解三角形讲义
解直角三角形讲义

解直角三角形初三下册第一章: 知识点总结:1. 解直角三角形:在直角三角形中,由已知元素求位置元素的过程,就是解直角三角形。
(1) 三边关系:222c b a (2) 锐角关系:∠A+∠B=90°; ( 3 ) 边角关系:正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记sinA ,即sinA =c a余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记cosA ,即cosA=c b;正切:锐角A 的对边与邻边的比叫做∠A 的正切,记tanA ,即tanA=ba;特殊锐角的三角函数值① 同角三角函数的关系:平方关系:1cos sin 22 A A ; 商数关系:tanA=AAcos sin ②互余两角的三角函数关系:sinA=cosB; sinA=cos(90°-A) ; cosA=sin (90°-A ); tanA=cot(90°-A )2.实际问题仰角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线上方时叫做仰角。
俯角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线下方时叫做俯角。
坡度(坡比):坡面的铅垂高度和水平宽度的比叫做坡面的坡度,记作i=h:l。
坡角:坡面与水平面的夹角叫做坡角,记作a,即i=h:l=tana.方位角:从某点的正北方向沿顺时针方向旋转到目标方向所形成的角叫做方位角。
方向角:从正北方向或正南方向到目标方向形成的小雨90°的角叫做方向角。
典型例题:题型一:特殊三角函数值1、计算2sin30°-sin245°+cot60°的结果是()A、B、C、D、2、已知a=3,且(4tan 45°-b)2+=0,以a,b,c为边组成的三角形面积等于()A、6B、7C、8D、93、已知a为锐角,且sin(a-10°)=,则a等于()A、50°B、60°C、70°D、80°4、在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A、B、C、D、5、如图,如果∠A是等边三角形的一个内角,那么cosA的值等于()A、B、C、D、16、△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定7、计算:sin213°+cos213°+sin60°-tan30°.8、求下列各式的值:(1)a、b、c是△ABC的三边,且满足a2=(c+b)(c-b)和4c-5b=0,求cosA+cosB的值;(2)已知A为锐角,且tanA=,求sin2A+2sinAcosA+cos2A的值.题型二:解直角三角形1、如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为()A、2B、C、2D、42、等腰三角形的顶角为120°,腰长为2cm,则它的底边长为()A、cmB、cmC、2cmD、cm3、如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为()A、cmB、cmC、cmD、8cm4、如图,在Rt△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=,BD=1,则边AB的长是()A、B、C、2 D、5、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、6、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、B、C、D、7、如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A、5B、5C、5D、108、如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A、B、2 C、D、9、如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A、1B、C、D、10、如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是()A、16B、18C、6D、711、如图,在梯形ABCD中,∠A=∠B=90°,AB=,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.12、如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC 于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,求EF的长.题型三:解直角三角形的应用1、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A、450a元B、225a元C、150a元D、300a元2、如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A、4.50mB、4.40mC、4.00mD、3.85m3、如图,太阳光线与地面成60°角,一棵倾斜的大树AB与地面成30°角,这时测得大树在地面的影长BC为10m,则大树的长为()m.A、5B、10C、15D、204、如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A 处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为()A、60米B、45米C、30米D、45米5、如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)6、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)7、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)8、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=)题型四:坡度坡角问题及仰角俯角问题1、如图,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()A、B、C、D、2、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A、5mB、6mC、7mD、8m3、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A、36.21米B、37.71米C、40.98米D、42.48米4、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为()(注:数据≈1.732,≈1.414供计算时选用)A、68米B、70米C、121米D、123米5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是()A、由楼顶望塔顶仰角为60°;B、由楼顶望塔基俯角为60°;C、由楼顶望塔顶仰角为30°;D、由楼顶望塔基俯角为30°6、已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(=1.414,=1.732结果保留三个有效数字)()A、22.1米B、26.0米C、27.9米D、32.8米7、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B 处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于多少度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).8、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为(即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).