抽屉原理2练习

合集下载

抽屉原理四色球练习题

抽屉原理四色球练习题

抽屉原理四色球练习题规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;若除数为零,则“答案”为商抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。

抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有个苹果。

一、基础训练。

1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有______个苹果。

98÷10=9??82、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有_______只鸽子。

1000÷50=203、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出______个苹果。

17÷8=2??14、从______个抽屉中拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。

25÷=6??二、拓展训练。

1、六班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。

王老师说的对吗?为什么÷15=3??186,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数2、从1、2、3??,100这100个数中任意挑出51个数来,证明这51个数中,一定有2个数互质任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数有两个数的差是50??50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是5051÷50=1??13、圆周上有2000个点,在其上任意地标上0、1、2??、1999,求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.*2000÷2=19990001999000÷2000*3=4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号中至少有四个信号完全相同。

抽屉原理

抽屉原理

抽屉原理(一)例1:五(1)班学雷锋小组有13人。

教数学的张老师说:“你们这个小组至少有2个人在同一个月过生日。

”你知道张老师为什么这样说吗?练习:某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?例2:五(2)班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?练习:曹坤同学在做跳绳的练习,他1分钟至少跳多少下,才能保证他在某一秒钟内至少跳了三次?例3:幼儿园大班有25名小朋友,老师给他们分80颗糖,试说明至少有一名小朋友分到了不少于4颗糖。

例4:每个星期四是学校图书馆多五(2)班开放的日子。

这个星期四,五(2)班共有38人去图书馆办理了借书手续。

已知图书馆共有科技书、文艺书和连环画三类,且每名同学每次可以从图书馆借任意的两本书。

问这38名同学中有多少名同学借的书的种类是一样的?例5:光明小学每天共有560人在学校吃中餐。

某天中午,学校食堂共准备了4个荤菜、3个素菜和2种汤,每个同学都打了一个荤菜、一个素菜和一个汤。

问至少有多少个同学吃的菜是一样的?练习1:学校图书馆有四类图书,规定每个同学最多可以借2本书,在借书的85名同学中,可以保证至少有几个人所借书的类型完全一样的?练习2:一个旅游团一行100人,游览甲乙丙三个景点,每人至少去一处,问至少有多少人游览的地方相同?若每人去两处呢?家庭作业1、我们从大街上随便找来多少人,就可以保证他们中至少有两个属相(指牛、虎、兔、龙……)相同?2、闭上眼睛,从一个装有12个黑球、15个白球、18个红球的盒子里至少取出几个球,才能保证至少取出了一只黑球?3、某校五年级有3个班,一天五年级的5个同学在少年宫相遇,问这5个同学至少有几人是在同一班级?4、37本书分给4个小朋友,那么至少有一个小朋友拿到的书不少于几本?5、某校有366名同学是在1995年出生的,那么其中至少有几个学生的生日在同一天?6、春秋旅行社组织游客去游览长城、兵马俑、华山。

小学奥数精讲第十二讲 抽屉原理(二)

小学奥数精讲第十二讲 抽屉原理(二)

