茶叶的碳化 做超级电容
炭材料在超级电容器中的应用研究

炭材料在超级电容器中的应用研究随着能源需求的不断增加,寻找一种足够高效和持久的能源储存方案变得愈发重要。
超级电容器因其高功率密度、长寿命、低内阻等特点一直备受关注。
然而,制造成本和能量密度限制了超级电容器的应用。
为了克服这些限制,许多研究人员开始探索使用新材料制造电极来提高超级电容器的能量密度。
其中,炭材料的应用已经成为了一种具有潜力的解决方案。
炭材料在超级电容器中的应用由来已久。
早在20世纪80年代,科学家们就开始探索炭材料在电极中的应用。
然而,此时的炭材料几乎都是天然炭,制备成本高昂,难以实现大规模应用。
随着科技的进步,特别是以石墨烯和碳纳米管为代表的二维炭材料的研究突破,炭材料在超级电容器中的应用再次受到关注。
二维炭材料在超级电容器中的应用较为广泛。
这些材料因其高比表面积,提供了更多的储能空间,因此被认为是提高电容器能量密度的潜在解决方案。
二维炭材料有许多种,如石墨烯、氧化石墨烯、碳纳米管、石墨烯氧化物等,其中最为常见和热门的是石墨烯。
石墨烯的应用范围广泛。
石墨烯的特殊结构使其具有许多优异的性质,如高导电率、高电子迁移速率、高比表面积等。
更重要的是,石墨烯的化学稳定性很高,几乎不受腐蚀。
这些性质使石墨烯成为制造电容器电极的理想材料。
然而,炭材料仍然存在着一些限制。
制造石墨烯的成本还很高,生产过程很复杂;虽然石墨烯具有高导电率,但它的比电容容量(即储能密度)相对较低,需要在其他方面进行优化。
为了最大化石墨烯的能量密度,研究人员开发出了一些新的制备方法。
研究表明,用氮、硼等元素掺杂石墨烯,可以显著提高其储能密度。
此外,将石墨烯与纳米结构材料(如无定形碳、金属氧化物等)结合来制备超级电容器电极,也能大大提高电容器的储能性能。
总之,炭材料的应用是超级电容器技术研究领域的一个热门话题。
虽然炭材料还需要进一步的研究和实验来解决已知的问题,但它具有潜力成为电容器电极中最有前途的材料之一。
随着制备技术的不断完善和新的复合材料的发现,炭材料所带来的突破性进展将为未来能源存储方案的优化和发展提供新的可能。
超级电容器制作

超级电容器的制作方法超级电容器用活性炭的处理方法一种超级电容器用活性炭的处理方法,其特征是用金属离子Al3+、Li+、Zn2+、Cu2+、Tl+、Pb2+中的任何一种在活性炭表面进行欠电位沉积,为电化学双层电容器提供法拉第准电容。
可以将所述离子溶液的任一种加入超级电容器KoH电解液中,也可以用所述离子溶液的任一种修饰活性炭粉,使其微孔里沉积该种离子。
采用本发明制得的超级容器与蓄电池或其它电池配合组成复合电池,解决现有电池不能满足高功率、大容量、快充电要求的难题,广泛用于航天、军事、交通、电力、通信等重要部门,有重要现实意义和广阔的前景。
使用超级电容器的电子定时器及其方法一种使用超级电容器的电子定时器及其方法,其是由一个可变电阻器,一个超级电容器及一个电磁继电器组成。
当一主电源被关闭后,由超级电容器对电磁继电器供电,将可延长或促动一负载的运作,直到超级电容器停止放电。
结合可变电阻器与其它两个组件,则超级电容器的放电时间可被可变电阻器线性地改变,因此产生负载的迟滞调整及促动时间的线性配置。
此种简单、小型且便宜的定时器可用于室内与室外照明,安全侦测系统及激活系统。
超级电容器的可极化电极炭材料及制备方法本发明涉及超级电容器的可极化电极炭材料及其制备方法。
它包含这种材料的电极及该电极的超级电容器。
本发明的极化电极炭材料是采用市售活性炭经固/液异相化学反应制得的。
该化学改性的活性炭比表面积为600~1300m2g-1,氮元素含量0.1~5.0%,微孔容积与总孔容积之比≥0.8,粒度范围为1μm~30μm,在非水电解质溶液中,该活性炭极化电极比容量可达41Fg-1。
车用高比能量超级电容器一种具有大容量、高性能、长寿命及充放电速度快的车用超级电容器;包括第一电极、第二电极、电解液、集流体、隔膜和外壳,第一电极的绝对电容量大于第二电极的绝对电容量,且第二电极中电极材料是由通过双电层原理或准电容原理存储能量的材料制成,第一电极中电极材料是由通过法拉第过程或准电容原理存储能量的材料制成,所述的电解液为有机溶液。
超级电容介质类型

超级电容介质类型
超级电容(Supercapacitor)是一种新型的电化学储能设备,其电容量高达百至千倍的电解电容器,具有高功率密度、快速充放电、长寿命等特点。
而超级电容介质则是超级电容器中起到重要作用的一部分,其质量和性能直接影响到超级电容器的性能。
超级电容介质主要有三种类型:活性炭、金属氧化物和聚合物。
一、活性炭
活性炭是目前最常用的超级电容介质,其由高比表面积的碳材料制成。
活性炭的电容量取决于其比表面积,具体来说,其电容量正比于比表面积的平方根。
因此,活性炭的比表面积越大,其电容量就越高。
活性炭超级电容器具有低内阻、高电容量、长寿命等优点,广泛应用于储能设备、电动车辆、医疗器械等领域。
二、金属氧化物
金属氧化物是一种新型的超级电容介质。
其电容量较高,且具有良好的稳定性和可靠性。
金属氧化物超级电容器的性能主要取决于金属氧化物的比表面积和导电性。
目前,钼酸锂、钴酸锂等金属氧化物已经广泛研究并应用于超级电容器。
三、聚合物
聚合物是一种新型的超级电容介质,其特点是具有较高的电容量和较低的内阻。
聚合物超级电容器具有高能量密度、高功率密度、长寿命、较低的内阻等优点,适用于电力系统、智能电网、新能源汽车等领域。
目前,聚苯胺、聚合物电解质等聚合物已经成为研究的热点。
总结
超级电容器是一种新型的储能设备,其性能取决于超级电容介质的质量和性能。
目前,活性炭、金属氧化物和聚合物是超级电容器常用的介质类型,分别具有不同的优点和适用范围。
未来,随着科技的不断发展,超级电容器的应用领域将更加广泛,超级电容介质也将会有更多的创新和发展。
超级电容器工作原理

超级电容器工作原理超级电容器,也被称为超级电容或超级电容器电池,是一种能够快速存储和释放大量电能的电子设备。
它采用了一种不同于传统电池的工作原理,使其具有高电容量、高能量密度和长寿命等优点。
本文将详细介绍超级电容器的工作原理及其相关技术。
1. 引言超级电容器是一种储存电能的设备,它主要由两个电极和介质组成。
与传统电容器不同的是,超级电容器的电极材料采用活性炭、金属氧化物等高表面积材料,以增加其电容量。
超级电容器以其高电容量和高功率密度的特点,被广泛应用于电动车辆、储能系统、风力发电站等领域。
2. 超级电容器的工作原理超级电容器的工作原理基于电荷的分离和储存。
当超级电容器处于放电状态时,正极电极上的正离子会向负极电极移动,负离子则相反。
这个过程是通过电解质中的离子在电场作用下进行的。
当电荷在电极表面积增加时,电容量也会相应增加。
3. 超级电容器的构造超级电容器的构造通常包括电极、电解质和隔膜。
电极是超级电容器的核心部件,它由活性炭或金属氧化物等高表面积材料制成。
电解质是指填充在电极之间的介质,它能够传导离子并分离正负电荷。
隔膜则用于隔离正负电极,防止直接接触。
4. 超级电容器的充放电过程超级电容器的充放电过程是通过控制电压和电流来实现的。
当超级电容器处于充电状态时,外部电源会提供电流,使正极电极上的离子向负极电极移动,同时负离子也相反。
这个过程中,电极表面积的增加导致电容量的增加。
当超级电容器处于放电状态时,电极上的离子会回到原来的位置,释放储存的电能。
5. 超级电容器的性能参数超级电容器的性能参数包括电容量、电压范围、内阻和能量密度等。
电容量是指超级电容器可以存储的电荷量,通常以法拉(F)为单位。
电压范围是指超级电容器可以承受的最大电压。
内阻是指超级电容器内部电阻,影响其充放电效率。
能量密度是指单位体积或质量的超级电容器可以存储的能量。
6. 超级电容器的应用超级电容器由于其特殊的性能优势,被广泛应用于各个领域。
茶碳技术

茶碳技术吴信达一、技术说明:茶叶除了可以在人文上发展之外,经由备制碳材技术更可增加其价值。
此技术石墨化制程,实际运用于锂电池正极材料添加至导电材料,在科技上茶叶也能成为新的碳材元素之一。
茶叶备制碳元素,可以保留茶叶本体纤维结构优点,因此本研究提供一种新的备制方法,经由特殊烧结技术及气体逆流技术备制, 450~950℃碳化,茶碳化率27-30%,回收纯化量高达80%以上。
同时解决回收茶叶再利用、碳化之烧结方法、以及从解决研磨机之损耗得到良好的碳纤维结构成为展新的研究。
本技术目前已有于统一实业企业产学合作及2015年德国纽伦堡国际发明展-银牌奖及中国特别奖(Tea - Graphite Technology for Production Method)。
二、技术成果:在OM下,与实际植物维管束购照图比对,证实茶叶石墨碳化后,仍保有本体纤维多孔构造,450~950℃烧结完后的茶叶,仍然保持叶片形貌。
1.如图说明,本技术多孔材料特征技术。
2.实际图-烧结后植物叶脉组织實際圖對照圖3.实际图-烧结后植物维管束三、创新价值:1.是一新的多孔奈米碳材料。
2.回收茶叶,备制再利用,可大量降低成本。
a.产量以泡过回收茶叶为例:一般泡过茶叶含碳量约27%,以1Kg可生产250g,内包含损失量及其他研磨损失量。
b.实验级可储电用之导电石墨材料10Kg产量成本约7-8us,传统导电石墨材料约11-13us。
c.可减少石化之用量,导入国际议题绿能产业。
3.可将利用过的茶叶回收再备制成导电材料。
4.以特殊烧结技术及气体逆流技术备制,可保留茶叶本体纤维结构。
5.利用特殊烧结法,可省去保护气体的成本。
6.可利用植物纤维、落叶及叶菜类储余......等,重新回收再备制。
四、市场运用:1.电池之导电材料填加。
2.电极导电材料。
3.氢反应触媒载体。
4.多孔石墨应用材料。
5.活性碳。
6.磷酸锂铁电池电芯厂之运用。
7.电动车使用之电池材料。
超级电容碳制备

超级电容碳制备一、超级电容碳是啥超级电容碳啊,那可真是个超有趣的东西呢。
就像是一个小小的能量仓库,能储存好多能量。
它在超级电容器里可是超级重要的组成部分哦。
超级电容器大家可能都知道一点,就是那种充电特别快,而且还能反复充电好多好多回的东西。
超级电容碳就像是这个超级电容器的心脏一样,没有它,超级电容器可就没法好好工作啦。
二、制备超级电容碳的原料那制作这个超级电容碳需要啥原料呢?这可就有不少啦。
比如说一些富含碳的材料,像活性炭之类的。
活性炭大家应该不陌生吧,家里有时候除异味就会用到它呢。
还有一些生物质材料也能用来制备超级电容碳哦,像木头啊、秸秆之类的。
这些东西在大自然里到处都是,取材可方便啦。
不过呢,不同的原料制备出来的超级电容碳性能可能会有点不一样呢。
三、超级电容碳的制备方法1. 物理法物理法制备超级电容碳就是利用一些物理手段来处理原料。
比如说高温碳化,把原料放在高温的环境下,让它里面的一些成分发生变化,变成我们想要的超级电容碳。
就像烤蛋糕一样,把原料放进烤箱,通过合适的温度和时间,就烤出了美味的蛋糕。
高温碳化的时候呢,温度的控制很关键哦。
要是温度太高了,可能就把碳给烤坏了,要是温度太低呢,又达不到我们想要的效果。
2. 化学法化学法相对来说就更复杂一些啦。
它会用到一些化学试剂来处理原料。
比如说用酸或者碱来处理,这样可以改变原料的结构,让它更容易变成超级电容碳。
但是呢,化学法也有个小麻烦,就是那些化学试剂要是处理不好,可能会对环境造成污染呢。
所以在使用化学法的时候,一定要特别小心地处理那些化学试剂,可不能随便乱倒哦。
四、超级电容碳制备的小窍门其实在制备超级电容碳的时候,还有一些小窍门呢。
比如说在原料的选择上,可以选择一些纯度比较高的原料,这样制备出来的超级电容碳质量可能会更好。
