f (x )=x +a x +2,x ∈[1,+∞).法一:①当a ≤0时,f (x )在[1,+∞)内为增函数.f (x )min =f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,∴-3<a ≤0.7分 ②当0<a ≤1时,f (x )在[1,+∞)内为增函数,f (x )min =f (1)=a +3,∴a +3>0,a >-3,∴0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 10分法二:f (x )=x +a x +2>0,∵x ≥1,∴x 2+2x +a >0,8分∴a >-(x 2+2x ),而-(x 2+2x )在x =1时取得最大值-3,∴-3<a ≤1,即a 的取值范围为(-3,1]. 12分 [规律方法] 利用函数的单调性求最值是求函数最值的重要方法,假设函数f (x )在闭区间[a ,b ]上是增函数,那么f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).请思考,假设函数f (x )在闭区间[a ,b ]上是减函数呢?[变式训练2](2021·北京高考)函数f(x)=xx-1(x≥2)的最大值为________.2[法一:∵f′(x)=-1(x-1)2,∴x≥2时,f′(x)<0恒成立,∴f(x)在[2,+∞)上递减,∴f(x)在[2,+∞)上的最大值为f(2)=2.法二:∵f(x)=xx-1=x-1+1x-1=1+1x-1,∴f(x)的图像是将y=1x的图像向右平移1个单位,再向上平移1个单位得到的.∵y=1x在[2,+∞)上递减,∴f(x)在[2,+∞)上递减,故f(x)在[2,+∞)上的最大值为f(2)=2.法三:由题意可得f(x)=1+1 x-1.∵x≥2,∴x-1≥1,∴0<1x-1≤1,∴1<1+1x-1≤2,即1<xx-1≤2.故f(x)在[2,+∞)上的最大值为2.]函数单调性的应用☞角度1比拟大小(2021 ·山东高考)设a,b,c=,那么a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<c D.b<c<aC[因为函数y x是减函数,0<0.6<1.5,所以,即b<a<1.因为函数y=x在(0,+∞)上是增函数,1<1.5,所以>1=1,即c>1.综上,b<a<c.]☞角度2解不等式f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,那么不等式f(x)+f(x-8)≤2的解集为________.(8,9][因为2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2可得f[x(x-8)]≤f (9),f (x )是定义在(0,+∞)上的增函数,所以有⎩⎨⎧ x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.]☞角度3 求参数的取值范围 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是递增的,那么实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-14,+∞ B .⎣⎢⎡⎭⎪⎫-14,+∞ C.⎣⎢⎡⎭⎪⎫-14,0 D .⎣⎢⎡⎦⎥⎤-14,0 (2)函数f (x )=⎩⎨⎧(a -2)x -1,x ≤1,log a x ,x >1,假设f (x )在(-∞,+∞)上递增,那么实数a 的取值范围为________.【导学号:57962030】(1)D (2)(2,3] [(1)当a =0时,f (x )=2x -3,在定义域R 上是递增的,故在(-∞,4)上递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0. (2)要使函数f (x )在R 上递增, 那么有⎩⎨⎧ a >1,a -2>0,f (1)≤0,即⎩⎨⎧ a >1,a >2,a -2-1≤0,解得2<a ≤3, 即实数a 的取值范围是(2,3].][规律方法] 1.比拟大小.比拟函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f〞符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.3.利用单调性求参数.视参数为数,依据函数的图像或单调性定义,确定函数的单调区间,与单调区间比拟求参数.易错警示:(1)假设函数在区间[a,b]上单调,那么该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[思想与方法]1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性一样时为增函数,不同时为减函数.(3)图像法:如果f(x)是以图像形式给出的,或者f(x)的图像易作出,可由图像的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性.2.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:比照拟复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.[易错与防范]1.易混淆两个概念:“函数的单调区间〞和“函数在某区间上单调〞,前者指函数具备单调性的“最大〞的区间,后者是前者“最大〞区间的子集.2.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.3.函数在两个不同的区间上单调性一样,要分开写,用“,〞隔开,不能用“∪〞连接.。

高考数学一轮复习 热点难点精讲精析 2.2函数的单调性与最值

高考数学一轮复习 热点难点精讲精析 2.2函数的单调性与最值

高考一轮复习热点难点精讲精析:2.2函数的单调性与最值一、函数单调性的判定1、用定义证明函数单调性的一般步骤,即:(1)取值:即设x 1、x 2是该区间内的任意两个值,且x 1< x 2.(2)作差:即f(x 2) –f(x 1)(或f(x 1)-f(x 2)),并通过通分、配方、因式分解等方法,向有利于判断差的符号的方向变形。

(3)定号:根据给定的区间和x 2- x 1符号,确定差f (x 2) –f(x 1)(或f(x 1)-f(x 2))的符号。

当符号不确定时,可以进行分类讨论。

(4)判断:根据定义得出结论。

2、利用导数的基本步骤是:2、求函数的单调性或单调区间的方法(1)能画出图象的函数,用图象法,其思维流程为:(2)由基本初等函数通过加、减运算或复合运算构成的函数,用转化法,其思维流程为:(3)能求导的用导数法,其思维流程为:(4)能作差变形的用定义法,其思维流程为:注:函数的单调性是对某个区间而言的,所以要受到区间的限制。

