抽屉原理 (2)

合集下载

六年级奥数 第30讲 抽屉原理(2)

六年级奥数   第30讲  抽屉原理(2)

第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例1、幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。

这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。

至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。

活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。

问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。

其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。

某班有52名学生。

问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。

抽屉原理(2)

抽屉原理(2)
情感与态度与价值观:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力
重点、难点
教学重点:经历“抽屉原理”的探究过程,会用有余数的除法解决“抽屉原理”的实际问题。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教法学法
运用启发式和问题目标教学法
教具学具
备课专用稿纸
课题
抽屉原理(2)
总第27时
主备教师
崔荷红
备课时间
课型
新授
授课教师
授课时间
授课班级
教学目标
知识与技能:通过猜测、验证、观察、分析等数学活动,发现规律,建立数学模型,渗透“建模”思想。会用“抽屉原理”解决实际问题。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
小黑板
教学过程
学生活动
时间
一、复习引入
1.三个小朋友同行,其中必有两个小朋友性别相同。为什么?
2.你们13个人中至少有几个人属相相同。为什么?
3.我们班共55人,至少几个人的属相相同?为什么?
二、探究新知
学习例2
1.把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?学生动手摆一摆,说一说。
2.汇报思维过程。
(1)枚举法:根据摆放情况:有(5,0),(4,1),(3,2)三种情况。
(2)假设法:如果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
(3)5÷2=2……1(至少放2+1本)不难得出,总有一个抽屉至少放进3本。
3.自主探究,合作交流如果把7本书放进2个抽屉会有什么情况呢?9本呢?

第一讲 抽屉原理(二)

第一讲 抽屉原理(二)

抽屉原理(二)把所有整数按照除以某个自然数m 的余数分为m 类,叫做m 的剩余类或同余类,用[0],表示. 每一个类含有无穷多个数,例如中含有[1]m −[1],[2],[3],...,[1]1,21m m ++3m 1,1+,,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n +1个自然数中,总有两个自然数的差是n 的倍数.1. 证明:任取8个自然数,必有两个数的差是7的倍数.2. 求证: 从47个正整数中,一定可以找到两个正整数的差是46的倍数.3. 求证: 存在正整数使得. i N47|111i "个4. 从任意13个自然数中,总可以找到若干个数,它们的和是13的倍数. 1213,,,a a a "5. 对于任意的五个自然数,证明其中必有3个数的和能被3整除.6. 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.7. 对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.8. 证明:17个整数中,必可找到5个数,这5个数之和为5的倍数.9. 任给12个整数,证明:其中必存在8个数,将它们用适当的运算符号连起来后运算的结果是3 465的倍数.10. 对任给的63个互异的正整数,试证:其中一定存在四个正整数,仅用减号,乘号和括号将它们适当地组合为一个算式,其结果是1984的倍数.1,,a a "6311. 试证明:在17个不同的正整数中,必定存在若干个正整数,仅用减号、乘号和括号可将它们组成一个算式,算式的结果是21879的倍数。

12. 郑老师和肖同学是足球迷,同时又对趣味数学题感兴趣. 一次在看足球比赛时,肖同学说:我知道红方有20名队员,编号恰好是1到20,,今天上场的11名队员中,一定有一名队员的号码是另一名队员号码的偶数倍。

郑老师听后点点头,接着说:我还知道红队上场队员中每四名队员中,必定有两名队员号码之差是3的倍数。

抽屉原理(二)

抽屉原理(二)

抽屉原理(二)【专题导引】在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

【典型例题】【例1】幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?【试一试】1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。

这是为什么?【例2】布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?【试一试】1、布袋中有足够多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样,当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?【例3】某班共有46名学生,他们都参加了课外兴趣小组。

活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。

问班级中至少有几名学生参加的项目完全相同?【试一试】1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。

其中至少有几位同学订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。

某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?【例4】从1至30中,至少要取出几个不同的数,才能保证其中一定有一个数是3的倍数?【试一试】1、在1,2,3,……,49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?【﹡例5】将400张卡片分给若干名同学,每人都能分到,但都不超过11张,试证明:至少有七名同学得到的卡片的张数相同。