还有就是在制备的过程中,可以适当地加入一些添加剂,这些添加剂就像是调味料一样,可以让超级电容碳的性能变得更棒。
不过呢,这些添加剂的种类和用量都要经过仔细的研究和实验,不能瞎加哦。
成型机制炭在超级电容器中的能量存储性能研究
成型机制炭在超级电容器中的能量存储性能研究超级电容器是一种能够快速存储和释放大量电荷的能量存储设备。
它具有高功率密度、长循环寿命和快速充放电速度的特点,成为了电动车、电网蓄能和可再生能源等领域的重要组成部分。
目前,超级电容器的电极材料中,成型机制炭因其高比表面积、良好的电导性和化学稳定性而备受关注。
本文将讨论成型机制炭在超级电容器中的能量存储性能,并重点介绍其制备方法和改性策略。
首先,成型机制炭的制备方法对超级电容器的性能至关重要。
一种常用的制备方法是碳化物热解法,通过将含碳化物的前驱体经过高温热解得到石墨化碳材料。
碳化物热解法具有制备工艺简单、成本低廉的优势,但存在着杂质残留和孔隙度不足的问题。
为了解决这些问题,一些研究者采用了模板法,在合成过程中使用模板剂来增加孔隙度,提高成型机制炭的比表面积。
同时,化学气相沉积法也是一种常用的制备方法,通过将沉积气体在高温条件下分解、反应形成成型机制炭。
这种方法可以控制成型机制炭的孔径分布和晶格结构,从而提高其电化学性能。
其次,成型机制炭的改性策略也对提高超级电容器的性能起到关键作用。
一种常用的改性策略是通过掺杂或复合方法引入其他元素,如氮、硫、硼等。
掺杂和复合可以调节成型机制炭的电子结构和孔隙结构,提高其储能容量和电导率。
此外,表面的功能化修饰也是一种有效的改性策略。
研究发现,将成型机制炭表面修饰为亲水性或有机官能团可以提高其电化学性能,如降低电极/electrolyte界面的电阻,提高电荷传输速率。
这些改性策略的引入可以显著提高成型机制炭在超级电容器中的能量存储性能。
最后,成型机制炭的能量存储性能的研究关注点主要包括容量、循环寿命和充放电速度。
容量是指超级电容器存储的能量大小,成型机制炭的高比表面积可以实现更高的电容量。
研究人员通过调节成型机制炭的孔径和孔隙度,使其具有更大的比表面积和更广的储能容量范围。
此外,循环寿命是超级电容器的重要性能指标之一,成型机制炭的化学稳定性和高电导率可以保证其较长的循环寿命。
黑茶茶梗衍生多孔碳的制备及其超级电容性能研究
黑茶茶梗衍生多孔碳的制备及其超级电容性能研究
陈佳音;李庚申;吉政宇;张丫;刘靓;张幸;黄美玲;刘正
【期刊名称】《材料科学》
【年(卷),期】2022(12)11
【摘要】本论文以黑茶茶梗为原料,先加入浓硫酸通过水热反应进行预炭化处理,再以氢氧化钾为化学活化剂,通过高温碳化,制备出由黑茶茶梗衍生的多孔活性炭。
在
实验中通过改变氢氧化钾与茶梗的质量比例,制得了三种不同的生物质衍生活性炭(DTS-AC-1、DTS-AC-2、DTS-AC-3)。
通过扫描电子显微镜、X射线衍射和拉曼光谱分析表征了样品的形貌、结构和组成。
将这三种材料分别制成电极研究其对称型超级电容器性能。
通过电化学性能测试表明,DTS-AC-3具有最优的电化学性能。
在1 A∙g−1的电流密度下,DTS-AC-3的比电容达到105.7 F∙g−1,可见黑茶茶梗衍生多孔碳作为超级电容器电极材料具有一定的应用潜力。
【总页数】10页(P1088-1097)
【作者】陈佳音;李庚申;吉政宇;张丫;刘靓;张幸;黄美玲;刘正
【作者单位】湖南城市学院材料与化学工程学院益阳
【正文语种】中文
【中图分类】TM5
【相关文献】
1.柚子皮衍生的分级多孔碳作为高性能超级电容器的电极材料
2.多孔二氧化锰/鱼
鳞衍生碳复合材料的
制备及超级电容器性能研究3.氮掺杂石墨烯量子点/MOF衍生多孔碳纳米片构筑高性能超级电容器4.菊花茶衍生多孔碳的制备及其超级电容器性能研究5.氮掺杂多孔碳布制备及超级电容器性能研究
因版权原因,仅展示原文概要,查看原文内容请购买。
茶叶叶底碳化的原理
茶叶叶底碳化的原理
茶叶叶底碳化的原理是通过高温烘焙或烧制,将茶叶中的有机物质分解为碳。
在高温的作用下,茶叶中的碳水化合物、蛋白质、脂类等有机物质会发生燃烧,产生水、二氧化碳等气体,并生成残留的固体碳。
碳化过程中,茶叶的颜色会由绿色或红褐色逐渐变为黑色。
碳化的茶叶叶底通常具有焦香味、纯黑色,质地干燥且脆硬。
茶叶叶底碳化的原理是利用高温将茶叶中的有机物质热解分解,将碳从有机状态转变为无机状态。
这个过程中,茶叶中的糖类、脂肪、蛋白质等有机成分会产生不同程度的分解和焦化。
碳化后,茶叶中的有机物质减少,而碳含量增加,使得茶叶的叶底变得干燥、脆硬,且香气更加浓郁。
普洱茶碳化的原理
普洱茶碳化的原理
普洱茶碳化是指将普洱茶叶进行高温热处理,使其发生化学变化,形成新的香气和口感。
其主要原理是在高温下,茶叶中的物质发生热解反应,产生大量的挥发性有机物和碳化物,而挥发性有机物就是普洱茶特有的陈香。
此外,碳化后的茶叶还会变得软化和润滑,口感更加柔和。
同时,碳化也会使茶叶中的咖啡碱等成分减少,使茶味更加清爽。
因此,普洱茶碳化是普洱茶制作的重要工艺之一,也是普洱茶品质提升的关键之一。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Electrochimica Acta 87 (2013) 401–408Contents lists available at SciVerse ScienceDirectElectrochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taPromising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodesChao Peng a ,b ,c ,Xing-bin Yan a ,b ,∗,Ru-tao Wang a ,b ,Jun-wei Lang a ,b ,Yu-jing Ou b ,Qun-ji Xue baLaboratory of Clean Energy Chemistry and Materials,Lanzhou Institute of Chemical Physics,Chinese Academy of Science,Lanzhou 730000,PR China bState Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese of Academy of Sciences,Lanzhou 730000,PR China cSchool of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050,PR Chinaa r t i c l ei n f oArticle history:Received 29May 2012Received in revised form 17September 2012Accepted 18September 2012Available online 8 October 2012Keywords:Activated carbon Tea-leavesSupercapacitors Carbonization Activationa b s t r a c tIn this paper,five types of waste tea-leaves,which come from five of the most typical tea in China,are first used to prepare activated carbons (ACs)by high-temperature carbonization and activation with KOH.The resulting ACs show typical amorphous character,and display porous structures with high specific surface areas ranging from 2245m 2g −1to 2841m 2g −1.As the electro-active electrode materials,the as-made five ACs exhibit ideal capacitive behaviors in aqueous KOH electrolyte,and the maximal specific capacitance is as high as 330F g −1at the current density of 1A g −1.Furthermore,they all show excellent electrochemical cycle stability with ∼92%initial capacitance being retained after 2000cycles.The desirable capacitive performances enable the waste tea-leaves to act as a new biomass source of carbonaceous materials for high performance supercapacitors and low-cost energy storage devices.© 2012 Elsevier Ltd. All rights reserved.1.IntroductionChina is the homeland of tea,which has been producing and drinking for thousands of years.According to statistics available,the production quantity of Chinese tea was about 1,450,000tons in only 2010,and about 400,000tons were exported u-ally,after people drink tea,most of the waste tea-leaves (WTLs)are discarded as useless materials.However,as we know,the chem-ical compositions of TLs mainly contain 3.5–7.0%of the inorganic substance and 93.0–96.5%of the organism.Thus,the disuse of the WTLs is a kind of huge wasting of resources,and it is very necessary to recycle the WTLs.Nowadays,considering the business cost and energy/environmental concerns,the use of biomass materials to pro-duce activated carbons (ACs)becomes one of the hot topics.Until now,various biomass materials,such as dates’stones,coconut shells,pitch coke,wood,rice husk,walnut shell,banana peel and fungi [1–10],have been used as the precursors to produce ACs,and as-obtained ACs have been served as electrode materials,catalyst carriers and adsorbents [6,7,9–15].As a kind of energy storage/conversion devices,supercapacitors exhibit higher power density and longer cycling life than com-mon batteries,and much higher energy density compared with∗Corresponding author.Tel.:+869314968055;fax:+869314968055.E-mail address:xbyan@ (X.