例如函数y =1/x 在(,0)(0,)-∞+∞和内都是单调递减的,但不能说它在整个定义域即()(),00,-∞+∞内单调递减,只能分开写,即函数的单调减区间为(,0)(0,)-∞+∞和,不能用“∪”2.例题解析〖例1〗(2011·江苏高考)函数f(x)=log 5(2x+1)的单调增区间是______. (2)判断函数+=+x 2y x 1在(-1,+∞)上的单调性. 【方法诠释】本例为判断函数的单调性或求函数的单调区间. (1)转化为基本初等函数的单调性去判断; (2)可用定义法或导数法.解析:(1)函数f(x)的定义域为(12-,+∞),令t=2x+1(t>0), 因为y=log 5t 在t ∈(0,+∞)上为增函数,t=2x+1在(12-,+∞)上为增函数,所以函数f(x)=log 5(2x+1)的单调增区间为(12-,+∞).答案:(12-,+∞)(2)方法一:定义法:设x 1>x 2>-1, 则()().++--=-=++++1221121212x 2x 2x x y y x 1x 1x 1x 1 ∵x 1>x 2>-1,x 2-x 1<0,x 1+1>0,x 2+1>0,()(),-∴<++2112x x 0x 1x 1即y 1-y 2<0,y 1<y 2.+∴=+x 2y x 1在(-1,+∞)上是减函数. 方法二:导数法:()()()()(),+-++-'='==+++22x 1x 2x 21y x 1x 1x 1 ∴在(-1,+∞)上,y ′<0,故+=+x 2y x 1[在(-1,+∞)上为减函数.〖例2〗求函数的单调区间思路分析:该函数整体来说是一个二次根式,首先要考虑被开方数大于等于零,在此基础上求被开方函数的单调性即可.解析:设u=x 2+x-6 .由x2+x-6≥0,得x≤-3或x≥2,结合二次函数图象可知,函数u=x2+x-6在(-∞,-3]上是递减的,在[2,+∞)上是递增的.又∵函数是递增的,∴函数在(-∞,-3]上是递减的,在[2,+∞)上是递增的.〖例3〗设,(1) 试判断函数的单调性,并用函数单调性定义,给出证明;(2) 若的反函数为,证明:对任意的自然数n(n≥3),都有;解析: 1) ∵>0且2-x≠0 ∴的定义域为判断在上是增函数,下证明之:………………………………………1分设任………………………………………2分∵∴………………………………3分∵∴x2-x1>0,2-x1>0,2-x2>0则………………………………………4分用数学归纳法易证证略. …… 12分二、应用函数的单调性1.应用函数的单调性可求解的问题(1)由x1,x2的大小,可比较f(x1)与f(x2)的大小;(2)知f(x1)与f(x2)的大小关系,可得x1与x2的大小关系;(3)求解析式中参数的值或取值范围;(4)求函数的最值;(5)得到图象的升、降情况,画出函数图象的大致形状.2.例题解析〖例1〗(1)若f(x)为R上的增函数,则满足f(2-m)<f(m2)的实数m的取值范围是______.(2)已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,试比较f(-1),f(0),f(2)的大小.【方法诠释】(1)根据f(x)的单调性,得到2-m与m2的大小关系,从而求解.(2)根据函数f(x)的性质先得到y=f(x)在[0,2]上的单调性或[-2,2]上的图象,进而借助于单调性或图象比较出函数值的大小.解析:(1)因为f(x)为R上的增函数,且f(2-m)<f(m2),则有:2-m<m2,即m2+m-2>0.解得:m<-2或m>1.所以m的取值范围为:(-∞,-2)∪(1,+∞).答案:(-∞,-2)∪(1,+∞)(2)方法一:因为y=f(x-2)的图象可由y=f(x)的图象向右平移2个单位而得到,而y=f(x)为偶函数,其图象关于直线x=0对称,∴函数y=f(x-2)的图象关于直线x=2对称,又y=f(x-2)在[0,2]上单调递减,∴函数y=f(x-2)在[2,4]上单调递增,因此,y=f(x)在[0,2]上单调递增,又f(-1)=f(1),0<1<2,∴f(2)>f(-1)>f(0).方法二:由方法一可得函数y=f(x)在[-2,2]上图象的大致形状为由图象知f(2)>f(-1)>f(0).注:1.根据函数的单调性,解含有“f”号的不等式时,要根据函数的性质,转化为如“f(g(x))>f(h(x))”的形式,再利用单调性,转化为具体不等式求解,但要注意函数的定义域.2.比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择、填空题能数形结合的尽量用图象法求解.〖例2〗已知函数f(x)对于任意a,b∈R,总有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3;(3)若关于x的不等式f(nx-2)+f(x-x2)<2恒成立,求实数n的取值范围.【解析】(1)设x1,x2∈R,且x1<x2,则x2-x1>0,∴f(x2-x1)>1 ,f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). ∴f(x)在R 上是增函数.(2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,∴f(2)=3, ∴不等式f(3m 2-m-2)<3即为 f(3m 2-m-2)<f(2). 又∵f(x)在R 上是增函数, ∴3m 2-m-2<2,解得-41m 3<<. 因此不等式的解集为{m|-41m 3<<}; (3)令a=b=0,得 f(0)=2f(0)-1,∴f(0)=1. ∵f(nx-2)+f(x-x 2)<2,即f(nx-2)+f(x-x 2)-1<1, ∴f(nx-2+x-x 2)<f(0). 由(1)知nx-2+x-x 2<0恒成立, ∴x 2-(n+1)x+2>0恒成立. ∴ Δ=[-(n+1)]2-4×2<0,.∴---1n 1<<注:判定复合函数的单调性及确定单调区间,关键是把复合函数分解成已知单调性的初等函数.另外,注意不要忽略函数的定义域.三、抽象函数的单调性及最值〖例1〗已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )= f (x )+)(1x f ,讨论F (x )的单调性,并证明你的结论解析:这是抽角函数的单调性问题,应该用单调性定义解决。

2021版新高考数学一轮复习讲义:第二章第三讲 函数的单调性与最值 (含解析)

2021版新高考数学一轮复习讲义:第二章第三讲 函数的单调性与最值 (含解析)

第三讲函数的单调性与最值ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测知识梳理知识点一函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(1)对于任意x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值重要结论1.复合函数的单调性函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.2.单调性定义的等价形式设任意x 1,x 2∈[a ,b ],x 1≠x 2.(1)若有(x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0,则f (x )在闭区间[a ,b ]上是增函数.(2)若有(x 1-x 2)[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0,则f (x )在闭区间[a ,b ]上是减函数.3.函数单调性的常用结论(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k >0,则kf (x )与f (x )单调性相同,若k <0,则kf (x )与f (x )单调性相反. (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同.双基自测题组一 走出误区1.(多选题)下列结论不正确的是( ABCD )A .函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)B .函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)C .对于任意两个函数值f (x 1)、f (x 2),当f (x 1)>f (x 2)时都有x 1>x 2,则y =f (x )为增函数D .已知函数y =f (x )是增函数,则函数y =f (-x )与y =1f (x )都是减函数[解析] 对于A :单调区间是定义域的子区间,如y =x 在[1,+∞)上是增函数,但它的单调递增区间是R ,而不是[1,+∞).对于B .多个单调区间不能用“∪”符号连接,而应用“,”或“和”连接.对于C .设f (x )=⎩⎪⎨⎪⎧x x ∈[0,1],1 x ∈(1,2),如图.当f (x 1)>f (x 2)时都有x 1>x 2,但y =f (x )不是增函数.对于D .当f (x )=x 时,y =1f (x )=1x ,有两个减区间,但y =1x 并不是减函数,而y =f (-x )是由y =f (t )与t =-x 复合而成是减函数.故选A 、B 、C 、D .题组二 走进教材2.(必修1P 44AT9改编)函数y =(2m -1)x +b 在R 上是减函数,则( B )A .m >12B .m <12C .m >-12D .m <-12[解析] 使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.3.(必修1P 32T5改编)已知f (x )=-2x 2+x ,x ∈[-1,3],则其单调递减区间为[14,3];f (x )min=-15.4.(必修1P 32T3改编)设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )在增区间为[-1,1]和[5,7].题组三 考题再现5.(2019·北京)下列函数中,在区间(0,+∞)上单调递增的是( A )A .y =x 12B .y =2-x C .y =log 12xD .y =1x[解析] 对于幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,当α<0时,y =x α在(0,+∞)上单调递减,所以选项A 正确;选项D 中的函数y =1x 可转化为y =x -1,所以函数y =1x 在(0,+∞)上单调递减,故选项D 不符合题意;对于指数函数y =a x (a >0,且a ≠1),当0<a <1时,y =a x 在(-∞,+∞)上单调递减,当a >1时,y =a x 在(-∞,+∞)上单调递增,而选项B 中的函数y =2-x 可转化为y =(12)x ,因此函数y =2-x 在(0,+∞)上单调递减,故选项B 不符合题意;对于对数函数y =log a x (a >0,且a ≠1),当0<a <1时,y =log a x 在(0,+∞)上单调递减,当a >1时,y =log a x 在(0,+∞)上单调递增,因此选项C 中的函数y =log 12x 在(0,+∞)上单调递减,故选项C 不符合题意,故选A .6.(2015·浙江卷,10)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f [f (-3)]=0,f (x )的最小值是22-3.[解析]由题意知,f(-3)=1,f(1)=0,即f[f(-3)]=0.易得f(x)在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f(x)min=min{f(0),f(2)}=22-3.KAO DIAN TU PO HU DONG TAN JIU考点突破·互动探究考点一函数的单调性考向1函数单调性的判断与证明——自主练透例1 (1)(多选题)(2020·广东省名校联考改编)设函数f(x)在R上为增函数,则下列结论中不正确的是(ACD)A.y=|f(x)|在R上为增函数B.y=2-f(x)在R上为减函数C.y=-[f(x)]3在R上为增函数D.y=log12f(x)在R上为减函数(2)已知a>0,函数f(x)=x+ax(x>0),证明:函数f(x)在(0,a]上是减函数,在[a,+∞)上是增函数.[解析](1)A错,比如f(x)=x在R上为增函数,但y=|f(x)|=|x|在(0,+∞)上为增函数,在(-∞,0)上为减函数;C错,比如f(x)=x在R上为增函数,但y=-[f(x)]3=-x3在R上为减函数;D错,比如f(x)=x在R上为增函数,但log12x在(0,+∞)上为减函数,而在(-∞,0]上没意义.故选A、C、D.(2)证明:设x1,x2是任意两个正数,且x1<x2,则f(x1)-f(x2)=(x1+ax1)-(x2+ax2)=x1-x2x1x2(x1x2-a).当0<x1<x2≤a时,0<x1x2<a,又x1-x2<0,所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以函数f (x )在[a ,+∞)上是增函数. 考向2 求函数的单调区间——师生共研例2 求下列函数的单调区间. (1)f (x )=-x 2+2|x |+3; (2)f (x )=log 12(-x 2+4x +5);(3)f (x )=x -ln x .[分析] (1)可用图象法或化为分段函数或用化为复合函数求解; (2)复合函数求解; (3)导数法.[解析] (1)解法一:(图象法)∵f (x )=⎩⎪⎨⎪⎧-x 2+2x +3(x ≥0),-x 2-2x +3(x <0),其图象如图所示,所以函数y =f (x )的单调递增区间为(-∞,-1]和[0,1];单调递减区间为[-1,0]和[1,+∞).解法二:(化为分段函数求解)f (x )=⎩⎪⎨⎪⎧-x 2+2x +3(x ≥0)-x 2-2x +3(x <0)=⎩⎪⎨⎪⎧-(x -1)2+4(x ≥0)-(x +1)2+4(x <0)y =-(x -1)2+4(x ≥0)图象开口向下,对称轴为x =1,∴增区间为(0,1),减区间为(1,+∞);y =-(x +1)2+4(x <0)图象开口向下,对称轴为x =-1,∴增区间为(-∞,-1),减区间。