题型五:方向角问题1、如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A、7海里B、14海里C、7海里D、14海里2、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A、北偏东20°方向上B、北偏西20°方向上C、北偏西30°方向上D、北偏西40°方向上3、如图,小亮家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A、100米B、米C、米D、米4、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75).6、如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西45°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73).7如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C 处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)8、(2010•陕西)在一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离.练习作业:1、在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A、7sin35°B、C、7cos35°D、7tan35°2、Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.那么c等于()A、acos A+bsin BB、asin A+bsin BC、D、3、如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A、B、C、D、4、如图,已知一坡面的坡度i=1:,则坡角α为()A、15°B、20°C、30°D、45°5、如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()A、B、C、D、6、如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A、500sin55°米B、500cos55°米C、500tan55°米D、500cot55°米7、如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A、3 B、C、D、8、如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.(1)求sin∠DBC的值;(2)若BC长度为4cm,求梯形ABCD的面积.9、路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)10、如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m).11、如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.。
新人教A版高中数学全套讲义:解三角形

正弦定理和余弦定理1.1.1正弦定理[新知初探] 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C.[点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)正弦定理适用于任意三角形()(2)在△ABC中,等式b sin A=a sin B总能成立()(3)在△ABC中,已知a,b,A,则此三角形有唯一解()解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知asin A=bsin B,即b sin A=a sin B.(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.答案:(1)√(2)√(3)×2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.bc B.sin B sin A C.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2 B .10 3 C.1033D .5 6 解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22. ∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.三角形形状的判断 [典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =c sin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形.3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc, 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C. 3D .2 3解析:选A 由正弦定理得asin π6=2sin π4, ∴a =1,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sin B =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A=________. 解析:由正弦定理及已知得1sin A =AC sin 2A ,∴AC cos A=2. 答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1,所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C.3.在△ABC 中,A =60°,a =13,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C=2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314. 