-b.Yan).traditional dielectric capacitors [16,17].On the basis of the charge storage mechanism,supercapacitors are basically classified into the electric double-lay capacitors (EDLCs,capacitance from the electro-static charge accumulation at the electrode–electrolyte interface),pseudocapacitors (capacitance from fast and reversible redox pro-cesses at the electroactive material surface)and hybrid capacitors (attributed to the EDL capacitance and the pseudocapacitance)[18].In present,various carbon materials are widely used for super-capacitors’electrode materials,including ACs,carbon nanotubes,carbon nanofibers and graphene sheets and so on [7,19–21].Espe-cially,ACs with porous structure and high specific surface area have attracted much interest due to an array of their exceptional char-acteristics including moderate cost,good chemical stability and high electrical conductivity.Generally,AC materials for supercap-acitors electrodes are fabricated by a straightforward and feasible two-process that consists of carbonization followed by activation.Pyrolysis is occurred in an inert gas atmosphere,such as nitrogen and argon [10,22].Whereas,activation is usually carried out via a high temperature process that involves the chemical etching agent of zinc chloride,potassium hydroxide,potassium carbonate and phosphoric acid [1,7,23–25].Among them,potassium hydroxide as an activator has been successfully used to enhance the porosity of the carbon fibers,carbon nanotubes and graphene and to improve their supercapacitive performances [20,26,27].In this paper,we choose five types of typical Chinese TLs,includ-ing Bi luo chun,Tie guan yin,Pu’er tea,Long jing and Mao feng,as the precursors to prepare ACs by high-temperature carbonization in0013-4686/$–see front matter © 2012 Elsevier Ltd. All rights reserved./10.1016/j.electacta.2012.09.082402 C.Peng et al./Electrochimica Acta87 (2013) 401–408argon atmosphere followed by KOH activation.The electrochemical properties of as-made ACs were estimated by cyclic voltammetry (CV),galvanostatic charge/discharge(GCD)and electrochemical impedance spectroscopy(EIS).As the results,as-made porous ACs show very high specific surface areas and high specific capacitance. Among them,the Bi luo chun-derived AC exhibits the highest spe-cific capacitance of330F g−1under a three-electrode system.In addition,these porous AC electrodes all show good cycling stabil-ity.These properties possibly enable these WTLs to act as a new biomass source of carbonaceous materials for high-performance supercapacitors.2.Experimental2.1.Preparation of activated carbonBi luo chun(B),Tie guan yin(T),Pu’er tea(P),Long jing(L)and Mao feng(M),were purchased from a local tea-shop.The TLs were first marinated in boiling water means that the TLs were soaked in the boiling water until the water temperature reach to room temperature.The dried WTLs were pyrolyzed at600◦C for2h in a horizontal tube furnace with an argonflow of40sccm,to obtain carbon-ated products(denoted as X-C,X is corresponding to the B,T,P, L and M).KOH activation of the X-C was as follows:briefly,a given mass of X-C was impregnated using KOH aqueous solution(the mass ratio of KOH/X-C was4),followed by an evaporation step at80◦C under vacuum atmosphere.The dried KOH/X-C mixture was heated at800◦C for1h in the horizontal tube furnace with the same argonflow and a raising speed of5◦C/min.After being cooled down to room temperature inflowing argonflow,the prod-uct was neutralized by the1M HCl solution until a pH value of7was reached.Subsequently,as-obtained AC(denoted as X-AC)wasfil-tered,washed with ultra-pure water,and dried at60◦C in ambient for10h.2.2.Structural characterizationThe morphology and microstructure of the obtained prod-ucts were investigated using afield emission scanning electron microscope(FE-SEM,JSM-6701F).The chemical compositions of thefive carbon samples were analyzed by Fourier transformation infrared spectroscopy(FTIR)using a Bruker IFS66V FTIR spec-trometer.Crystallite structures were determined by a powder X-ray diffraction(XRD,X’Pert Pro,Philips)using Cu K␣radia-tion from10◦to70◦.Nitrogen adsorption–desorption isotherm measurements were performed on a Micrometitics ASAP2020 volumetric adsorption analyzer at77K.Prior to the adsorption experiments,all X-AC samples were adopted through degassing process at200◦C for4h to eliminate the surface gaseous contami-nants.The Brunauer–Emmett–Teller(BET)method was utilized to calculate the specific surface area of each sample and the pore-size distribution was derived from the adsorption branch of the corresponding isotherm using the Barrett–Joyner–Halenda(BJH) method.The total pore volume was estimated from the amount adsorbed at a relative pressure of P/P0=0.99.2.3.Electrode preparation and electrochemical measurementsThe working electrodes were prepared as follows:typically, 80wt.