2021届高考数学(理)考点复习:导数与函数的极值、最值(含解析)

2021届高考数学(理)考点复习:导数与函数的极值、最值(含解析)

2021届高考数学(理)考点复习导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 概念方法微思考1.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的________条件.(填“充要”“充分不必要”“必要不充分”) 提示 必要不充分2.函数的最大值一定是函数的极大值吗?提醒 不一定,函数的最值可能在极值点或端点处取到.1.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数. 【解析】(1)函数()(1)1f x x lnx x =---. ()f x ∴的定义域为(0,)+∞, 11()1x f x lnx lnx x x-'=+-=-,y lnx =单调递增,1y x=单调递减,()f x ∴'单调递增, 又f '(1)10=-<,f '(2)1412022ln ln -=-=>, ∴存在唯一的0(1,2)x ∈,使得0()0f x '=.当0x x <时,()0f x '<,()f x 单调递减, 当0x x >时,()0f x '>,()f x 单调递增, ()f x ∴存在唯一的极值点.(2)由(1)知0()f x f <(1)2=-, 又22()30f e e =->,()0f x ∴=在0(x ,)+∞内存在唯一的根x a =,由01a x >>,得011x a<<, 1111()()(1)10f a f ln a a a a a=---==, ∴1a是()0f x =在0(0,)x 的唯一根, 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.2.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <,1c =,且()f x 的极大值为M ,求证:427M . 【解析】(1)a b c ==,3()()f x x a ∴=-, f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---.令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++. △22214(1)124444()332b b b b b =+-=-+=-+.令2()3(22)0f x x b x b '=-++=.解得:21111(0,]3b b b x +--+=,2211b b b x ++-+=.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,令11(0,]3x t =∈,可得:23221t tb t -=-.43211112()()(1)()(1)21t t t M f x x x b x t t b t t -+-∴==--=--=-, 432261282(21)t t t tM t -+-+'=-. 令32()61282g t t t t =-+-+,22()182482(32)0g t t t t '=-+-=--<,∴函数()g t 在1(0,]3t ∈上单调递减,14()039g =>. ()0t g t ∴>.0M ∴'>.∴函数()M t 在1(0,]3t ∈上单调递增,14()()327M t M ∴=. 3.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【解析】(Ⅰ)函数2()[(31)32]x f x ax a x a e =-+++的导数为2()[(1)1]x f x ax a x e '=-++.曲线()y f x =在点(2,f (2))处的切线斜率为0, 可得2(4221)0a a e --+=, 解得12a =; (Ⅱ)()f x 的导数为2()[(1)1](1)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则1x <时,()0f x '>,()f x 递增;1x >,()0f x '<,()f x 递减. 1x =处()f x 取得极大值,不符题意;若0a >,且1a =,则2()(1)0x f x x e '=-,()f x 递增,无极值; 若1a >,则11a<,()f x 在1(a ,1)递减;在(1,)+∞,1(,)a -∞递增,可得()f x 在1x =处取得极小值; 若01a <<,则11a >,()f x 在1(1,)a递减;在1(a ,)+∞,(,1)-∞递增,可得()f x 在1x =处取得极大值,不符题意;若0a <,则11a<,()f x 在1(a ,1)递增;在(1,)+∞,1(,)a -∞递减,可得()f x 在1x =处取得极大值,不符题意. 综上可得,a 的范围是(1,)+∞.4.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解析】(Ⅰ)函数2()[(41)43]x f x ax a x a e =-+++的导数为2()[(21)2]x f x ax a x e '=-++.由题意可得曲线()y f x =在点(1,f (1))处的切线斜率为0, 可得(212)0a a e --+=,且f (1)30e =≠, 解得1a =;(Ⅱ)()f x 的导数为2()[(21)2](2)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则2x <时,()0f x '>,()f x 递增;2x >,()0f x '<,()f x 递减. 2x =处()f x 取得极大值,不符题意;若0a >,且12a =,则21()(2)02x f x x e '=-,()f x 递增,无极值; 若12a >,则12a <,()f x 在1(a,2)递减;在(2,)+∞,1(,)a -∞递增, 可得()f x 在2x =处取得极小值; 若102a <<,则12a >,()f x 在1(2,)a 递减;在1(a,)+∞,(,2)-∞递增, 可得()f x 在2x =处取得极大值,不符题意; 若0a <,则12a <,()f x 在1(a,2)递增;在(2,)+∞,1(,)a -∞递减, 可得()f x 在2x =处取得极大值,不符题意. 综上可得,a 的范围是1(2,)+∞.5.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解析】(1)当0a =时,()(2)(1)2f x x ln x x =++-,(1)x >-.()(1)1xf x ln x x '=+-+,2()(1)x f x x ''=+,可得(1,0)x ∈-时,()0f x '',(0,)x ∈+∞时,()0f x '' ()f x ∴'在(1,0)-递减,在(0,)+∞递增, ()(0)0f x f ∴''=,()(2)(1)2f x x ln x x ∴=++-在(1,)-+∞上单调递增,又(0)0f =.∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)解:由2()(2)(1)2f x x ax ln x x =+++-,得222(12)(1)(1)()(12)(1)211x ax ax x ax x ln x f x ax ln x x x ++-++++'=+++-=++, 令2()(12)(1)(1)h x ax x ax x ln x =-++++, ()4(421)(1)h x ax ax a ln x '=++++.当0a ,0x >时,()0h x '>,()h x 单调递增, ()(0)0h x h ∴>=,即()0f x '>,()f x ∴在(0,)+∞上单调递增,故0x =不是()f x 的极大值点,不符合题意.当0a <时,12()84(1)1ah x a aln x x -''=++++, 显然()h x ''单调递减, ①令(0)0h ''=,解得16a =-.∴当10x -<<时,()0h x ''>,当0x >时,()0h x ''<,()h x ∴'在(1,0)-上单调递增,在(0,)+∞上单调递减, ()(0)0h x h ∴''=,()h x ∴单调递减,又(0)0h =,∴当10x -<<时,()0h x >,即()0f x '>,当0x >时,()0h x <,即()0f x '<,()f x ∴在(1,0)-上单调递增,在(0,)+∞上单调递减, 0x ∴=是()f x 的极大值点,符合题意;②若106a -<<,则(0)160h a ''=+>,161644(1)(21)(1)0a a aah ea e++-''-=--<,()0h x ∴''=在(0,)+∞上有唯一一个零点,设为0x ,∴当00x x <<时,()0h x ''>,()h x '单调递增,()(0)0h x h ∴'>'=,即()0f x '>,()f x ∴在0(0,)x 上单调递增,不符合题意;③若16a <-,则(0)160h a ''=+<,221(1)(12)0h a e e''-=->,()0h x ∴''=在(1,0)-上有唯一一个零点,设为1x ,∴当10x x <<时,()0h x ''<,()h x '单调递减,()(0)0h x h ∴'>'=,()h x ∴单调递增, ()(0)0h x h ∴<=,即()0f x '<,()f x ∴在1(x ,0)上单调递减,不符合题意. 综上,16a =-.6.(2017•全国)已知函数32()3(1)12f x ax a x x =-++. (1)当0a >时,求()f x 的极小值;(Ⅱ)当0a 时,讨论方程()0f x =实根的个数. 【解析】2()36(1)123(2)(2)f x ax a x ax x '=-++=--. (1)当0a >时,令()0f x '=,得2x =或2x a=; ①当01a <<时,有22>,列表如下: x(,2)-∞2 2(2,)a 2a 2(,)a+∞ ()f x ' +0 -0 +()f x极大值极小值故极小值为22124()a f a a -=.②当1a =时,有22a=,则2()3(2)0f x x '=-,故()f x 在R 上单调递增,无极小值; ③当1a >时,有22<,列表如下: x2(,)a-∞2a 2(,2)a 2 (2,)+∞()f x ' +0 -0 +()f x极大值极小值故极小值为f (2)124a =-.(Ⅱ)解法一:①当0a =时,令2()3123(4)f x x x x x =-+=--,得0x =或4x =,有两个根; ②当0a <时,令()0f x '=,得2x =或2x =,有202<<,列表如下: x2(,)a -∞2a2(,2)a2 (2,)+∞ ()f x ' -0 +0 -()f x极小值极大值故极大值为f (2)1240a =->,极小值22124()0a f a a -=<,因此()0f x =有三个根.解法二:①当0a =时,令2()3123(4)f x x x x x =-+=--,得0x =或4x =,有两个根; ②当0a <时,2()[3(1)12]f x x ax a x =-++,对于二次函数23(1)12y ax a x =-++,0x =不是该二次函数的零点,△29(1)240a a =+->,则该二次函数有两个不等的非零零点, 此时,方程()0f x =有三个根.7.(2017•山东)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中 2.71828e ≈⋯是自然对数的底数.(Ⅰ)求曲线()y f x =在点(π,())f π处的切线方程;(Ⅱ)令()h x g =()x a -()()f x a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值. 【解析】2()()2I f ππ=-.()22sin f x x x '=-,()2f ππ∴'=.∴曲线()y f x =在点(π,())f π处的切线方程为:2(2)2()y x πππ--=-.化为:2220x y ππ---=.()()II h x g =()x a -2()(cos sin 22)(2cos )x f x e x x x a x x =-+--+()(cos sin 22)(sin cos 2)(22sin )x x h x e x x x e x x a x x '=-+-+--+-- 2(sin )()2(sin )()x x lna x x e a x x e e =--=--.