抽屉原理2

抽屉原理2

至少数 = 商数 + 1
至少数= 物体数÷抽屉数 +1
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有2 个同色的,最少要摸出几个球? 想一想: 1、在这道题中,什么是“物体”? 什么是“抽屉”?什么是“至少 数 ”? 2、从题目可知,问题相当于求抽屉 原理中的( 物体 )?怎样求?
3
1、如果盒子里有蓝、红、黄球各6个,从盒 子里摸出两个同色的球,至少要摸出几个球?
2、有红色、白色、黑色的筷子各10根混放在 一起,让你闭上眼睛去摸,让你闭上眼睛去摸, (1)你至少要摸出几根才敢保证有两根筷子 是同色的? (2)至少拿几根,才能保证有两双同色的筷 子?为什么?
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成一双,最 少要摸出几只? 物体:?只袜子 抽屉:2种颜色 至少数:2
(3)要保证取出的彩球中至少有两个是同 色的,则至少应取出多少个球?
物体:57位同学
抽屉:12个月
57÷12=4……9 4+1=5(人)
2、把15个球放进4个箱子里, 至少有( 4 )个球要放进同 一个箱子里。 物体:15个球
抽屉:4个箱子
15÷4=3……3 3+1=4(个)
3、把红、黄两种颜色的球各6 个放到一个袋子里,任意取出5 个,至少有(3)个同色。
物体:5个球 抽屉:2种颜色
抽屉原理(二)
把4枝笔放进3个笔筒里,不管怎么放,总 有一个笔筒里至少放进2枝笔.
2、把27个苹果放在4个筐,不管怎么放, 总有一个筐里至少放进( )个苹果。
计算绝招
至少数 = 商数 + 1
至少数= 物体数÷抽屉数 +1
要把a个物体放进n个抽屉, 如果a÷n =b …… c

抽屉原理(2)

抽屉原理(2)

例1 ①求证:任意25个人中,至少有3个人的属相相同.②要想保证至少有5个人的属相相同,但不能保证有6个人属相相同,那么人的总数应在什么范围内?例2 放体育用品的仓库里有许多足球、排球和篮球.有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球.问:至少有多少名同学所拿的球种类是完全一样的?例3 一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证①至少有5张牌的花色相同;②四种花色的牌都有;③至少有3张牌是红桃。

例4 平面上给定17个点,如果任意三个点中总有两个点之间的距离小于1,证明:在这17个点中必有9个点可以落在同一半径为1的圆内。

例5 把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17。

例6 在边长为3米的正方形内,任意放入28个点,求证:必有4个点,以它们为顶点的四边形的面积不超过1平方米。

分析与解答根据题目的结论,考虑把这个大正方形分割成面积为1平方米的9个小正方形(如右图)。

例1 平面上有A、B、C、D、E、F六个点,其中没有三点共线,每两点之间任意选用红线或蓝线连接,求证:不管怎样连接,至少存在一个三边同色的三角形。

例2 从同一个小学毕业的同学之间的关系可以分为三个等级:关系密切、一般关系、毫无关系.请你证明在这个学校的17名校友中.至少有三个人,他们之间的关系是同一个等级的。

例3 用黑、白两种颜色把一个2×5(即2行5列)的长方形中的每个小方格都随意染一种颜色.证明:必有两列,它们的涂色方式完全相同。

例4 如果有一个3×n的方格阵列,每一列的三个方格都任意用红、黄、蓝、绿四色之三染成三种不同颜色,问n至少是多少时,才能保证至少有3列的染色方式完全相同。

例5 对一块3行7列的长方形阵列中的小方格的每一格任意染成黑色或白色,求证:在这个长方形中,一定有一个由小方格组成的长方形,它的四个角上的小方格同色。

例6 用黑、白两种颜色将一个5×5的长方形中的小方格随意染色.求证:在这个长方形中一定有一个由小方格组成的长方形,它的四个角上的小方格同色。

抽屉原理(二)— 数论中的抽屉原理

抽屉原理(二)— 数论中的抽屉原理

数论中的抽屉原理(组合)一、数论中的抽屉原理& 最不利原则——“和差倍”1. 题型(1)两数之和或两数之差是m(2)两数之和或两数之差是m的倍数2. 解题思路题型(1)根据题意构造抽屉题型(2)根据余数的特征进行分组,构造抽屉二、注意事项1. 相邻两数必互质。