%of X-AC was mixed with7.5wt.%of acetylene black(>99.9%) and7.5wt.%of conducting graphite in an agate mortar until a homogeneous black powder was obtained.To this mixture,5wt.% of poly(tetrafluoroethylene)was added with a few drops of ethanol. After briefly allowing the solvent to evaporate,the resulting paste was pressed at10MPa to the nickel gauze with a nickel wire for an electric connection.The assembled electrodes were dried for16h at 80◦C in air.Each electrode contained about8mg of X-AC material and had a geometric surface area of about1cm2.The electrochemical measurements of each as-prepared elec-trode were carried out by an electrochemical working station (CHI660D,Shanghai,China)using a three-electrode system in2M KOH electrolyte at room temperature.A platinum sheet electrode and a saturated calomel electrode served as the counter electrode and the reference electrode.The CV measurements were conducted with a potential window from−1.1V to−0.1V at different sweep rates ranging from5mV s−1to200mV s−1.EIS analyses were recorded with using another electrochemi-cal working station(Autolab,Switzerland)from10kHz to0.1Hz with alternate current amplitude of10mV,at open circuit poten-tial and in2M KOH aqueous electrolyte.GCD measurements were run on from−1.1V to−0.1V at different current densities.The corresponding specific capacitance was calculated from:C=I( E/ t)×m(1)where C is the specific capacitance,I is the constant discharging current,dE/dt indicates the slope of the discharging curves,and m is the mass of the corresponding electrode material.3.Results and discussion3.1.Structure and morphology of thefive type X-ACsIn China,Bi luo chun(B),Tie guan yin(T),Pu’er tea(P),Long jing (L)and Mao feng(M)arefive of the most typical tea.Fig.1shows the photographs of thefive TLs before and after water marinat-ing.For an example of Long jing,Fig.2shows a typical preparation schematic of porous AC derived from the dried WTLs by pyrolyzing under argon atmosphere and KOH activation.As we mentioned before,KOH activation has been widely used on various carbon materials,to increase surface area and improve electrochemical performance.When the activation temperature is higher than700◦C,chemical reactions are mostly as the process: 6KOH+2C→2K+3H2+2K2CO3,and subsequent decomposition of K2CO3and/or reactions of K/K2CO3/CO2with the carbon[28,29]. In our synthesis,through the activation of the carbonated X-Cs with KOH at800◦C for1h,obvious weight-loss occurred and the yields offive types X-ACs are around0.5.We believe that,owing to the loss of carbon,a large amount of nano-scale pores will be generated in thefinal products.The nitrogen adsorption and desorption isotherms of the X-AC samples are showed in Fig.3A.According to the IUPAC classifica-tion,the B-AC and the P-AC exhibit type I isotherm curves[30].The major nitrogen adsorption occurs at relative pressures less than0.3. Relatively horizontal adsorption plateau appears at higher P/P0val-ues,indicating that the micropores are dominant in the B-AC and the P-AC.Certainly,there are still some mesopores in the two ACs because of the appearance of small hysteresis,as well as the little deviation from almost horizontal plateau in the isotherm curves [31].On the contrary,the samples of T-AC,L-AC and M-AC exhibit type IV isotherm curves with an obvious hysteresis loop associated with capillary condensation taking place in mesopores[32].Table1summarizes the specific surface area(SSA),pore volume and average pore size.It is obvious that KOH etching can build a lot of nano-scale pores,as a result that the all X-ACs have very high BET SSAs ranging from2245m2g−1to2941m2g−1and large pore volumes ranging from1.069cm3g−1to1.366cm3g−1,as well as the BJH pore size ranging from2.67nm to3.20nm.The BJH pore size distributions forfive ACs(Fig.3B)do not display a complete distribution near the lower pore size limit,indicates the existence of micropores.Among them,the B-AC sample shows the highestC.Peng et al./Electrochimica Acta87 (2013) 401–408403Fig.1.Photographs offive WTLs marinated in water:(A)Bi luo chun,(B)Tie guan yin,(C)Pu’er tea,(D)Long jing,and(E)Mao feng.Insets show the as-boughtTLs.Fig.2.Scheme of the production of the X-AC(X is the L here).SSA,the smallest pore diameter and the largest pore volume,which is one of the advantages of using KOH as an activating agent.Fig.4shows the XRD patterns of the as-prepared X-ACs.All XRD patterns show a broaden diffraction peak centered at43◦, corresponding to the(100)diffractions of graphitic carbon with the amorphous character.Considerable intensity of thefive types X-ACs in the low-angle scatter indicates the