答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果CA ·CB =4,求△ABC 的面积. 解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由CA ·CB =|CA ||CB |cos C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B=2,a +c =2R (sin A +sin C ) =23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理(1)余弦定理的内容是什么?预习课本P5~6,思考并完成以下问题[新知初探]余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一()解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.(2)正确.当a2>b2+c2时,cos A=b2+c2-a22bc<0.因为0<A<π,故A一定为钝角,△ABC为钝角三角形.(3)错误.当△ABC已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√ (2)√ (3)×2.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .8 3 C .10 2D .7 3解析:选D 由余弦定理得:c =92+(23)2-2×9×23×cos 150° =147 =7 3.3.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60° B .45° C .120°D .30° 解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.已知两边与一角解三角形[典例] (1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________. [解析](1)由余弦定理得: a =602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5.[答案] (1)60 (2)4或5已知三角形的两边及一角解三角形的方法先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题(在(0,π)上,余弦值所对角的值是唯一的),故用余弦定理求解较好.[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°.已知三角形的三边解三角形[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.利用余弦定理判断三角形形状 [典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C .又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.利用余弦定理判断三角形形状的两种途径(1)化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. (2)化角的关系:将条件转化为角与角之间关系,通过三角变换得出关系进行判断. [活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.正、余弦定理的综合应用题点一:利用正、余弦定理解三角形1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB.(1)求角B 的大小;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B. 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故由正弦定理得a =b ·sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin Csin B =2×sin 60°sin 45°= 6.题点二:利用正、余弦定理证明三角形中的恒等式 2.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C . 证明:法一:(化为角的关系式)a 2sin 2B +b 2sin 2A =(2R ·sin A )2·2sin B ·cos B +(2R ·sin B )2·2sin A ·cos A =8R 2sin A ·sin B (sin A ·cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C =2ab sin C .∴原式得证.法二:(化为边的关系式)左边=a 2·2sin B cos B +b 2·2sin A cos A =a 2·2b 2R ·a 2+c 2-b 22ac +b 2·2a 2R ·b 2+c 2-a 22bc =ab 2Rc(a 2+c 2-b 2+b 2+c 2-a 2)=ab 2Rc ·2c 2=2ab ·c2R=2ab sin C =右边, ∴原式得证.题点三:正、余弦定理与三角函数、平面向量的交汇应用3.已知△ABC 的周长为4(2+1),角A ,B ,C 所对的边分别为a ,b ,c ,且有sin B +sin C =2sin A .(1)求边长a 的值;(2)若△ABC 的面积为S =3sin A ,求AB ·AC 的值. 解:(1)由正弦定理,得b +c =2a .① 又a +b +c =4(2+1),② 联立①②,解得a =4. (2)∵S △ABC =3sin A , ∴12bc sin A =3sin A ,即bc =6. 又∵b +c =2a =42, ∴由余弦定理得cos A =b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =13.∴AB ·AC =bc cos A =2.正、余弦定理是解决三角形问题的两个重要工具,这类题目往往结合基本的三角恒等变换,同时注意三角形中的一些重要性质,如内角和为180°、大边对大角等.层级一 学业水平达标1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( ) A .-15 B .-16 C .-17 D .-18解析:选C 由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形 解析:选C 由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6解析:选B 因为(a 2+c 2-b 2)tan B =3ac , 所以2ac cos B tan B =3ac ,即sin B =32, 所以B =π3或B =2π3,故选 B.6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析:∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0. 