令()sin u x x x =-,则()1cos 0u x x '=-,∴函数()u x 在R 上单调递增. (0)0u =,0x ∴>时,()0u x >;0x <时,()0u x <.(1)0a 时,0x e a ->,0x ∴>时,()0h x '>,函数()h x 在(0,)+∞单调递增;0x <时,()0h x '<,函数()h x 在(,0)-∞单调递减. 0x ∴=时,函数()h x 取得极小值,(0)12h a =--.(2)0a >时,令()2(sin )()0x lna h x x x e e '=--=. 解得1x lna =,20x =.①01a <<时,(,)x lna ∈-∞时,0x lna e e -<,()0h x '>,函数()h x 单调递增; (,0)x lna ∈时,0x lna e e ->,()0h x '<,函数()h x 单调递减; (0,)x ∈+∞时,0x lna e e ->,()0h x '>,函数()h x 单调递增.∴当0x =时,函数()h x 取得极小值,(0)21h a =--.当x lna =时,函数()h x 取得极大值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. ②当1a =时,0lna =,x R ∈时,()0h x ',∴函数()h x 在R 上单调递增. ③1a <时,0lna >,(,0)x ∈-∞时,0x lna e e -<,()0h x '>,函数()h x 单调递增; (0,)x lna ∈时,0x lna e e -<,()0h x '<,函数()h x 单调递减; (,)x lna ∈+∞时,0x lna e e ->,()0h x '>,函数()h x 单调递增.∴当0x =时,函数()h x 取得极大值,(0)21h a =--.当x lna =时,函数()h x 取得极小值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. 综上所述:0a 时,函数()h x 在(0,)+∞单调递增;0x <时,函数()h x 在(,0)-∞单调递减. 0x =时,函数()h x 取得极小值,(0)12h a =--.01a <<时,函数()h x 在(,)x lna ∈-∞,(0,)+∞是单调递增;函数()h x 在(,0)x lna ∈上单调递减.当0x =时,函数()h x 取得极小值,(0)21h a =--.当x lna =时,函数()h x 取得极大值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. 当1a =时,0lna =,函数()h x 在R 上单调递增.1a >时,函数()h x 在(,0)-∞,(,)lna +∞上单调递增;函数()h x 在(0,)lna 上单调递减.当0x =时,函数()h x 取得极大值,(0)21h a =--.当x lna =时,函数()h x 取得极小值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++.8.(2017•江苏)已知函数32()1(0,)f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:23b a >;(Ⅲ)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求实数a 的取值范围.【解析】(Ⅰ)解:因为32()1f x x ax bx =+++, 所以2()()32g x f x x ax b ='=++,()62g x x a '=+, 令()0g x '=,解得3ax =-.由于当3a x >-时()0g x '>,()()g x f x ='单调递增;当3ax <-时()0g x '<,()()g x f x ='单调递减;所以()f x '的极小值点为3ax =-,由于导函数()f x '的极值点是原函数()f x 的零点,所以()03af -=,即33102793a a ab -+-+=,所以223(0)9a b a a=+>.因为32()1(0,)f x x ax bx a b R =+++>∈有极值, 所以2()320f x x ax b '=++=有实根,所以24120a b ->,即222903a a a-->,解得3a >,所以223(3)9a b a a=+>.(Ⅱ)证明:由(1)可知h (a )42332245913(427)(27)81381a a b a a a a a=-=-+=--, 由于3a >,所以h (a )0>,即23b a >;(Ⅲ)解:由(1)可知()f x '的极小值为2()33a a fb '-=-,设1x ,2x 是()y f x =的两个极值点,则1223ax x +=-,123b x x =,所以332212121212()()()()2f x f x x x a x x b x x +=++++++22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3422273a ab=-+,又因为()f x ,()f x '这两个函数的所有极值之和不小于72-,所以23242372327392a a ab a b a -+-+=--, 因为3a >,所以3263540a a --, 所以22(36)9(6)0a a a -+-, 所以2(6)(2129)0a a a -++, 由于3a >时221290a a ++>, 所以60a -,解得6a , 所以a 的取值范围是(3,6].9.(2017•新课标Ⅱ)已知函数2()f x ax ax xlnx =--,且()0f x . (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 【解析】(1)因为2()()(0)f x ax ax xlnx x ax a lnx x =--=-->, 则()0f x 等价于()0h x ax a lnx =--,求导可知1()h x a x'=-. 则当0a 时()0h x '<,即()y h x =在(0,)+∞上单调递减, 所以当01x >时,0()h x h <(1)0=,矛盾,故0a >. 因为当10x a <<时()0h x '<、当1x a>时()0h x '>, 所以1()()min h x h a=,又因为h (1)10a a ln =--=, 所以11a=,解得1a =; 另解:因为f (1)0=,所以()0f x 等价于()f x 在0x >时的最小值为f (1), 所以等价于()f x 在1x =处是极小值, 所以解得1a =;(2)由(1)可知2()f x x x xlnx =--,()22f x x lnx '=--, 令()0f x '=,可得220x lnx --=,记()22t x x lnx =--,则1()2t x x'=-,令()0t x '=,解得12x =, 所以()t x 在区间1(0,)2上单调递减,在1(2,)+∞上单调递增,所以1()()2102min t x t ln ==-<,又2212()0t e e=>,所以()t x 在1(0,)2上存在唯一零点,所以()0t x =有解,即()0f x '=存在两根0x ,2x ,且不妨设()f x '在0(0,)x 上为正、在0(x ,2)x 上为负、在2(x ,)+∞上为正, 所以()f x 必存在唯一极大值点0x ,且00220x lnx --=, 所以222200000000000()22f x x x x lnx x x x x x x =--=-+-=-, 由012x <可知20002111()()224max f x x x <-=-+=; 由1()0f e '<可知0112x e <<,所以()f x 在0(0,)x 上单调递增,在0(x ,1)e 上单调递减,所以0211()()f x f e e>=;综上所述,()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 10.(2016•山东)设2()(21)f x xlnx ax a x =-+-,a R ∈. (1)令()()g x f x =',求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求正实数a 的取值范围. 【解析】(1)由()f x ln '= 22x ax a -+, 可得()g x ln = 22x ax a -+,(0,)x ∈+∞, 所以112()2axg x a x x-'=-=, 当0a ,(0,)x ∈+∞时,()0g x '>,函数()g x 单调递增; 当0a >,1(0,)2x a∈时,()0g x '>,函数()g x 单调递增, 1(2x a∈,)+∞时,()0g x '<,函数()g x 单调递减. 所以当0a 时,()g x 的单调增区间为(0,)+∞; 当0a >时,()g x 的单调增区间为1(0,)2a,单调减区间为1(2a ,)+∞.⋯(6分)(2)由(1)知,f '(1)0=.①当102a <<时,112a >,由(1)知()f x '在1(0,)2a内单调递增, 可得当(0,1)x ∈时,()0f x '<,当1(1,)2x a∈时,()0f x '>. 所以()f x 在(0,1)内单调递减,在1(1,)2a内单调递增, 所以()f x 在1x =处取得极小值,不合题意. ②当12a =时,112a=,()f x '在(0,1)内单调递增,在(1,)+∞内单调递减, 所以当(0,)x ∈+∞时,()0f x ',()f x 单调递减,不合题意. ③当12a >时,1012a <<,()f x 在1(0,)2a上单减, 当1(2x a∈,1)时,()0f x '>,()f x 单调递增, 当(1,)x ∈+∞时,()0f x '<,()f x 单调递减. 所以()f x 在1x =处取极大值,符合题意.综上可知,正实数a 的取值范围为1(2,)+∞.⋯(12分)11.(2017•北京)已知函数()cos x f x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.【解析】(1)函数()cos x f x e x x =-的导数为()(cos sin )1x f x e x x '=--, 可得曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--=, 切点为0(0,cos00)e -,即为(0,1),曲线()y f x =在点(0,(0))f 处的切线方程为1y =;(2)函数()cos x f x e x x =-的导数为()(cos sin )1x f x e x x '=--, 令()(cos sin )1x g x e x x =--,则()g x 的导数为()(cos sin sin cos )2sin x x g x e x x x x e x '=---=-,当[0x ∈,]2π,可得()2sin 0x g x e x '=-,即有()g x 在[0,]2π递减,可得()(0)0g x g =,则()f x 在[0,]2π递减,即有函数()f x 在区间[0,]2π上的最大值为0(0)cos001f e =-=;最小值为2()cos 2222f e πππππ=-=-.1.(2020•道里区校级一模)已知函数21()(1)2f x xlnx m x x =-+-有两个极值点,则实数m 的取值范围为( ) A .1(e-,0)B .1(1,1)e--C .1(,1)e-∞-D .(1,)-+∞【答案】B【解析】由21()(1)2f x xlnx m x x =-+-,得()(1)f x lnx m x '=-+,0x >.要使21()(1)2f x xlnx m x x =-+-有两个极值点,只需()(1)0f x lnx m x '=-+=有两个变号根,即1lnxm x+=有两个变号根. 令()lnxg x x=,(0)x >,则21()lnx g x x -'=,由()0g x '=得x e =,易知当(0,)x e ∈时,()0g x '>,此时()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,此时()g x 单调递减. 所以1()()max g x g e e==, 而1()0g e e=-<,1lim lim 01x x lnx x x →+∞→+∞==,作出()y g x =,1y m =+的图象,可知:101m e <+<,解得111m e-<<-+. 