presence of a high den-sity of pores[27].FE-SEM images of the surface morphologies of the as-prepared X-ACs are shown in Fig.5.It can be seen that,on thefive types of particle surfaces,the number of the macropores is few,indicating the nano-scale pores are dominant in thefive samples.Among them,as seen from Fig.4D,a particle of the L-AC exhibits an obvious mesoporous surface,which is consistent with the observation from its nitrogen adsorption–desorption isotherm.In addition,the surface chemical component and the atomic concentrations of thefive carbon samples were evaluated XPS anal-yses as well,and the high-resolution C1s XPS spectra of all the carbon samples are present in Fig.6a–e.The deconvolution of C1sTable1BET measurements and the specific capacitances of thefive types of X-Cs and the correspondingfive types of X-ACs.Samples BET Surface area(m2g−1)Pore volume(cm3g−1)BJH pore size(nm)Specific capacitance(F g−1)B-C110.00921.5320B-AC2841 1.366 2.67330T-C130.01116.0712T-AC2540 1.255 2.99305P-C70.00544.8715P-AC2245 1.069 2.76293L-C80.00817.1820L-AC2607 1.350 3.20280M-C60.00317.0416M-AC2521 1.252 3.02275404 C.Peng et al./Electrochimica Acta 87 (2013) 401–408Fig.3.(A)Nitrogen adsorption–desorption isotherms for the five types of X-ACs.(B)Pore size distributions,which are calculated by the BJHmethods.Fig.4.XRD patterns of the five types of X-ACs.spectrum gives four peaks representing carbon atoms bonded to carbon and oxygen atoms.These four peaks are related to C C C bonds (284.7eV),C O bonds (286.4eV),C O bonds (287.7eV)and O C O bonds (289.7eV),respectively [33–35].The C O,C O and O C O fractions are as high as 21.58%,8.84%and 10.16%in B-AC sample,respectively,indication a significant amount of oxygen-containing groups.Furthermore,qualitative identification of functional groups was examined by FT-IR spectroscopy.Fig.6f shows the FT-IR spectra of five ACs materials over the range of 4000–400cm −1.It is clear seen that all spectra are very simi-lar.A broad band of O H stretching vibration presents at around 3,443cm −1,and bands at 1657,1438and 1050cm −1are corre-sponded to COO −anion stretching,C C vibrations in aromatic rings and C O stretching of ester [9,36,37].These oxygen-containing functional groups,such as pyrone-like functionalities (part of C O and C O)in the porous surfaces of carbon materials can make effects on the electrochemical capacitivebehaviors.Fig.5.SEM images of the as-prepared X-ACs:(A)B-AC,(B)T-AC,(C)P-AC,(D)L-AC and (E)M-AC.C.Peng et al./Electrochimica Acta 87 (2013) 401–408405Fig.6.The C 1s XPS spectra of activated carbon materials:(a)B-AC,(b)T-AC,(c)P-AC,(d)L-AC and (e)M-AC;(f)FTIR spectra of five ACs derived from waste tea-leaves.3.2.Electrochemical performances of the five types X-ACsFig.7shows the CV curves of five X-Cs and the corre-sponding five X-ACs electrodes obtained in 2M KOH electrolyte solution with a sweep rate of 5mV s −1.The X-Cs electrodes exhibit low current density responses (the peak current den-sities are all on the order of ∼10−3A g −1).Moreover,their CV curves all have an obvious induced current in negative potential and little response current in positive potential.However,com-pared with the X-Cs electrodes,the current density responses and the CV curve areas of the X-ACs electrodes are both much larger than those of the X-Cs electrodes.This indicates thatthe electrochemical performances of the X-ACs are remarkably enhanced owing to the KOH activation.Also,for the X-ACs electrodes,their CV curves exhibit ideal rectangular shape with-out obvious polarization from −1.1V to −0.1V.In addition,as seen from their CV plots,there is one pair of weak redox peaks (around −0.52V/−0.42V)and slightly polarization occurs on the positive and negative potential.The existence of redox peaks and polarizations are attributed to a certain number of oxygen-containing functional groups on the X-ACs surfaces.Of course,these results might be also due to the transition between quinone/hydroquinone groups,which is typical for carbon materi-als [38].Fig.7.CV curves for the five types of X-Cs before and after KOH activation,obtained at a sweep rate of 5mV s −1and in a 2M KOH aqueous electrolyte.A,B,C,D and E represent to the B-,T-,P-,L-and M-AC electrodes.406 C.Peng et al./Electrochimica Acta 87 (2013) 401–408Fig.8.GCD curves of the five types of X-Cs before and after KOH activation,obtained at a constant current density of 1A g −1,in the 2M KOH aqueous electrolyte and from −1.1V to −0.1V.A–E represent the B-,T-,P-,L-and M-AC electrodes.Fig.8displays the steady-state GCD curves for the five types X-Cs and their corresponding X-ACs at a constant current den-sity of 1A g −1.As shown in the GCD curves,the charge–discharge times of the X-ACs electrodes are much longer than those of the X-Cs electrodes,suggesting that the electrochemical capacitances of the X-ACs are remarkably enhanced by the KOH activation.Also,their plots present good linearity and symmetrical