吉林省吉林市2020年数学毕业升学考试模拟试卷
吉林省吉林市2020年中考数学模拟试卷(4月份)(含答案)

吉林省吉林市2020年中考数学模拟试卷(4月份)一.选择题(每题2分,满分12分)1.下列各式的结果中,符号为正的是()A.(﹣2)+(﹣5)B.0﹣8 C.(﹣1)×(﹣10)D.3÷(﹣4)2.2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为()A.0.34×1010B.3.4×109C.3.4×108D.34×1083.不等式3≥2x﹣1的解集在数轴上表示正确的为()A.B.C.D.4.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱5.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A.80°B.100°C.120°D.160°6.如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC 于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠FAC的度数为()A.54°B.60°C.66°D.72°二.填空题(满分24分,每小题3分)7.比较大小:﹣3 0.(填“>”、“=”或“<”号)8.因式分解:4a3﹣16a=.9.甲乙两人同解方程组时甲正确解得,乙因抄错c而得,则a+c =.10.一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为.11.如图,AB∥CD,DE∥CB,∠B=35°,则∠D=°.12.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,AA′═50cm,这个三角尺的周长与它在墙上形成影子的周长比是.13.如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为.14.如图,正六边形ABCDEF内接于⊙O,AB=2,则图中阴影部分的面积为三.解答题15.(5分)先化简,再求值:,其中x=1,y=.16.(5分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?17.(5分)如图,已知AB=DC,DB=AC.求证:∠B=∠C.18.(5分)某校初二对某班最近一次数学测验或续(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有名同学参加这次测验;(2)这次测验成绩的中位数落在第几组内(从左到右数);(3)若该校一共有360名初二学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?四.解答题19.(7分)步行是全世界公认的有效、科学的健身方法.为了方便市民步行健身,某区园林部门决定将某公园里的一段斜坡AB改造成AC.已知原坡角∠ABD=30°,改造后的斜坡AC的坡度为1:3,BC=30米,求原斜坡AB的长.(精确到0.1米,参考数据:≈1.732)20.(7分)四张大小、形状都相同的卡片上分别写有数字1,2,3,4,把它们放入不透明的盒子中摇匀.(1)从中随机抽出1张卡片,抽出的卡片上的数字恰好是偶数的概率为.(2)从中随机抽出1张卡片,记录数字后放回摇匀,再抽出一张卡片,记录数字.用树状图或列表法求两次抽出的卡片上的数字恰好是两个相邻整数的概率.21.(7分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.22.(7分)如图,在平行四边形ABCD中,点E在AD上,连接BE、CE,EB平分∠AEC.(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,∠A=90°,BC=5,AE=1,求线段BE的长.五.解答题23.(8分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟,乙的速度为米/分钟;(2)图中点A的坐标为;(3)求线段AB所直线的函数表达式;(4)在整个过程中,何时两人相距400米?24.(8分)阅读理解,并解答问题:如图所示的8×8网格都是由边长为1的小正方形组成,图①中的图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理,它表现了我国古人对数学的钻研精神和聪明才智,是我国数学史上的骄傲.问题:请用“赵爽弦图”中的四个直角三角形通过你所学过的图形变化,在图②,图③的方格纸中设计另外两个不同的图案,每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠.画图要求:(1)图②中所设计的图案(不含方格纸)必须是轴对称图形但不是中心对称图形;(2)图③中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.六.解答题25.