题型一:根据题意构造抽屉1.从2、4、6、…、30这15个偶数中,至少选出多少个数,才能保证其中一定有两个数之和是34 .2.从1 ~ 11这11个自然数中,至少选出多少个数,才能保证其中一定有两个数之和是12 .3.从1 ~ 99这99个自然数中,最多选出多少个数,使得其中每两个数之和都不等于100?4.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍。

5.从1 ~ 21这21个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?6.从1 ~ 99这99个自然数中,最多可以取出多少个数,使得其中每两个数之差都不等于5?7.如果在1,2,… …,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大是多少?8.从1 ~ 50这50个自然数中,至少选出多少个数,才能保证其中必有两个数互质?题型二:根据余数构造抽屉1.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除。

2.至少取几个数,才能保证一定有两个数的差是7的倍数?3. 1 ~ 17中,至少拿出多少个数才能保证:(1)里面一定有5的倍数?(2)一定有两个数的和是5的倍数?4. 1 ~ 35中,至少拿出多少个数才能保证一定有两个数的和是8的倍数?5.从1至17这17个自然数中取出若干个数,使其中任意两个数的和都不能被5整除.请问:最多能取出多少个数?6.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。

巩固练习1.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?2.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差是4的倍数?3.从1 ~ 25这25个自然数中,至少取出多少个数,才能保证其中必有两数的和是6的倍数?4.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问:最多能取出多少个数?5.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?。

抽屉原理(二)小学数学六年级从课本到奥数举一反三第十周数学广角第2节

抽屉原理(二)小学数学六年级从课本到奥数举一反三第十周数学广角第2节
1、实验小学今年新入学的一年级新生中,有237人是同一年出生的, 这些新生中,至少有多少人是同一年的同一个月出生的?
答案
小学数学六年级第二学期
解析: 解: 237÷12=19·····9,所以,新生中至少有19+1=20人是同一 年同一个月出生的。
小学数学六年级第二学期
2.有红、黄、蓝、白四种颜色的小球各10个,混合后放在一个不透 明的布袋中,那么,一次至少摸出多少个,才能保证有7个小球的颜 色是相同的?
解析:
解:每次摸出的结果可能是两个球的颜色相同,有3种可能,或 颜色不同,也有3种可能,共6种可能。最不利的情况是每种可能 各出现4次,则再摸一次就能保证有5次摸出的结果相同,6 ×4+1=25,所以,至少需要摸球25次。
小学数学六年级第二学期
6、用数字1、2、3、4、5、6填满一个6×6的方格表,如图所示,每 个小方格只能填其×2正方格的“标示数”,问能否给出一种填法,使任意 两个“标示数”均不相同?如果能,请举出一例,如果不能,请说明 理由。
答案
小学数学六年级第二学期
解析: 解: 6×4+1=25个,所以,一次至少摸出25个,才能保证7个小 球的颜色相同。
小学数学六年级第二学期
3.幼儿园大班有35个小朋友,现在将78件玩具分给小朋友,是否有 小朋友会得到3件或者3件以上的玩具?
答案
小学数学六年级第二学期
解析: 解:78 ÷35=2·······8,所以,一定有小朋友会得到3件或者 三件以上的玩具。
答案
小学数学六年级第二学期
解析:
解: 根据抽屉原理原则二,60÷7=8·····4,所以,至少有9人浏览的地 方完全相同。
小学数学六年级第二学期
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理
教学内容:教材第70、71页的例1、例2
教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。

教学重点:认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。

教学方法:小组合作,自主探究。

教学准备:若干根小棒,4个纸杯。

教学过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

二、自主学习,初步感知
(一)出示例1:4枝铅笔,3个文具盒。

1、观察猜测
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。

(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。

(3)交流讨论,汇报。

可能如下:
第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。

第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放3枝。

剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

(4)、比较优化。

请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100
枝铅笔放进99个盒子里呢?怎样解释这一现象?
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

3、引导发现
只要放的铅笔数比盒子的数量多1[3] ,不管怎么放,总有一个盒子里至少放进2枝铅笔。

(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?
1、学生尝试自已探究。

2、交流探究的结果,可能如下:
1)枚举法。

共有3种情况。

在任何一种结果中,总有一个抽屉至少放进3本书
2)假设法。

把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。

把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。

3、观察发现
学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。

这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、应用原理,解决问题
完成教材第72页“做一做”第1题
四、全课总结,回归生活
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?。

相关文档
最新文档