第12讲抽屉原理(二)同步练习:1.新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸出两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有两人取的球相同,由此可知,参加取球的至少有多少人?【答案】16人【解析】两个球的颜色只有15种可能:同色有5种,异色有2510=C 种.由抽屉原理,参加取球的至少有16人.2.一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.现在阿奇闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则最少要取出多少个球?【答案】10,13【解析】最不利情况下,每种颜色取3个,然后再取1个肯定可以满足要求,所以至少取10个;最不利情况下,把绿球取完,剩下2种颜色每种2个,此时再取1个就满足要求,至少取13个3.口袋中有三种颜色的筷子各10根,那么,(相同颜色的两根筷子为一双)(1)至少取多少根才能保证三种颜色都取到?(2)至少取多少根才能保证有两双颜色不同的筷子?(3)至少取多少根才能保证有两双颜色相同的筷子?【答案】(1)21,(2)13,(3)10【解析】(1)最坏的情况是取完两种颜色,再取1根就满足要求.至少要取102121⨯+=根.(2)最欢的情况是取完一种颜色10根,另两种颜色各1根,再取1根就满足要求.1012113+⨯+=根.(3)两双颜色相同的筷子是4只,最坏的情况是每种颜色取3只,再取一根就满足要求.33110⨯+=根.4.自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点、…、13点牌各一张).洗好后背面朝上放好.一次至少抽取________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取________张牌.【答案】(1)27(2)37【解析】可取红,黑色的1,2,3,4,5,6,7,8,9,10,11,12,13点各2张,共13226⨯=(张),那么再取一张牌,必定和其中某一张牌的点数相同,于是就有2张牌点数和颜色都相同,这是最坏的情况,因此至少要取27张牌,必须保证有2张牌点数,颜色都相同.(2)有以下的搭配:(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13)因而可以取1、3、4、6、7、9、10、12、13这9个数,四种花色的牌都取,9×4=36(张)牌,其中没有3张牌的点数是相邻的.此时取任意1张牌,必然会出现3张牌是相邻的因此,要取37张牌.5.有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【答案】能【解析】根据奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.先用列表法进行搭配.由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计.对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:(奇,奇),(奇,偶),(偶,奇),(偶,偶),其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性.将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形.由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数.6.将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定,请举出一个反例.【答案】见解析【解析】(1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数7.从1,2,3,4,…,1994这些自然数中,最多可以取_______个数,能使这些数中任意两个数的差都不等于9.【答案】999【解析】法1:把1994个数每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,……,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.法2:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990 ,共计222个数{}2,11,20,29,,1991 ,共计222个数{}3,12,21,30,,1992 ,共计222个数{}4,13,22,31,,1993 ,共计222个数{}5,14,23,32,,1994 ,共计222个数{}6,15,24,33,,1986 ,共计221个数{}7,16,25,34,,1987 ,共计221个数{}8,17,26,35,,1988 ,共计221个数{}9,18,27,36,,1989 ,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.8.如图,能否在8行8列的方格表的每一个空格中分别填上1,2,3这三个数,使得各行各列及对角线上8个数的和互不相同?并说明理由.【答案】见解析【解析】从问题入手:因为问的是和,所以就从和的种类入手.由1,2,3组成的和中最小为818⨯=,最大的为8324⨯=,8~24中共有17种结果,而8行8列加上对角线共有18个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求.9.在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【答案】68【解析】21223=⨯,因为3的倍数有100333⎡⎤=⎢⎥⎣⎦个,所以不是3的倍数的数一共有1003367-=(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以保证乘积是12的倍数.于是最少要抽取68个数(即:68张卡片)才可以保证结果.10.某商店举行抽奖活动,在箱子里放有红色、蓝色、黄色小球各100个,若50个同色小球可以换一个布偶,80个同色小球可以换一个零食包,85个同色小球可以换一个模型.每个小球只能换一次奖.小明去抽奖,每次只能从箱子中不放回地随机抽取一个小球,他最少需要抽取__________次才能保证他可以换到每种奖品各一个.【答案】259【解析】①抽光两种颜色,此时再抽50次即保证可以换到,共需250次;②抽光一种颜色,剩下两种各抽79次,此时再抽一次才可换到,共需259次;③每种各84次,此时再抽一次才可换到,共需253次;综上,需要259次才能保证.深化练习11.现有211名同学和四种不同的巧克力.每种巧克力的数量都超过633颗.规定每名同学最多拿三颗巧克力,也可以不拿.若按照巧克力的种类和数量都是否相同分组,则人数最多的一组至少有________名同学.【答案】7【解析】每一名学生可以拿:括号内为该情况发生有几种情况.1,一个不拿(1种情况);2,拿四种糖果中任意一个(4种情况);3.拿两个,都是同种糖果(4种情况);4.拿两个且不同的糖果,随机的(6种情况);5.拿三个,都相同(4种情况);6.拿三个,两个相同(12种情况);7.拿三个都不同的糖果(4种情况);所以一个同学所取的不同种类共有1+4+4+6+4+12+4=35种情况;因为每一种糖都超过633颗,所以第五种情况能够出现,3×211=633,足够分.所以其他六种情况也能够发生.所以,要让最多的那组人数最少就是:211÷35=6…1(余数1);即最多的一组最少为6+1=7人.12.证明:任意给定一个正整数n ,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.【答案】见解析【解析】考虑如下1+n 个数:7,77,777,……,777 位n ,1777+ 位n ,这1+n 个数除以n 的余数只能为0,1,2,……,1-n 中之一,共n 种情况,根据抽屉原理,其中必有两个数除以n 的余数相同,不妨设为777 位p 和777 位q (>p q ),那么()777777777000--= 位位位位p q p q q 是n 的倍数,所以n 乘以适当的整数,可以得到形式为()777000- 位位p q q 的数,即由0和7组成的数.13.上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【答案】见解析【解析】因为只有男生或女生两种情况,所以第1行的7个位置中至少有4个位置同性别.为了确定起见,不妨设前4个位置同是男生,如果第二行的前4个位置有2名男生,那么4个角同是男生的情况已经存在,所以我们假定第二行的前4个位置中至少有3名女生,不妨假定前3个是女生.又第三行的前3个位置中至少有2个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别的矩形,当有2名女生时与第二行构成四角同性别的矩形.所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生同性别.问题得证.14.8位小朋友围着一张圆桌坐下,在每位小朋友面前都放着一张纸条,上面分别写着这8位小朋友的名字.开始时,每位小朋友发现自己面前所对的纸条上写的都不是自己的名字,请证明:经过适当转动圆桌,一定能使至少两位小朋友恰好对准自己的名字.【答案】见解析【解析】沿顺时针方向转动圆桌,每次转动一格,使每位小朋友恰好对准桌面上的字条,经过8次转动后,桌面又回到原来的位置.在这个转动的过程中,每位小朋友恰好对准桌面上写有自己名字的字条一次,我们把每位小朋友与自己名字相对的情况看作“苹果”,共有8只“苹果”.另一方面,由于开始时每个小朋友都不与自己名字相对,所以小朋友与自己名字相对的情况只发生在7次转动中,这样7次转动(即7个“抽屉”)将产生8位小朋友对准自己名字的情况,由抽屉原理可知,至少在某一次转动后,有两个或两个以上的小朋友对准自己的名字.15.任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【答案】见解析【解析】把这2008个数先排成一行:1a ,2a ,3a ,……,2008a ,第1个数为1a ;前2个数的和为12+a a ;前3个数的和为123++a a a ;……前2008个数的和为122008+++ a a a .如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必有两个和除以2008的余数相同,那么它们的差(仍然是1a ,2a ,3a ,……,2008a 中若干个数的和)是2008的倍数.所以结论成立.。