triangle,indicating good electric double-lay capacitor behaviors.According to the formula (1),the specific capacitance values can be calcu-lated,which are listed in Table 1.The specific capacitances of the five X-ACs electrodes are ranging from 275F g −1to 330F g −1.The values are comparable with those for most biomass-derived ACs (100–370F g −1)in aqueous electrolytes [6,7,10,39–42].More-over,as seen from Table 1,there is disproportion between the specific capacitance and the specific surface area.It is due to that not all pores are effective in charge accumulation at the electrode–electrolyte interface [17,43,44].Fig.9A displays the CV curves of B-AC electrode at various volt-age sweep rates.As the curves show,even the voltage sweep rate up to 100mV s −1,the CV curve still retain the rectangular shape,this result illuminates the unrestricted motion of electrolyte in the pores at the slow double-layer formation situation [45,46].How-ever,and the curve becomes deformed when the potential sweep rate rises to 200mV s −1.The phenomenon is attributed to the ohmic resistance for electrolyte motion in porous carbon,in which the storage charge has been recognized to be distributed for the double layer formation mechanism [45–47].Fig.9B shows the GCD plots of B-AC electrode at different current densities.It can be seen that all curves are still highly symmetrical and linear at increased current densities from 1A g −1to 10A g −1,which is a typical characteristic of an ideal capacitor.Also,with the increase in the current den-sity,the specific capacitance decreases gradually from 330F g −1at 1A g −1to 238F g −1at 10A g −1.The results indicate the as-prepared B-AC electrode has excellent capacitive behavior.In our system,the B-AC possesses the high specific surface area (2841m 2g −1),small BJH pore size (2.67nm)and abundant oxygen-containing groups.Thus,the high specific capacitance of B-AC results from the simultaneous function of the electric doubleFig.9.(A)CV curves of the B-AC electrode at different sweep rates,and (B)GCD curves for the B-AC electrode at different current densities.C.Peng et al./Electrochimica Acta 87 (2013) 401–408407Fig.10.Nyquist plots of the five types of X-ACs electrodes.Inset is the enlarged plots of the high-frequency region.layer capacitance and the pseudo-capacitance obtained from the oxygenated groups on the porous surface of carbon materials.The EIS data were analyzed using Nyquist plots,which show the frequency response of the electrode/electrolyte system and are the plots of the imaginary component (Z )of the impedance against the real component (Z ).From the Nyquist plots shown in Fig.10,allFig.11.Cycle life of the five types of X-ACs electrodes at a constant current den-sity of 5A g −1and in the 2M KOH aqueous electrolyte:(A)variation of the specific capacitance,and (B)variation of the Coulomb efficiency.the plots of the X-ACs electrodes display a small semicircle at high frequency followed by a transition to linearity at low frequency.The semicircle at higher frequency region should be related to the Faradaic process of the charge-transfer at the electrode/electrolyte interface,and the slope of lines at lower frequency region should be ascribed to the diffusion of the electrolyte ions in the electrode pores [48–50].Also,the vertical lines closed to 90◦at low frequency suggest the pure capacitive behavior and fast transfer character of electrolyte ions in the structure of the carbon electrode [50,51].The cycle lifetime for the five types of X-ACs electrodes was monitored by a chronopotentiometry measurement at 5A g −1in 2M KOH electrolyte.As shown in Fig.11A,for all the electrodes,almost no decay up to 2000cycles and about 92%of the initial specific capacitances still is retained.It indicates that all the X-ACs exhibit long-term cycle stability and good electrochemical reproducibility due to the excellent electrical conductivity.Fig.11B shows the Coulomb efficiency as a function of cycle number,which was calculated using following equation [52,53]:Á(%)=T dT c×100T d and T c are discharge time and charge time,respectively.In Fig.10B,the values of Coulomb efficiency are 1.02,1.00,1.00,1.00and 1.00corresponding to the B-,T-,P-,L-and M-AC after 2000cyclic charge–discharge processes,respectively.It is obviously seen that the values of T d and T c of five types X-ACs are approximately equal after 2000cycles,further indicating the five types X-ACs have good electrochemical stability and coulomb efficiency.4.ConclusionsIn summary,porous ACs materials have been successfully produced from five types of WTLs through high-temperature car-bonization followed by KOH activation.The resulting ACs all show high specific capacitances and excellent cycle stability in aqueous electrolytes.Because the five teas are considered to be the most well-known representative for Chinese teas,we think that other teas could be also used to prepare porous ACs via the same route,and they should have good capacitive properties.Considering their abundance and their recycling,WTLs would act as a new biomass source for preparing ACs for high-performance supercapacitors and low-cost energy storage devices.AcknowledgmentsThis work was supported by the Top Hundred Talents Program of Chinese Academy of Sciences.References[1]Y.A.Alhamed,Activated Carbon from Dates’Stone by ZnCl 2Activation,Journalof King Abdulaziz University:Engineering Sciences 17(2006)75.