答案:07.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 解析:∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos2π3, ∴a 2+a -2=0,即(a +2)(a -1)=0, ∴a =1,或a =-2(舍去).∴a =1. 答案:18.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:因为b +c =7,所以c =7-b . 由余弦定理得:b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4. 答案:49.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b . 解:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 解:∵a >c >b ,∴A 为最大角. 由余弦定理的推论,得cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A <180°, ∴A =120°, ∴sin A =sin 120°=32. 由正弦定理,得sin C =c sin Aa =5×327=5314. ∴最大角A 为120°,sin C =5314. 层级二 应试能力达标1.在△ABC 中,有下列关系式:①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C . 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C 对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A =sin(B +C )=sin B cos C +sin C cos B ,知显然成立.对于④,利用正弦定理,变形得sin B =sin C sin A +sin A sin C =2sin A sin C ,又sin B =sin(A +C )=cos C sin A +cos A sin C ,与上式不一定相等,所以④不一定成立.故选C.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定解析:选A 在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab ,∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .3.在△ABC 中,cos 2B 2=a +c 2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:选B ∵cos 2B 2=a +c2c ,∴cos B +12=a +c 2c ,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b 2+c 2+bc -a 2=0,则a sin (30°-C )b -c =( )A.12B.32C .-12D .-32解析:选A 由余弦定理得cos A =b 2+c 2-a 22bc ,又b 2+c 2+bc -a 2=0,则cos A =-12,又0°<A <180°,则A =120°,有B =60°-C ,所以a sin (30°-C )b -c =sin A sin (30°-C )sin (60°-C )-sin C=34cos C -34 sin C 32cos C -32sin C =12.故选A. 5.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:∵cos C =BC 2+AC 2-AB 22BC ·AC =22,∴sin C =22,∴AD =AC sin C = 3. 答案: 36.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为________.解析:由余弦定理可得49=AC 2+25-2×5×AC ×cos 120°,整理得: AC 2+5·AC -24=0,解得AC =3或AC =-8(舍去), 再由正弦定理可得sin B sin C =AC AB =35.答案:357.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -ab .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理可设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin Asin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.(2)由sin Csin A=2,得c =2a . 由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2,所以b =2a .又a +b +c =5,所以a =1,因此b =2.8.如图,D 是直角三角形△ABC 斜边BC 上一点,AC =3DC . (1)若∠DAC =30°,求B ;(2)若BD =2DC ,且AD =22,求DC . 解:(1)在△ADC 中,根据正弦定理, 有AC sin ∠ADC =DCsin ∠DAC,∵AC =3DC ,所以sin ∠ADC =3sin ∠DAC =32, 又∠ADC =∠B +∠BAD =∠B +60°>60°, ∴∠ADC =120°,∴∠C =180°-120°-30°=30°,∴∠B =60°. (2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,∴sin B=ACBC =33,cos B=63,AB=6x,在△ABD中,AD2=AB2+BD2-2AB·BD·cos B,即(22)2=6x2+4x2-2×6x×2x×63=2x2,得x=2.故DC=2.应用举例第一课时解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)错误!方位角从正北的方向线按顺时针到目标方向线所转过的水平角[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:选B如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为() A.α>βB.α=βC.α+β=90°D.α+β=180°解析:选B根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7测量高度问题[典例]如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β).在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θsin (α+β).