七、抽屉原理

七、抽屉原理

五年级思维训练题(七)姓名________抽屉原理一、第一类抽屉原理应用:第一抽屉原理:(1)把m个物体,任意放入n只抽屉(n<m≤2n),则其中一定有已知抽屉至少有2个物体。

(2)把n+1物体,任意放入n只抽屉中,则其中一定有一只抽屉至少有2个物体。

说明:物体多,抽屉少,以上(2)是(1)的特殊情况。

基本解题方法:(1)搞清谁为抽屉,谁为物体;(2)从最不利或最不巧的情况分析,也可以直接用第一抽屉原理来解。

例1:丽英小学有367个学生,至少有个同学的生日是同一天。

练习(一)1.第一小组有13个同学,其中至少有个同学在同一个月内过生日。

2.61名学生在4月份出生的,其中至少有名学生的生日是同一天。

3.某校五年级(1)班有54个学生,其中至少有个同学在同一周过生日4.某校有学生2000人,在这些学生中任意选出24个人,其中至少有个学生的属相是相同的。

5.有红、黄、蓝、白色的小球各10个,混合放在一个布袋里,一次摸出小球5个,其中至少有个小球的颜色是相同的。

6. 有红、黄、蓝、白色的小球各10个,混合放在一个布袋里,一次摸出小球8个,其中至少有个小球的颜色是相同的。

7.在任意给定的5个自然数中,能不能找到2个数,这两个数的差正好是4的倍数。

例2:有红、黄、蓝、白色的小球各10个,混合放在一个布袋里,一次最少摸出个,才能保证有2个小球是同色的。

练习(二)1.有桃子、梨子、杏子三种水果各若干个混放在一起,一次最少取出个才能保证至少有两个是同一种水果。

2.在一只箱子里装有10双黑袜子和10双白袜子,它们都是散乱地放在箱子里的,如果不看颜色而要从箱子里摸出颜色相同的一双袜子,那么至少要摸出只袜子才能符合条件。

3.抽屉里有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸一次必须摸出支铅笔才能保证至少有一支蓝铅笔。