[2]C.J.Kirubakaran,K.Krishnaiah,S.K.Seshadri,Experimental study of the produc-tion of activated carbon fromcoconut shells in a fluidized bed reactor,Industrial and Engineering Chemistry Research 30(1911)2411.[3]S.Mitani,S.I.Lee,S.H.Yoon,Y.Korai,I.Mochida,Activation of raw pitch cokewith alkali hydroxide to prepare high performance carbon for electric double layer capacitor,Journal of Power Sources 133(2004)298.[4]H.Benaddi,T.J.Bandosz,J.Jagiello,J.A.Schwarz,J.N.Rouzaud,D.Legras,F.Béguin,Surface functionality and porosity of activated carbons obtained from chemical activation of wood,Carbon 38(2000)669.[5]Y.P.Guo,H.Zhang,N.N.Tao,J.R.Qi,Z.C.Wang,H.D.Xu,Adsorption of malachitegreen and iodine on rice husk-based porous carbon,Materials Chemistry and Physics 82(2003)107.[6]Y.P.Guo,J.R.Qi,Y.Q.Jiang,S.F.Yang,Z.C.Wang,H.D.Xu,Performance of elec-trical double layer capacitors with porous carbons derived from rice husk,Materials Chemistry and Physics 80(2003)704.[7]K.Kuratani,K.Okuno,T.Iwaki,M.Kato,N.Takeichi,T.Miyuki,T.Awazu,M.Majima,T.Sakai,Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector,Journal of Power Sources 196(2011)10788.408 C.Peng et al./Electrochimica Acta87 (2013) 401–408[8]Z.H.Hu,E.F.Vansant,Synthesis and characterization of a controlledmicropore-size carbonaceous adsorbent produced from walnut shell,Microporous Materials3(1995)603.[9]Y.K.Lv,L.H.Gan,M.X.Liu,W.Xiong,Z.J.Xu,D.Z.Zhu,D.S.Wright,A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes,Journal of Power Sources209(2012) 152.[10]H.Zhu,X.L.Wang,F.Yang,X.R.Yang,Promising carbons for supercapacitorsderived from fungi,Advanced Materials23(2011)2745.[11]J.Klinik,B.Samojeden,T.Grzybek,W.Suprun,H.Papp,R.Gläser,Nitrogenpromoted activated carbons as DeNOx catalysts.2.The influence of water on the catalytic performance,Catalysis Today176(2011)303.[12]J.P.S.Sousa,M.F.R.Pereira,J.L.Figueiredo,Catalytic oxidation of NO to NO2onN-doped activated carbons,Catalysis Today176(2011)383.[13]M.Ghaedi,S.Z.Amirabad,F.Marahel,S.N.Kokhdan,R.Sahraei,M.Nosrati,A.Daneshfar,Synthesis and characterization of Cadmium selenide nanoparticles loaded on activated carbon and its efficient application for removal of Muroxide from aqueous solution,Spectrochimica Acta,Part A83(2011)46.[14]R.Mehta,K.Daga,P.Gehlot,Adsorption Studies of Pb(II)from Aqueous Solu-tion by Using Activated Carbon of Datura stramonium as An Adsorbent,Asian Journal of Chemistry23(2011)5194.[15]Z.N.Wang,L.Zhan,M.Ge,F.Xie,Y.L.Wang,W.M.Qiao,X.Y.Liang,L.C.Ling,Pithbased spherical activated carbon for CO2removal fromflue gases,Chemical Engineering Science66(2011)5504.[16]A.Davies,A.P.Yu,Material advancements in supercapacitors:from activatedcarbon to carbon nanotube and graphene,Canadian Journal of Chemical Engi-neering89(2011)1321.[17]L.L.Zhang,Z.B.Lei,J.T.Zhang,X.N.Tian,X.S.Zhao.Supercapacitors:ElectrodeMaterials Aspects,/10.1002/0470862106.ia816[18]P.Simon,Y.Gogotsl,Materials for electrochemical capacitors,Nature Materials7(2008)845.[19]H.Zhang,G.P.Cao,Y.S.Yang,Carbon nanotube arrays and their composites forelectrochemical capacitors and lithium-ion batteries,Energy&Environmental Sciences2(2009)932.[20]V.Barranco,M.A.Lillo-Rodenas,A.Linares-Solano,A.Oya,F.Pico,J.Iba˜nez,F.Agullo-Rueda,J.M.Amarilla,J.M.Rojo,Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes,Journal of Physical Chemistry C114(2010)10302.[21]J.Yan,T.Wei,B.Shao,F.Q.Ma,Z.J.Fan,M.L.Zhang,C.Zheng,Y.C.Shang,W.Z.Qian,F.Wei,Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors,Carbon48(2010)1731.[22]S.Mitani,S.I.Lee,K.Saito,S.H.Yoon,Y.Korai,I.Mochida,Activation of coal tarderived needle coke with K2CO3into an active carbon of low surface area and its performance as unique electrode of electric double-layer capacitor,Carbon 43(2005)2960.[23]J.Górka,A.Zawislak,J.Choma,M.Jaroniec,KOH activation of mesoporouscarbons obtained by soft-templating,Carbon46(2008)1159.[24]B.S.A.N.Girgis,A.El-Hendawy,Porosity development in activated carbonsobtained from date pits under chemical activation with phosphoric acid,Micro-porous and Mesoporous Materials52(2002)105.[25]T.Budinova,E.Ekinci,F.Yardim,A.Grimm,E.Björnbom,V.Minkova,M.Gora-nova,Characterization and application of activated carbon produced by H3PO4 and water vapor activation,Fuel Processing Technology87(2006)899. [26]B.Xu,F.Wu,Y.F.Su,G.P.Cao,S.Chen,Z.M.Zhou,Y.S.Yang,Competitive effectof KOH activation on the electrochemical performances of carbon nanotubes for EDLC:Balance between porosity and conductivity,Electrochimica Acta53 (2008)7730.