故选B .2.(2020•内江三模)函数2()(12)22ax f x a x lnx =+--在区间1(2,3)内有极小值,则a 的取值范围是( ) A .1(2,)3--B .1(2,)2--C .(2-,11)(33--⋃,)+∞D .(2-,11)(22--⋃,)+∞【答案】D【解析】22(12)2(1)(2)()(12)ax a x ax x f x ax a x x x+--+-'=++-==, 当0a =时,()2f x x '=-,所以在1(2,2)上,()0f x '<,()f x 单调递减,在(2,3)上,()0f x '>,()f x 单调递增, f (2)为函数()f x 的极小值,符合题意,当0a >时,令()0f x '=,得1x a=-,2x =,且102a -<<,所以在1(2,2)上,()0f x '<,()f x 单调递减,在(2,3)上,()0f x '>,()f x 单调递增, f (2)为函数()f x 的极小值,符合题意,当0a <时,令()0f x '=,得1x a=-,2x =,且102a <-<,若()f x 在1(2,2)有极小值,只需12112a a ⎧-<⎪⎪⎨⎪->⎪⎩或12a ->,解得122a -<<-,或102a -<<,综上所述,122a -<<-,或12a -<,故选D .3.(2020•德阳模拟)已知函数2()2f x ax x lnx =-+有两个极值点1x ,2x ,若不等式1212()()f x f x x x t +<++恒成立,那么t 的取值范围是( )A .[1-,)+∞B .[222ln --,)+∞C .[32ln --,)+∞D .[5-,)+∞【答案】D【解析】函数()f x 的定义域为(0,)+∞,2221()ax x f x x-+'=(0)x >, 因为函数2()2f x ax x lnx =-+有两个极值点1x ,2x ,所以方程22210ax x -+=在(0,)+∞上有两个不相等的正实数根, 则121248010102a x x a x x a ⎧⎪=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.因为222121211122212121212122()()()22[()2]3()()12f x f x x x ax x lnx ax x lnx x x a x x x x x x ln x x ln a a+-+=-++-+--=+--++=---,设h (a )212ln a a=---,h '(a )22aa-=,易知h '(a )0>在1(0,)2上恒成立, 故h (a )在1(0,)2上单调递增,故h (a )1()52h <=-,所以5t -,所以t 的取值范围是[5-,)+∞. 故选D .4.(2020•汕头校级三模)已知函数21()(1)2x x f x x e ae ax =--+只有一个极值点,则实数a 的取值范围是( )A .(-∞,10][2,)+∞B .(-∞,10][3,)+∞C .(-∞,10][4,)+∞D .(-∞,1][03-,)+∞【答案】A 【解析】21()(1)2x x f x x e ae ax =--+,2()x xf x xe ae a '∴=-+,()f x 只有一个极值点,()f x '∴只要一个变号零点.(1)当0a =时,()x f x xe '=,易知0x =是()f x 的唯一极值点; (2)当0a ≠时,方程2()0x x f x xe ae a '=-+=可化为1x x x e e a-=-, 令1()g x x a=,()x xh x e e -=-,可得两函数均为奇函数, ∴只需判断0x >时,两函数无交点即可.①当0a <时,1()0g x x a=<,()0x x h x e e -=->,所以()g x 与()h x 有唯一交点0x =,且当0x >时,()()g x h x <;当0x <时,()()g x h x >. 0x ∴=是()f x 的唯一极值点;②当0a >时,()0x x h x e e -'=+>,即()h x 在(0,)+∞上单调递增,且(0)0h =,lim ()x h x →+∞=+∞,设()h x 过原点的切线为y kx =,切点为(m ,)(0)km m >, 则m m m me e k km e e --⎧+=⎨=-⎩,解得0m =,2k =, 如图所示,当1y x a=在直线2y x =下方(第一象限)或与2y x =重合时,0x =是唯一交点,能满足()0f x '=的变号零点,即函数()f x 的极值点, 12a∴.综上所述,实数a 的取值范围为(-∞,10][2,)+∞.故选A .5.(2020•山西模拟)已知函数3()(2)x e f x t lnx x x x=-++仅有一个极值点1,则实数t 的取值范围是( ) A .1(,]33e ⎧⎫-∞⎨⎬⎩⎭B .1(,]3-∞C .1(,]23e ⎧⎫-∞⎨⎬⎩⎭ D .1(,]2-∞【答案】B 【解析】由题意知函数()f x 的定义域为(0,)+∞,222(1)(23)()(1)1323()(2)xx e x x t x e x f x t x x x x -+--+'=-+-=, 因为函数恰有一个极值点1,所以023xe t x -=+无解,令()(0)23x e g x x x =>+,则2(21)()0(23)x e x g x x +'=>+,所以()g x 在(0,)+∞上单调递增,从而1()(0)3g x g >=,所以13t 时,023x e t x -=+无解,3()(2)x e f x t lnx x x x =-++仅有一个极值点1,所以t 取值范围是1(,]3-∞.故选B .6.(2020•南平三模)函数3211()(2)(0)32f x x a x x a =-++>在(,)e +∞内有极值,那么下列结论正确的是( )A .当1(0,2)a e e ∈+-时,11a e e a -->B .当1(2,)2ea e e ∈+-时,11a e e a --<C .当(,)2ea e ∈时,11a e e a -->D .当1(,)a e e e∈+时,11a e e a --<【答案】B【解析】令2()()(2)1(0)g x f x x a x a ='=-++>,则△2(2)40a =+->, 若()f x 在(,)e +∞内仅有一个极值点,即()g x 在(,)e +∞内有一个零点, 则20()(2)10a g e e a e >⎧⎨=-++<⎩,解得12a e e >+-; 若()f x 在(,)e +∞内仅有两个极值点,即()g x 在(,)e +∞内有两个零点, 则20()(2)1022a g e e a e a e ⎧⎪>⎪=-++>⎨⎪+⎪>⎩,无解, ∴当12a e e>+-时,函数()f x 在(,)e +∞内有极值, 现考查不等式11a e e a --<,两边同时取对数可得,1(1)a e lna -<-,即1(1)0a e lna ---<, 令1()1(1),2h a a e lna a e e=--->+-,则1()1e h a a-'=-,令h '(a )0>,解得1a e >-, ∴函数h (a )在1(2,1)e e e+--上单调递减,在(1,)e -+∞上单调递增, 又111(2)3(1)(2)h e e e ln e e e e+-=+---+-112(1)10e e lne e e<+---=-<,h (e )(1)(1)0e e lne =---=,∴当1(2)a e e e∈+-时,h (a )0<成立,即11a e e a --<,∴选项B 正确. 故选B .7.(2020•龙岩模拟)已知函数()xf x ax lnx=-在(1,)+∞上有极值,则实数a 的取值范围为( ) A .1(,]4-∞B .1(,)4-∞C .1(0,]4D .1[0,)4【答案】B 【解析】21()()lnx f x a lnx -'=-,设22111()()()lnx g x lnx lnx lnx -==-, 函数()f x 在区间(1,)+∞上有极值,()()f x g x a ∴'=-在(1,)+∞上有变号零点,令1t lnx=,由1x >可得0lnx >,即0t >, 得到22111()244y t t t =-=--+, ∴14a <. 故选B .8.(2020•武汉模拟)设函数2()(32)()f x lnx a x x a R =+-+∈在定义域内只有一个极值点,则实数a的取值范围为( ) A .8(,)9+∞B .8(0,)9C .(,0)-∞D .(0,)+∞【答案】C【解析】2()(32)f x lnx a x x =+-+,定义域为(0,)+∞,21231()(23)ax ax f x a x x x-+'=+-=, 设2()231g x ax ax =-+,①当0a =时,()1g x =,故()0f x '>, ()f x ∴在(0,)+∞上为增函数,所以无极值点.②当0a >时,△298a a =-, 若809a<时△0,()0g x ,故()0f x ', 故()f x 在(0,)+∞上递增,所以无极值点. 若89a >时△0>,设()0g x =的两个不相等的实数根为1x ,2x ,且12x x <, 且1232x x +=,而(0)10g =>,则12304x x <<<, 所以当1(0,)x x ∈,()0g x >,()0f x '>,()f x 单调递增; 当1(x x ∈,2)x ,()0g x <,()0f x '<,()f x 单调递减; 当2(x x ∈,)+∞,()0g x >,()0f x '>,()f x 单调递增. 所以此时函数()f x 有两个极值点;③当0a <时△0>,设()0g x =的两个不相等的实数根为1x ,2x ,且12x x <,但(0)10g =>,所以120x x <<,所以当2(0,)x x ∈,()0g x >,()0f x '>,()f x 单调递増; 当2(x x ∈,)+∞,()0g x <,()0f x '<,()f x 单调递减. 所以此时函数()f x 只有一个极值点. 综上得:当0a <时()f x 有一个极值点. 故选C .9.(2020•昆明一模)已知函数221()(44)(4)2x f x e x x k x x =--++,2x =-是()f x 的唯一极小值点,则实数k 的取值范围为( ) A .2[e -,)+∞ B .3[e -,)+∞ C .2[e ,)+∞ D .3[e ,)+∞【答案】D【解析】由题可知,21()(4424)(24)(2)[(4)]2x x f x e x x x k x x e x k '=--+-++=+-+,2x =-是()f x 的唯一极小值点,(4)0x e x k ∴-+恒成立,即(4)x k e x --,令()(4)x g x e x =-,则()(3)x g x e x '=-,当3x <时,()0g x '<,()g x 单调递减;当3x >时,()0g x '>,()g x 单调递增,∴3()(3)min g x g e ==-,3k e ∴--,即3k e .故选D .10.(2020•江西模拟)已知定义在(0,)+∞上的函数()()x a f x e ln x a -=-+,其中0a >,e 为自然对数的底数.(1)求证:()f x 有且只有一个极小值点; (2)若不等式()212f x x a ln ++-在(0,)+∞上恒成立,求实数a 的取值范围.【解析】(1)证明:由于1()x a f x e x a-'=-+ 21()0()x a f x e x a -''=+>+,则()f x ' 在(0,)+∞ 上单调递增.令()x g x e x =-,则()1x g x e '=-,故当(,0)x ∈-∞时,()0g x '<,()g x 单调递减 当(0,)x ∈+∞ 时,()0g x '>,()g x 单调递增, 则()(0)1min g x g ==,即1x e x x +>,由于1(0)0aaa a e f e a e a --'=-=<,1(1)021f a e a '+=->+,故0(0,1)x a ∃∈+,使得0()0f x '=,且当0(0,)x x ∈时0()0f x '<,()f x 单调递减; 当0(x x ∈,)+∞时,0()0f x '>,()f x 单调递增.