4.有红白黑三种颜色的袜子各5双,散放在一个抽屉里,蒙住你眼睛每次让你从中摸出一只臭袜子,你至少要摸次才能保证得到同样颜色的一双袜子。

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

抽屉原理练习

抽屉原理练习

例1 (
三个小朋友同行,其中必有 三个小朋友同行,
2
)个小朋友性别相同。 )个小朋友性别相同。 例2 五年一班共有学生53人,他们的 年龄都相同,请你证明至少有( 年龄都相同,请你证明至少有( 朋友出生在一周。 朋友出生在一周。
2
)个小 )个小
9.筐里有苹果、梨和桔子,每个小 筐里有苹果、梨和桔子, 筐里有苹果 朋友都可以从中任意拿两个水果, 朋友都可以从中任意拿两个水果, 那么至少有多少个小朋友, 那么至少有多少个小朋友,才能 保证有两人拿的水果相同? 保证有两人拿的水果相同? 10.五年级一班有 名同学,他们 五年级一班有50名同学 五年级一班有 名同学, 都订阅甲、 都订阅甲、乙、丙三种摄氏中的 一种、二种或三种。 一种、二种或三种。问:至少有 多少名同学订阅的报纸相同? 多少名同学订阅的报纸相同?
第 1 列 第 2 列 第 3 列 第 4 列 第 5 列
5.在一个 ×4平方米的长方形中, 在一个3 平方米的长方形中, 在一个 平方米的长方形中 任意点5个点 试说明: 个点, 任意点 个点,试说明:至少有两 个点的距离不大于2.5米 个点的距离不大于 米。
7.学校开办航模、电脑、美术三个 学校开办航模、电脑、 学校开办航模 课外兴趣小组, 课外兴趣小组,每个学生最多 可 参加两个(可以不参加)。 )。问 参加两个(可以不参加)。问: 至少有多少名学生, 至少有多少名学生,才能保证有 不少于8名同学参加兴趣小组的情 不少于 名同学参加兴趣小组的情 况完全相同? 况完全相同?
抽屉原理2:将多于m 抽屉原理 :将多于 ×n件的 件的 个抽屉里, 物品任意放到 n个抽屉里,那么 个抽屉里 至少有一个抽屉物品的件数不少 于m+1件。 件
1.五年级有 个同学是1992年出生 五年级有13个同学是 年出生 五年级有 个同学是 的,他们中是否有在同一个月中 过生日的? 过生日的? 2.任意 个自然数,总有2个自然 任意3个自然数,总有 个自然 任意 个自然数 数的和是2的倍数 试加说明。 的倍数。 数的和是 的倍数。试加说明。

小学四年级奥数抽屉原理(二)例题、练习及答案

小学四年级奥数抽屉原理(二)例题、练习及答案

抽屉原理(二)这一讲我们讲抽屉原理的另一种情况。

先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子.道理很简单。

如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。

剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

这个例子所体现的数学思想,就是下面的抽屉原理2.抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的.假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

这说明一开始的假定不能成立.所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。

为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。

这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。

即抽屉原理2是抽屉原理1的推广.例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

小学数学 抽屉问题 (二)PPT+作业+答案

小学数学 抽屉问题 (二)PPT+作业+答案

例3
某班有16名学生,每个月教师把学生分成两个小组.问最少要经 过几个月,才能使该班的任意两个学生总有某个月份是分在不同 的小组里?
经过第一个月,将16个学生分成两组,至少有8个学生分在同一组,下面只考虑这8个学生. 经过第二个月,将这8个学生分成两组,至少有4个学生是分在同一组,下面只考虑这4个学生. 经过第三个月,将这4个学生分成两组,至少有2个学生仍分在同一组,这说明只经过3个月是无法满 足题目要求的.如果经过四个月,将每个月都一直保持同组的学生一分为二,放人两个组,那么第 一个月保持同组的人数为16÷2=8人,第二个月保持同组的人数为8÷2=4人,第三个月保持同组人数 为4÷2=2人,这说明照此分法,不会有2个人一直保持在同一组内,即满足题目要求,故最少要经过 4个月.
把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有
例1 两只或两只以上的小兔?
要想保证至少有一个笼里有两只或两只以上的小兔,把小兔子当作“物品”,把“笼 子”当作“抽屉”,根据抽屉原理,要把10只小兔放进10-1=9个笼里,才能保证至少 有一个笼里有两只或两只以上的小兔.
练习1
把125本书分给五⑵班的学生,如果其中至少有一个人分到 至少4本书,那么,这个班最多有多少人?
名同学来自同一个学校.”如果他的说法是正确的,那么最多 有多少个学校参加了这次入学考试?
本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有 10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10) ÷9=123......6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个 学校则不能保证至少有10名同学来自同一个学校)
课后作业
作业1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档