[27]Y.W.Zhu,S.Murali,M.D.Stoller,K.J.Ganesh,W.W.Cai,P.J.Ferreira,A.Pirkle,R.M.Wallace,K.A.Cychosz,M.Thommes,D.Su,E.A.Stach,R.S.Ruoff,Carbon-based supercapacitors produced by activation of graphene,Science332(2011) 1537.[28]E.Raymundo-Pi˜nero,P.Azaïsa,T.Cacciaguerraa,D.Cazorla-Amorósb,A.L.Solanob,F.Béguin,KOH and NaOH activation mechanisms of multiwalled car-bon nanotubes with different structural organization,Carbon43(2005)786.[29]M.A.Lillo-Ródenas, D.Cazorla-Amorós, A.Linares-Solano,Understandingchemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism,Carbon41(2003)267.[30]K.S.W.Sing,D.H.Everett,R.A.W.Haul,L.Moscou,R.A.Pierotti,J.Rouquerol,T.Siemieniewska,Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity(recommendations 1984),Pure and Applied Chemistry57(1985)603.[31]Y.A.Alhamed,H.S.Bamufleh,Sulfur removal from model diesel fuel using gran-ular activated carbon from dates’stones activated by ZnCl2,Fuel88(2009)87.[32]H.Y.Liu,K.P.Wang,H.Teng,A simplified preparation of mesoporous carbon a ndthe examination of the carbon accessibility for electric double layer formation, Carbon43(2005)559.[33]J.T.Chen,G.G.Zhang,B.M.Luo,D.F.Sun,X.B.Yan,Q.J.Xue,Surface amorphiza-tion and deoxygenation of graphene oxide paper by Ti ion implantation,Carbon 49(2011)3141.[34]ng,X.B.Yan,W.W.Liu,R.T.Wang,Q.J.Xue,Influence of nitric acidmodification of ordered mesoporous carbon materials on their capacitive per-formances in different aqueous electrolytes,Journal of Power Sources204 (2012)220.[35]czarek,A.Cizewski,I.Stepniak,Oxygen-doped activated carbonfibercloth as electrode material for electrochemical capacitor,Journal of Power Sources196(2011)7882.[36]M.Anbia,S.E.Moradi,The examination of surface chemistry and porosity ofcarbon nanostructured adsorbents for1-naphthol removal from petrochemical wastewater streams,Journal of Chemical Engineering29(2012)743.[37]A.M.Stephan,T.P.Kumar,R.Ramesh,S.Thomas,S.K.Jeong,K.S.Nahm,Pyroliticcarbon from biomass precursors as anode materials for lithium batteries,Mate-rials Science and Engineering A430(2006)132.[38]X.B.Yan,J.T.Chen,J.Yang,Q.J.Xue,M.Philippe,Fabrication of free-standingelectrochemically active,and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid paper,ACS Applied Materials&Interfaces2 (2010)2521.[39]B.Xu,Y.F.Chen,G.Wei,G.P.Cao,H.Zhang,Y.S.Yang,Activated carbon withhigh capacitance prepared by NaOH activation for supercapacitors,Materials Chemistry and Physics124(2010)504.[40]X.Li,W.Xing,S.P.Zhuo,J.Zhou,F.Li,S.Z.Qiao,G.Q.Lu,Preparation of capacitor’selectrode from sunflower seed shell,Bioresource Technology102(2011)1118.[41]E.Raymundo-Pi˜nero,M.Cadek,F.Béguin,Tuning carbon materials for super-capacitors by direct pyrolysis of seaweeds,Advanced Functional Materials19 (2009)1032.[42]T.E.Rufford,D.Hulicova-Jurcakova,Z.H.Zhu,G.Q.Lu,Nanoporous carbonelectrode from waste coffee beans for high performance supercapacitors,Elec-trochemistry Communications10(2008)1594.[43]W.J.Gao,Y.Wan,Y.Q.Dou,D.Y.Zhuo,Synthesis of Partially Graphitic OrderedMesoporous Carbons with High Surface Areas,Advanced Engineering Materials 1(2011)115.[44]K.Kierzek,E.Frackowiak,G.Lota,G.Gryglewicz,J.Machnikowski,Electrochem-ical capacitors based on highly porous carbons prepared by KOH activation, Electrochimica Acta49(2004)515.[45]L.H.Wang,M.Toyoda,M.Inagaki,Dependence of electric double layer capac-itance of activated carbons on the types of pores and their surface areas,New Carbon Materials23(2008)111.[46]Z.M.Sheng,J.N.Wang,J.C.Ye,Synthesis of nanoporous carbon with controlledpore size distribution and examination of its accessibility for electrode double layer formation,Microporous and Mesoporous Materials111(2008)307. [47]R.D.Levie,On porous electrodes in electrolyte solutions,Electrochimica Acta8(1963)751.[48]S.B.Tang,i,L.Lu,Li-ion diffusion in highly(003)oriented LiCoO2thinfilmcathode prepared by pulsed laser deposition,Journal of Alloys and Compounds 449(2008)300.[49]J.C.Zhao,B.Tang,J.Cao,J.C.Feng,P.Liu,J.Zhao,J.L.Xu,Effect of hydrothermaltemperature on the structure and electrochemical performance of manganese compound/ordered mesoporous carbon composites for supercapacitors,Mate-rials and Manufacturing Processes27(2012)119.[50]W.H.Wang,X.D.Wang,Investigation of Ir-modified carbon felt as the positiveelectrode of an all-vanadium redoxflow battery,Electrochimica Acta52(2007) 6755.[51]M.Ghaemi,F.Ataherian,A.Zolfaghari,S.M.Jafari,Charge storage mecha-nism of sonochemically prepared MnO2as supercapacitor electrode:Effects of physisorbed water and proton conduction,Electrochimica Acta53(2008) 4607.[52]V.S.Jamadade,V.J.Fulari,C.D.Lokhande,Supercapacitive behavior of elec-trosynthesized marygold-like structured nickel doped iron hydroxide thinfilm, Journal of Alloys and Compounds509(2011)6257.[53]S.G.Kandalkar,D.S.Dhawale,C.K.Kim,C.D.Lokhande,Chemical synthesis ofcobalt oxide thinfilm electrode for supercapacitor application,Synthetic Metals 160(2010)1299.。