因此()f x 在(0,)+∞ 有且只有一个极小值点0x ,无极大值点. (2)由于不等式()212f x x a ln ++- 在(0,)+∞ 上恒成立,()i 必要性:当1x = 时,不等式成立,即 1(1)312a e ln a a ln --++--令1()(1)312,()0a g a ln a a e ln g a -=+++--, 由于11()0123a g a e a a -'=++>++,则g (a ) 在 (0,)+∞ 上单调递增,又由于g (1)0=,则g (a )0 的解为01a <. ()ii 充分性:下面证明当01a < 时, ()212f x x a ln ++- 在(0,)+∞ 上恒成立令()()2112x a h x e ln x a x a ln -=-++++, 由于01a <,01a >--,1x a x --,1x a x e e --,01a x x <++,()(1)ln x a ln x ++,()(1)ln x a ln x -+-+,12,2122,2122,2122a x a x x a x x a x +++++++-++-+,则1()(1)2212x h x e ln x x ln --+++令1()(1)2212x m x e ln x x ln -=-+++,则 11()122x m x e x x -'=-++,1231()0(1)(22)x m x e x x -''=++>++, ()m x ' 在(0,)+∞ 上单调递增,由于m '(1)0=,则当(0,1)x ∈时,()0m x '<,()m x 单调递减, 当(1,)x ∈+∞ 时,()0m x '>,()m x 单调递增, 故()m x m =(1)0=,即()0m x 恒成立, 因此,当01a < 时,()212f x x a ln ++- 在(0,)+∞ 上恒成立.故a 的取值范围为(0,1].11.(2020•红河州三模)已知函数()()1af x lnx a R x =-∈+. (1)求曲线()y f x =在点(1,f (1))处的切线方程;(2)若函数()f x 存在两个极值点1x ,2x ,求实数a 的取值范围,并证明:1()f x ,f (1),2()f x 成等差数列.【解析】(1)由()1af x lnx x =-+得21()(1)a f x x x '=++,故切线斜率k f ='(1)14a=+, 又f (1)2a =-,故切线方程为:(1)(1)24a ay x +=+-,即(4)4430a x y a +---=;(2)2221(2)1()(0)(1)(1)a x a x f x x x x x x +++'=+=>++,由题意知:1x ,2x 是方程()0f x '=在(0,)+∞内的两个不同实数解, 令2()(2)1(0)g x x a x x =+++>,注意到(0)10g =>,其对称轴为直线2x a =--, 故只需220(2)40a a -->⎧⎨=+->⎩,解得:4a <-, 即实数a 的取值范围是(,4)-∞-,由1x ,2x 是方程2(2)10x a x +++=的两根,得:122x x a +=--,121x x =,故12()()f x f x + 1212()()11a a lnx lnx x x =-+-++ 121212122()1x x ln x x a x x x x ++=-+++22121a aa --+=---+a =-,又f (1)2a=-,即12()()2f x f x f +=(1),故1()f x ,f (1),2()f x 成等差数列.12.(2020•启东市校级模拟)已知函数()(0)f x alnx a =≠与212y x e=的图象在它们的交点(,)P s t 处具有相同的切线. (1)求()f x 的解析式;(2)若函数2()(1)()g x x mf x =-+有两个极值点1x ,2x ,且12x x <,求21()g x x 的取值范围. 【解析】(1)根据题意,函数()(0)f x alnx a =≠与212y x e= 可知()af x x'=,1y x e '=,两图象在点(,)P s t 处有相同的切线,所以两个函数切线的斜率相等, 即1as e s=,化简得s ae =, 将(,)P s t 代入两个函数可得22s alns e=②,综合上述两式①②可解得1a =,所以()f x lnx =.(2)函数22()(1)()(1)g x x mf x x mlnx =-+=-+,定义域为(0,)+∞,222()2(1)m x x mg x x x x-+'=-+=, 因为1x ,2x 为函数()g x 的两个极值点,所以1x ,2x 是方程2220x x m -+=的两个不等实根, 由根与系数的关系知121x x +=,122mx x =,(*), 又已知12x x <,所以121012x x <<<<,222211()(1)g x x mlnx x x -+=,将(*)式代入得22222222212()(1)2(1)121g x x x x lnx x x lnx x x -+-==-+-, 令()12h t t tlnt =-+,1(2t ∈,1),()21h t lnt '=+,令()0h t '=,解得:t e=,当1(2t ∈)e 时,()0h t '<,()h t 在1(2e 单调递减;当(t e ∈,1)时,()0h t '>,()h t 在(e,1)单调递增;所以2()(11min eh t h ee===-, 1(){()2h t max h <,h (1)},11()2022h ln h =-<=(1),即21()g x x 的取值范围是2[1e -0). 13.(2020•河南模拟)设函数()f x xlnx =,()()x g x ae a R =∈.(1)若曲线()y f x =在1x =处的切线也与曲线()y g x =相切,求a 的值. (2)若函数()()()G x f x g x =-存在两个极值点. ①求a 的取值范围;②当22ae 时,证明:()0G x <. 【解析】(1)()f x xlnx =,()1f x lnx '=+,(0,)x ∈+∞,f ∴(1)0=,f '(1)1=,故曲线()f x 在1x =处的切线方程是1y x =-; 设直线1y x =-与()y g x =相切于点0(x ,01)x -,()x g x ae '=,00()x g x ae ∴'=,由00011x x ae ae x ⎧=⎪⎨=-⎪⎩,得022x a e -=⎧⎨=⎩; (2)()1x G x lnx ae '=+-, ①()G x 在(0,)+∞上存在两个极值点等价于()0G x '=在(0,)+∞上有2个不同的根,由10x lnx ae +-=,可得1xlnx a e +=,令1()xlnx t x e +=, 则11()xlnx x t x e --'=,令1()1h x lnx x =--,可得211()0h x x x'=--<, 故()h x 在(0,)+∞递减,且h (1)0=, 当(0,1)x ∈时,()0h x >,()0t x '>,()t x 递增, 当(1,)x ∈+∞时,()0h x <,()0t x '<,()t x 递减, 故t (1)1e=是极大值也是最大值,又当0x →时,()t x →-∞,当x →+∞时,()0t x >且趋向于0, 要使()0G x '=在(0,)+∞有2个根,只需10a e<<, 故a 的取值范围是1(0,)e;②证明:设()()xG x ae F x lnx x x==-, 2(1)()xx a x e F x x--'=, 当01x <时,22a e,()0F x ∴'>,则()F x 在(0,1)递增,()F x F ∴(1)0ae =-<,当1x >时,2(1)()[](1)x a x xF x e x a x -'=---, 令()(1)x x H x e a x =--,则21()0(1)x H x e a x '=+>-,22a e ,H ∴(2)22220ae e a a -=-=, 取(1,2)m ∈,且使2(1)m e a m >-,即2211ae m ae <<-, 则22()0(1)m mH m e e e a m =-<-=-,()H m H (2)0,故()H x 存在唯一零点0(1,2)x ∈, 故()F x 有唯一的极大值点0(1,2)x ∈, 由0()0H x =,可得000(1)x x e a x =-,故0001()1F x lnx x =--,0(1,2)x ∈,020011()0(1)F x x x '=+>-,故0()F x 为(1,2)上的增函数, 0()F x F ∴<(2)222102ae ln ln =--<, 综上,当22a e 时,总有()0G x x<,即()0G x <.14.(2020•河南模拟)已知函数21()22f x x ax lnx =-+,a R ∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,212()x x x <,求21()2()f x f x -的取值范围. 【解析】(1)()f x 的定义域是(0,)+∞,2121()2x ax f x x a x x-+'=-+=,令221y x ax =-+, 当△2440a =-即11a -时,0y ,此时()f x 在(0,)+∞递增, 当1a <-时,2210x ax -+=有2个负根,此时()f x 在(0,)+∞递增,当1a >时,2210x ax -+=有2个正根,分别是211x a a =-221x a a =+- 此时()f x 在1(0,)x 递增,在1(x ,2)x 递减,在2(x ,)+∞递增, 综上,1a 时,()f x 在(0,)+∞递增,1a >时,()f x 在2(0,1)a a -递增,在2(1a a --21)a a +-递减,在2(1a a +-)+∞递增;(2)由(1)得:122x x a +=,121x x =,1a >,21121ax x =+,22221ax x =+, 1a >,1(0,1)x ∴∈,2(1,)x ∈+∞, 222122211111()2()22(2)22f x f x x ax lnx x ax lnx ∴-=-+--+ 2221211212x x lnx lnx =-++-+222222111()212x lnx ln x x =-++-+2222211312x lnx x =-+++,令22t x =,则1t >,113()122g t t lnt t =-+++,则222211332(1)(2)()2222t t t t g t t t t t -+----'=--+==,当12t <<时,()0g t '>,当2t >时,()0g t '<, 故()g t 在(1,2)递增,在(2,)+∞递减,g (2)13222ln =+, 21()2()f x f x ∴-的取值范围是(-∞,132]22ln +. 15.(2020•运城模拟)设函数()f x xlnx =.(1)求曲线()y f x =在点(1,f (1))处的切线方程;(2)若函数2()()F x f x ax =-有两个极值点,求实数a 的取值范围; (3)当120x x >>时,221212()()()2m x x f x f x ->-恒成立,求实数m 的取值范围. 【解析】(1)()1f x lnx '=+,()f x 在点(1,f (1))处的切线斜率k f ='(1)1=,则切线方程为1y x =-,(2)()()212F x f x ax lnx ax '='-=+-.()F x 有两个极值点. 即()F x '有两个零点,即120lnx ax +-=有两个不等实根,12lnxa x+=, 令21()()lnx lnxg x g x x x+-='=, 在(0,1)上()0g x '>,()g x 在(0,1)上单调递增.在(1,)+∞上单调递减,()max g x g =(1)1=.x →+∞时,()0g x →. 即12(0,1),(0,)2a a ∈∈.(3)221212()()()2m x x f x f x ->-可化为222211()()22m m f x x f x x ->-. 设2()()2m Q x f x x =-,又120x x >>. ()Q x ∴在(0,)+∞上单调递减,()10Q x lnx mx ∴'=+-在(0,)+∞上恒成立,即1lnxmx+. 又1()lnxh x x+=在(0,1)上单调递增,在(1,)+∞上单调递减. ()h x ∴在1x =处取得最大值.h (1)1=.1m ∴.16.(2020•鹿城区校级模拟)已知函数2()(3)1()f x axlnx x a x a R =-+-+∈. (Ⅰ)当1a =时,求曲线()f x 在(1,f (1))处的切线方程; (Ⅱ)若()f x 存在两个极值点1x ,212()x x x <. ①求a 的取值范围;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。