测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m 解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC=AB·sin 45°=1 0002×22=1 000(m).答案:1 000测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3) n mile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3) n mile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,BC与正北方向成90°角.∵∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000.∴AB=2007 (m).即A,B两点间的距离为2007 m.题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DCsin ∠DBC ·sin ∠BDC =32sin 45°·sin30°=64. 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km.当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及∠ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B 同侧的点C ,测出BC =a 以及∠ABC 和∠ACB ,先使用内角和定理求出∠BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,∠ACB ,∠BCD ,∠ADC ,∠ADB ,再在△BCD 中求出BC ,在△ADC 中求出AC ,最后在△ABC 中,由余弦定理求出AB .层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762 n mile/hB .34 6 n mile/h C.1722n mile/hD .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin βsin (β-α) B.a sin α·sin βcos (α-β) C.a sin α·cos βsin (β-α) D.a cos α·sin βcos (α-β)解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin βsin (β-α),故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m,20 3 m C .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507 min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7. 则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知: x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得A 1A 2=302×13=102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C 点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=AD sin 120°,所以AD = 3. 在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定。
高中数学竞赛_解三角形【讲义】

第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++(1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
解三角形复习讲义

解三角形复习讲义【考点梳理】要点一、三角形中的边与角之间的关系1.边的关系:两边之和大于第三边:a b c +>,a c b +>,c b a +>;两边之差小于第三边:a b c -<,a c b -<,c b a -<;2.角的关系:ABC ∆中,A B C π++=,222C B A ++=2π (1)互补关系:sin()sin()sin A B C C π+=-=cos()cos()cos A B C C π+=-=-tan()tan()tan A B C C π+=-=-(2)互余关系:sin sin()cos 2222A B C C π+=-= cos cos()sin 2222A B C C π+=-= tan tan()cot 2222A B C C π+=-= 要点二、正弦定理、余弦定理1.正弦定理:在—个三角形中,各边和它所对角的正弦的比相等.即:2sin sin sin a b c R A B C ===(R 为ABC ∆的外接圆半径)⇒⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 2. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
即:2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎫=+-⎪=+-⎬⎪=+-⎭⇒222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩要点诠释:(1)正弦定理适合于任何三角形;每个等式可视为一个方程:知三求一.(2)利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;②已知两边和其中—边的对角,求其他两个角及另一边.(3)利用余弦定理可以解决下列两类三角形的问题:①已知三角形的两条边及夹角,求第三条边及其他两个角;②已知三角形的三条边,求其三个角.(4) 利用余弦定理判断三角形形状:①勾股定理是余弦定理的特殊情况,22290cos 0a b c C C +=⇔=︒⇔=. ②在ABC ∆中,222222cos 0902b c a c b a A A bc +-+>⇔=>⇔<︒,所以A 为锐角;若222a c b +>,222a b c +>,同理可得角B 、C 为锐角.当222a c b +>,222a b c +>,222c b a +>都成立时,ABC ∆为锐角三角形. ③在ABC ∆中,若222222cos 0902b c a c b a A A bc +-+<⇔=<⇔>︒,所以A 为钝角,则ABC ∆是钝角三角形.同理:若222a cb +<,则ABC ∆是钝角三角形且B 为钝角;若222a b c +<,则ABC ∆是钝角三角形且C 为钝角.要点三、解斜三角形的类型1.已知两角一边,用正弦定理,有解时,只有一解.2.已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ∆中,已知,a b 和角A 时,解的情况如下: (1)若A 为锐角时:a bsin A a bsin A ()bsin A a b ()a b ()<⎧⎪=⎪⎨<<⎪⎪≥⎩无解一解直角二解一锐,一钝一解锐角(2)若A 为直角或钝角时:a b a b ()≤⎧⎨>⎩无解一解锐角3.