(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.26.(10分)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD、CD.设点D的横坐标为m,△BCD的面积为S.求S 关于m的函数解析式及自变量m的取值范围,并求出S的最大值;(3)已知M为抛物线对称轴上一动点,若△MBC是以BC为直角边的直角三角形,请直接写出点M的坐标.参考答案一.选择题1.解:A、原式=﹣7,不符合题意;B、原式=﹣8,不符合题意;C、原式=10,符合题意;D、原式=﹣,不符合题意,故选:C.2.解:34亿=3400000000=3.4×109.故选:B.3.解:﹣2x≥﹣1﹣3,﹣2x≥﹣4,x≤2,故选:B.4.解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选:D.5.解:优弧AB上任取一点D,连接AD,BD,.∵四边形ACBD内接与⊙O,∠C=100°,∴∠ADB=180°﹣∠C=180°﹣100°=80°,∴∠AOB=2∠ADB=2×80°=160°.故选:D.6.解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,∴∠ADG=∠AGD=2x,∵∠B=2∠C,∴∠B=2x,∴∠ADB+∠ADG+∠GDC=2x+2x+x=180°,∴x=36°,∴∠FAC=90°﹣36°=54°.故选:A.二.填空题7.解:=5,32=9,∵5<9,∴<3,∴﹣3<0.故答案为:<.8.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)9.解:把代入②得:3c+14=8,解得:c=﹣2,把和代入①得:,解得:,所以a+c=4+(﹣2)=2,故答案为:2.10.解:∵一元二次方程x2﹣x+(b+1)=0无实数根,∴△=(﹣)2﹣4×1×(b+1)<0,解得:b>﹣,故答案为:b>﹣.11.解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=145°.故答案为:145.12.解:如图,∵OA=20cm,AA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比=AB:A′B′=2:7.故答案为2:7.13.解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG =45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:3+3或3﹣3.14.解:如图,连接BO,FO,OA.由题意得,△OAF,△AOB都是等边三角形,∴∠AOF=∠OAB=60°,∴AB∥OF,∴△OAB的面积=△ABF的面积,∵六边形ABCDEF是正六边形,∴AF=AB,∴图中阴影部分的面积等于扇形OAB的面积×3=×3=2π,故答案为:2π.三.解答题15.解:原式=(x2﹣2xy+y2+2x﹣2xy+y﹣y2﹣y)÷(﹣x)=(x2﹣4xy+2x)÷(﹣x)=﹣2x+8y﹣4,当x=1,y=时,原式=﹣2×1+8×﹣4=﹣2+4﹣4=﹣2.16.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.17.解:连接AD,∵AB=DC,DB=AC.AD=DA,∴△ABD≌△DCA(SSS)∴∠B=∠C.18.解:(1)2+9+10+14+5=40人,答:该班共有40名学生参加测验.(2)40个数据从小到大排列后处在第20、21位的两个数的平均数是中位数,而第20、21位的两个数都落在第3组,答:这次测验成绩的中位数落在第三组.(3)360×=171人,答:该校360名学生中这次数学测验为优秀的人数是171人.四.解答题19.解:设AD=x米,在Rt△ABD中,∠ABD=30°,∴AB=2AD=2x,∴BD==x,∵斜坡AC的坡度为1:3,∴CD=3AD=3x,由题意得,3x﹣x=30,解得,x=15+5,则AB=2x=30+10≈47.3,答:原斜坡AB的长约为47.3米.20.解:(1)从中随机抽出1张卡片,抽出的卡片上的数字恰好是偶数的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,其中两次抽出的卡片上的数字恰好是两个相邻整数的结果数为6,所以两次抽出的卡片上的数字恰好是两个相邻整数的概率==.21.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得n=﹣,∴B(﹣,﹣6),∵反比例函数的图象也经过点B,∴,解k=3;答:k和n的值为3、﹣.(2)设直线y=3x﹣5分别与x轴、y轴相交于点C、点D,当y=0时,即,∴,当x=0时,y=3×0﹣5=﹣5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1.即A(2,1),∴S△AOB =S△AOC+S△COD+S△BOD=.答:△AOB的面积未经.