【方法技巧】确定函数单调性的方法 (1)定义法.利用定义判断.(2)导数法.适用于初等函数、复合函数等可以求导的函数.(3)图象法.由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“Ⅱ”连接.(4)性质法.利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.【变式探究】(2020·河北石家庄第一中学质检)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)【答案】D【解析】函数y =x 2-2x -8=(x -1)2-9图象的对称轴为直线x =1,由x 2-2x -8>0,解得x >4或x <-2,所以(4,+∞)为函数y =x 2-2x -8的一个单调递增区间.根据复合函数的单调性可知,函数f (x )=ln(x 2-2x -8)的单调递增区间为(4,+∞).高频考点二 确定含参函数的单调性(区间)例2.(2020·华东师大附中模拟)函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0] C .(0,2] D .[2,+∞)【答案】A【解析】由题意得,f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,[2,+∞)是函数f (x )的单调递增区间;当x <2时,(-∞,1]是函数f (x )的单调递增区间,[1,2]是函数f (x )的单调递减区间. 【方法技巧】判断函数单调性常用以下几种方法:(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调区间.(4)性质法:①对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及f (x )±g (x )增减性质进行判断;【变式探究】(2020·安徽蚌埠二中模拟)判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.【解析】函数f (x )=ax 2+1x (1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), 故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 高频考点三 解函数不等式例3.(2020·河北承德一中模拟)定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)【答案】C【解析】因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C 。