已知三边,用余弦定理有解时,只有一解.4.已知两边及夹角,用余弦定理,必有一解.要点诠释:1.在利用正弦定理理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系或边边关系,再用三角变换或代数式的恒等变换(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则会漏掉一种形状的可能. 要点四、三角形面积公式1.12a S a h =⋅(a h 表示a 边上的高); 2.111sin sin sin 222S ab C ac B bc A ===; 3.22sin sin sin S R A B C =;4.4abc S R=; 要点五、实际问题中的常用角1. 仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:2.方位角:一般指正北方向线顺时针到目标方向线的水平角. 方位角的取值范围为0°~360°.如图,点B 的方位角是0135α=。
解直角三角形(仰角和俯角)讲义

解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。
3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。
精品数学讲义—解三角形问题

解三角形问题.一 基础知识1 三角形性质1.1任意两边之和大于第三边;任意两边之差小于第三边;1.2三角形中大边对的角也大;三角形中大角对的边也大;2 余弦定理、正弦定理及面积公式2.1余弦定理:A bc c b a cos 2222-+=,2.2正弦定理:R Cc B b A a 2sin sin sin ===(2R 为外接圆直径). 2.3面积公式2.3.1 三角形的面积等于底边长与其高乘积的一半; 2.3.2 B ac A bc C ab S sin 21sin 21sin 21===∆; 2.3.3 ))()((c s b s a s s S ---=∆其中s 为三角形周长的一半(海伦公式).3 其它常用恒等式: 3.1 2cos 2sin,cos )cos( ,sin )sin(A C B A C B A C B =+-=+=+ 3.2 若B A B A cos sin ,2==+π3.3 ;tgAtgBtgC tgC tgB tgA =++ 二、例题:1在三角形ABC 中,已知135cos =A ,53sin =B ,则C c os 的值为( ) A .6516 B .6556 C .6516或6556D .6516- 2在三角形ABC 中,3=c ,1=b , 30=B ,则三角形ABC 的面积积为( )A .23或3B .23或43C .43或3D . 3 3在三角形ABC 中,BC=a ,AC=b ,a,b 是方程02322=+-x x 的两个根,且1)cos(2=+B A ,求(1)角C 的度数;(2)AB 的长;(3)△ABC面积。
4例18在△ABC 中,B >A且sin A 、sin B 是方程x 2-( 40cos 2)x +cos 240°-21=0的两根,求cos(2A -B )的值.5已知ΔABC 中,A 、B 、C 分别是三个内角,a 、b 、c 分别是角A 、B 、C 的对边,已知22(sin 2A-sin 2C )=(a-b)sinB,ΔABC 的外接圆的半径为2,(1)求角C(2)求ΔABC 面积S 的最大值6已知锐角三角形ABC 中,sin(A +B)=53,sin(A -B)=51。
解三角形(讲义)

解三角形(讲义)➢知识点睛1.解三角形(1)在三角形中,由已知的边、角出发,求未知边、角的过程叫做解三角形.已知边指已知该边的长度,已知角指已知该角的三角函数值.解三角形时,往往会通过作高的方式将三角形分割为2个直角三角形进行研究;作高时,一般要保留已知三角函数值的角.(2)常见的可解三角形①2边1角②2角1边③3边④1边1角表达AB=mACAB+BC=n➢精讲精练1.如图,在△ABC中,AB=BC=11,tan B=12,则AC=________,sin C=________.2.如图,在△ABC中,AC=ABC=150°,BC=8,则AB=______,sinA=________.3.如图,在钝角三角形ABC中,∠CAB>90°,AB=10,BC=14,∠C=45°,则AC=_______.4.如图,在△ABC中,tan B=12,∠C=45°,BC=12,则AB=_________.5.如图,在△ABC中,tan A=12,∠ABC=135°,BC=AB=___________.6.如图,在△ABC中,AB=5,BC=4,AC=6,则∠B的正切值为_________.7.如图,在△ABC中,BC∠C=45°,AB AC,则AC的长为_________.8.如图,在矩形ABCD中,AB=4,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=12,则CE=_______.9. 如图,在△ABC 中,D 是AC 边上的中点,连接BD ,把△BDC 沿BD 翻折,得到△BDC′,DC′与AB 交于点E ,连接AC′,若AD =AC′=2,BD =3,则点D 到BC′的距离为()A .2B .7C D10. 如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE ,AD ,则两个三角形重叠部分的面积为________.第10题图第11题图11. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________.12. 如图,在Rt △ABC 中,∠A =90°,AB =23,点E ,点D 分别是边AB ,AC 上一点,AE =3,AD =4,过点E 作EF ⊥DE ,交BC 于点F .若EF =2ED ,则AC 的长为__________.13. 如图,在Rt △ABC 中,∠B =90°,AB =BC△ABC 绕点A 按逆时针方向旋转90°得到△AB′C′,连接B′C ,则sin ∠ACB′=________.14.如图,在△ABC中,∠B=90°,AB BC=4,点D是AB上一点,BD=2,点E是线段AC上一动点,将△ABE沿BE折叠,使点A的对应点A′落在线段CD上,此时tan∠A′BC=__________.15.在正方形ABCD中,AB=6,连接AC,BD,P是正方形对角线上一点,若PD=2AP,则AP的长为__________.16.如图,在矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的平分线上时,DE的长为__________.【参考答案】1.5;4 52.3.4.5. 26.7. 28.9. B10.311.112.23 213.4 514.1 1815.16.52或53。
解直角三角形讲义