【方法技巧】求解函数不等式问题,主要是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域以及函数奇偶性质的应用.【变式探究】(2020·湖南长郡中学模拟)设函数f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则f (x )<0的解集是( )A .{x |-3<x <0或x >3}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3} 【答案】B【解析】∵f (x )是奇函数,f (-3)=0, ∴f (-3)=-f (3)=0,解得f (3)=0. ∵函数f (x )在(0,+∞)内是增函数, ∴当0<x <3时,f (x )<0;当x >3时,f (x )>0. ∵函数f (x )是奇函数,∴当-3<x <0时,f (x )>0; 当x <-3时,f (x )<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}. 考点四 利用函数的单调性求参数例4.(2020·天津南开中学模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]【答案】B【解析】因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,且函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1,所以a 的取值范围是(1,+∞).故选B 。

【方法技巧】利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.【变式探究】(2020·四川绵阳中学二诊)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)Ⅱ(2,+∞)B .(-∞,-2)Ⅱ(1,+∞)C .(-1,2)D .(-2,1) 【答案】D【解析】因为当x =0时,两个表达式对应的函数值都为零,所以函数的图象是一条连续的曲线. 因为当x ≤0时,函数f (x )=x 3为增函数, 当x >0时,f (x )=ln(x +1)也是增函数, 所以函数f (x )是定义在R 上的增函数. 因此,不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1.] 高频考点五 函数的最值例5.(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4 D .π 【答案】C【解析】∵f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, ∴当x -π4∈⎣⎡⎦⎤-π2,π2,即x ∈⎣⎡⎦⎤-π4,3π4时, y =sin ⎝⎛⎭⎫x -π4单调递增, f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减,∴⎣⎡⎦⎤-π4,3π4是f (x )在原点附近的单调减区间, 结合条件得[0,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴a ≤3π4,即a max =3π4.【方法技巧】求函数最值(值域)的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值. (4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.【变式探究】(2020·河南安阳一中模拟)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.【答案】1【解析】法一:(图象法)在同一坐标系中,作函数f (x ),g (x )图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:(单调性法)依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2 x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2时取得最大值h (2)=1.。

相关文档
最新文档