解直角三角形24.1 锐角三角函数锐角三角函数概念:B规定:在Rt△BC 中,∠C=90 ,斜边c∠A的对边 a ∠A 的对边记作a,∠B 的对边记作b,∠C 的对边记作c.A C∠A的邻边b 在Rt△BC 中,∠C=90°,我们把锐角 A 的对边与斜边的比叫做∠ A 的正弦,记作sinA,即sinA= =ac .sinA =A的对边 aA的斜边 c把∠A的邻边与斜边的比叫做∠A的余弦,A的邻边 a记作cosA ,即cosA= = ;斜边c把∠A的对边与邻边的比叫做∠A的正切,记作tanA ,即tanA= A的对边A的邻边=ab .例1 如图,在Rt△ABC 中,∠C=90 °,求值.B sinA= cosA=3 tanA= sinB=A4 C cosB= tanB=(1)sinA= cosA=_BtanA= sinB=__C_A_特殊角的三角函数值:130°45°60°siaAcosAtanA例2:求下列各式的值.(1)cos260°+sin260°.(2)260°+sin260°.(2)c os 45sin 45-tan45°.练习:1、2、计算:解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
直角三角形ABC 中,∠C=90°,a、b、c、∠A、∠B 这五个元素间有以下等量关系(1)边角之间关系sina b aA ; cos A ; tan A ; cotc c bAbasinb a bB ; cos B ; tan B ; cotc c aBab如果用表示直角三角形的一个锐角,那上述式子就可以写成.sin 的对边斜边;cos的邻边斜边;tan的对边的邻边;cot的邻边的对边(2)三边之间关系(3)锐角之间关系∠A+∠B=90°.2 2 2a +b =c (勾股定理)以上三点正是解直角三角形的依据.例3:在Rt△ABC 中,∠C=90°.(1)已知:a=35,c 35 2 ,求∠A、∠B,b;(2)已知:a 2 3 ,b 2 ,求∠A、∠B,c;2sin A(3)已知: 3,c 6,求a、b;3(4)已知:tan B , b 9, 求a、c;2(5)已知:∠A=60°,△ABC 的面积S12 3,求a、b、c 及∠B.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.例4、如图,大海中某岛C 的周围25km 范围内有暗礁.一艘海轮沿正东方向航行,在 A 处望见C 在北偏东60°处,前进20 km 后到达点B,测得C在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.(参考数据:≈ 1.41,≈ 1.73)练一练:1、某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B 两个探测点探测到 C 处有生命迹象.已知A、B 两点相距 6 米,探测线与地面的夹30°和45°,试确定生命所在点 C 的深度.(精确到0.1 米,参考数据:≈ 1.41,角分别是≈ 1.73)2、如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东60°的方向,轮船从 B 处继续向正东方向航行200 海里到达 C 处时,测得小岛 A 在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈ 1.732)例5、如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥P D ,在小道上测得如下数据:AB =60 米,∠PAB =45°,∠PBA =30°.请求出小桥PD 的长.练一练:1、如图,A,B,C 分别表示三所不同的学校,B,C 在东西向的一条马路边, A 学校在 B 学校北偏西15°方向上,在 C 学校北偏西60°方向上,A,B 两学校之间的距离是1000 米,请求出∠BAC 的度数以及A,C 两学校之间的距离.2、如图,小明在楼顶处测得对面大楼楼顶点处的仰角为52°,楼底点处的俯角为13°.若两座楼与相距60 米,则楼的高度约为米.(结果保留三个有效数字)(,,,,,)坡度与坡角坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),即坡角的正切值「即tan ∠α」。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、正弦定理1、在ABC ∆中:2R sinCcsinB b sinA a ===(R 为△ABC 的外接圆半径)。
它的变式有:①a=2RsinA ,b=2RsinB ,c=2RsinC ;②;,RcC R B R a A 2sin 2b sin 2sin ===③a :b :c=sinA :sinB :sinC 。
推论1:△ABC 的面积为:S △ABC =21absinC=21bcsinA=21casinB (证明:由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21)。
推论2:在△ABC 中,有bcosC+ccosB=a 。
(证明:因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a);还有两个式子为:acosC+ccosA=b ,bcosA+acosB=c 。
2、利用正弦定理,可以解决以下两类有关三角形的问题①已知两角和任意一边,求其他两边和一角;②已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角。
例1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知a=2,︒=45B ,分别求出下式中角A 的值。
①b=21;②b=1;③b=332;④b=2;⑤b=2。
【答①无解;②A=︒90;③A=︒︒12060或;④A=︒45;⑤A=︒30。
】例2 在△ABC 中,已知AB=1,︒=50C ,当B= 时,BC 的长取最大值。
【答:︒40】3、推导并记住:42675cos 15sin -== ,42615cos 75sin +== 。
例3 在锐角△ABC 中,若C=2B ,则bc的范围是( ) A 、(0,2) B 、)2,2( C 、)3,2( D 、)3,1( 【答:C 】 例4 在△ABC 中,c=3,C=︒60,求a+b 的最大值。
【答:23】例5 在等腰△ABC 中,已知21sinB sinA =,BC=3,则△ABC 的周长为 。
【答:15】 4、角平分线定理:在△ABC 中,AD 平分∠BAC ,则ACABDC BD =。
例6 已知△ABC 的三条边分别是3、4、6,则它较大的锐角的平分线分三角形所成的两个三角形的面积比为( )A 、1:1B 、1:2C 、1:4D 、3:4 【答:B 】练习1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。
若x a =,2=b ,︒=45B ,且此三角形有两解,则x 的取值范围为 ( )A 、)22,2(B 、22C 、),2(+∞D 、]22,2( 【答:A 】练习2 在△ABC 中已知a=1,B=︒60,面积S=3,则=++++sinCsinB sinA cb a 。
【答:3392】 练习3 在△ABC 中,已知b=3,c=33,B=︒30,求a= 。
【答:3或6】 练习4 △ABC 中,已知2a=b+c ,sin2A=sinBsinC ,试判断△ABC 的形状。
【答:等边三角形】 练习5 在△ABC 中,已知23==b a ,,︒=45B ,求A 、C 及c 。
【答:①A=︒60,C=︒75,c=226+;②A=︒120,C=︒15,c=226-】 练习6 在△ABC 中,a=2,C=︒45,cos 2B =552,则三角形的面积为S △ABC = 。
【答:78】 练习7 在△ABC 中,已知cos 22A =1092c =+c b ,c=5,则△ABC 的内切圆半径是( ) A 、21 B 、1 C 、2 D 、59【答:B 】二、余弦定理1、在△推论 海伦公式:S △ABC =).)()((c p b p a p p ---,这里p 是三角形的半周长即:.2cb a p ++=。
因为412=∆ ABCS b 2c 2sin 2A=41b 2c 2 (1-cos 2A)= 41b 2c 2 1614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b -c) 2]=p(p -a)(p -b)(p-c)。
这里.2c b a p ++=,所以S △ABC =).)()((c p b p a p p ---。
2、利用余弦定理,可以解决以下三类有关三角形的问题 ①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角; ③已知两边和其中一边对角,求第三边和其他两个角。
3、在△4、在△ABC 中:=,则-=。
5、在△。
证明:B A B R A R b a B A sin sin sin 2sin 2>⇔>⇔>⇔>。
6、在锐角ABC ∆中,有:B A cos sin >,A B cos sin >。
【在锐角三角形中,任一角的正弦值大于另一角的余弦值】证明:∵△ABC 为锐角三角形 2π>+∴B A ,即:B A ->2π,B B A cos )2sin(sin =->∴π,即B A cos sin >;同理:A B cos sin >。
例1 在△ABC 中,用三边长表示BC 边的中线m a ,其公式为m a = 。
【答:222222a c b -+】练习2 在△ABC 中,∠BAC=︒120,AM 是边BC 上的中线,且AB=4,AC=6,求AM 的长。
【提示:延长AM 至D ,使AM=MD ,则四边形ABDC 为平行四边形,然后在△ABD 中利用余弦定理求解,也可以利用中线长公式求解。
答案:7】例2 在△ABC 中,已知35cos ,sin 513A B ==,求cos C 。
解:因为53cos >A ,所以角A 为锐角,从而4sin 5A =,又因为5sin 13B =,则sinA>sinB ,所以角B 也是锐角,从而12cos 13B =,(这里是学生的易错点,常求得12cos 13B =±)。
又因为A+B+C=π,则C=π―(A+B),6516)135********()sin sin cos (cos )cos(cos -=⨯-⨯-=--=+-=B A B A B A C 。
例3 △ABC 中,已知cosA=135,sinB=53,则cosC 的值为( )。
A 、6516 B 、6556 C 、6516或6556 D 、6516- 【答:A 】例4 若三角形的三边长分别是3、4、5,则将三边增加相同的长度后所得到的新三角形为( )A 、直角三角形B 、钝角三角形C 、锐角三角形D 、不能确定 【答:C 】例5 已知钝角三角形的三边长分别为a ,a+1,a+2,且最大内角不超过︒120,则a 的取值范围为 。
【答:323<≤a 】例6 已知三角形的三边长分别为2a+3,a 2+3a+3,a 2+2a (a>0),则三角形中的最大角等于 。
【答:︒120】例7 【若△ABC 的边长a 、b 分别为方程x 2-23x+2=0的两根,且△ABC 的面积为23,求第三边c 的长。
【答:c=610或】例8 若锐角三角形三边的长分别为2、3、x ,则( )A 、1<x<5B 、3<x<13C 、13<x<5D 、1<x<5 【答:B 】 例9 在△ABC 中,若acosA=bcosB ,则△ABC 是( ) 【答:D 】A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、等腰三角形或直角三角形例10 在△ABC 中,已知角A 、B 、C 的对边分别为a 、b 、c ,tanC=37,CB CA ⋅25=,且a+b=9,则c= 。
【答:6】例11 在△ABC 中,已知A>B>C ,且A=2C ,b=4,a+c=8,求a 、c 的值。
【答:a=524,c=516】例12 在△ABC 中,已知角A 、B 均为锐角,且a>bsinA ,则△ABC 的形状是( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、等腰三角形 【答:C 】练习2 在△ABC 中,角A ,B ,C 所对的边分别是 a ,b , c ,若4,222=⋅+=+AB AC bc a c b 且,则△ABC 的面积等于 。
【答:23】练习3 在△ABC 中,sinA=53,cosB=135,则cosC= 。
练习4 在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD=5,求sinA 的值。
【答:1470sin =A 】 7、在解三角形时,①已知三条边a 、b 、c ,求三个角A 、B 、C 时,常用余弦定理求解,此时三角形是确定的,解唯一;②已知三个角A 、B 、C ,求三条边a 、b 、c 时,此时三角形不确定,它们是相似的,此类题无解; ③已知两个角和一条边,求另外一角和两边时,即知道了三个角和一条边,常用正弦定理求解,此时三角形确定,解唯一;④已知两条边和它们的夹角,求另外一边和两角时,常用余弦定理求解,此时三角形确定,解唯一;⑤已知两条边和一条边所对的一个角时,此时三角形不确定,得根据不同的情况求解。
例如:已知两条边a 、b 和A ,如何来确定此三角形解的情况?i)当A 为锐角时:ii)当A 为直角或钝角时:总结:①若1a sin sin >=Ab B ,则满足条件的三角形的个数为0,即无解; ②若1asin sin ==Ab B ,则满足条件的三角形的个数为1;③若1asin sin <=Ab B ,则满足条件的三角形的个数为1或2,显然由1a sin 0<<A b 可得B 有两个值,一个为钝角,另一个为锐角。
要考虑“大边对大角”及“三角形的内角和为︒180”等隐含条件对所求角进行取舍。
练习5 在△ABC 中,三个内角A 、B 、C 满足A+C=2B ,BC A cos 2cos 1cos 1-=+,求2cos C A -的值。
【提示:B=︒60,则设A=︒60+α,C=︒60-α,则α=-2CA 】 三、正余弦定理的应用 解斜三角形的问题,通常要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出所要求的量,从而得到实际问题的解。
其中建立数学模型的思想方法,也是我们学习数学的归宿,用数学手段来解决实际问题,是学习数学的根本目的所在。
解题时应根据已知与未知,合理选择正、余弦定理使用,使解题过程简洁,要达到算法简练,算式工整、计算准确。
(1)、解斜三角形应用题的步骤:①准确理解题意,分清已知和未知,准确理解应用题中有关名词、术语。