(3)根据图象可知:或x>2.22.解:(1)△BCE是等腰三角形.理由如下:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CBE=∠AEB,∵BE平分∠AEC,∴∠AEB=∠BEC,∴∠CBE=∠BEC,∴CB=CE,∴△CBE是等腰三角形.(2)∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD是矩形,∴∠A=∠D=90°,BC=AD=5,在RT△ECD中,∵∠D=90°,ED=AD﹣AE=4,EC=BC=5,∴AB=CD===3,在Rt△AEB中,∵∠A=90°,AB=3.AE=1,∴BE===.五.解答题23.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).故答案为:24,40,60;(2)乙从图书馆回学校的时间为2400÷60=40(分钟),40×40=1600,∴A点的坐标为(40,1600).故答案为:(40,1600);(3)设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t;(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),②走过:(2400+400)÷100=28(分钟),∴在整个过程中,第20分钟和28分钟时两人相距400米.24.解:(1)图②是轴对称图形而不是中心对称图形;(2)如图③既是轴对称图形,又是中心对称图形;六.解答题25.解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.26.解:(1)抛物线解析式为y=a(x+1)(x﹣3)=a(﹣x2+2x+3),即3a=3,解得:a=1,抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的函数解析式为y=kx+b,∵直线BC过点B(3,0),C(0,3),∴,解得,∴y=﹣x+3,设D(m,﹣m2+2m+3),E(m,﹣m+3),∴DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,∴,∵,∴当时,S有最大值,最大值;(3)设点M(1,m),则MB2=m2+4,MC2=1+(m﹣3)2,BC2=18;①当MC是斜边时,1+(m﹣3)2=m2+4+18;解得:m=﹣2;②当MB是斜边时,同理可得:m=4,故点M的坐标为:(1,﹣2),(1,4).。
2020年吉林省吉林市中考数学一模试卷(含答案解析)

2020年吉林省吉林市中考数学⼀模试卷(含答案解析)2020年吉林省吉林市中考数学⼀模试卷⼀、选择题(本⼤题共6⼩题,共12.0分)1.下列计算错误的是()A. (?1)2018=1B. ?3?2=?1C. (?1)×3=?3D. 0×2017×(?2018)=02.下图是⼀个由4个相同的正⽅体组成的⽴体图形,它的左视图是()A. B. C. D.3.计算(x2)2的结果是()A. x2B. x4C. x6D. x84.如图,直线AB//CD,如果∠1=70°,那么∠BOF的度数是()A. 70°B. 100°C. 110°D. 120°5.如图,△ABC是⊙O的内接三⾓形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A. 45°B. 85°C. 90°D. 95°6.如图,在菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线交于点F,若∠BCF=90°,则∠D的度数为()A. 30°B. 45°C. 60°D. 75°⼆、填空题(本⼤题共8⼩题,共24.0分)7.近年来,党和国家⾼度重视精准扶贫,收效显著,据不完全统计约有65000000⼈脱贫,65000000⽤科学记数法表⽰为_______.8.因式分解:2a3?32a=______.=______.9.计算:2√48÷√6?2√2?110.不等式组{x?2≤1x+3>2的解集为______.11.在墙壁上固定⼀根横放的⽊条,则⾄少需要2枚钉⼦,正确解释这⼀现象的数学知识是______.12.如图∠AOB=30°,点C在OB上,OC=8,以点C为圆⼼、R为半径的圆与OA相切,则R=______.13.已知点A(4,x),B(y,?3),若AB//x轴,且线段AB的长为5,则xy=______.14.如图,矩形纸⽚ABCD中,AB=6,BC=9,将矩形纸⽚ABCD折叠,使点C与点A重合,则折痕EF的长为________.三、解答题(本⼤题共12⼩题,共84.0分)15.先化简,再求值:(1a+2?1)÷a2?1a+2,其中a=√3+116.《孙⼦算经》是中国传统数学中最重要的著作,其中记载了这样⼀个问题:“今有⽊,不知长短.引绳度之,余绳四尺五,屈绳量之,不⾜⼀尺.问⽊长⼏何?”译⽂:“⽤⼀根绳⼦去量⼀根长⽊,绳⼦还剩余4.5尺,将绳⼦对折再量长⽊,长⽊还剩余1尺,问长⽊长多少尺?”17.⼀个不透明的⼝袋中有三个⼩球,上⾯分别标有数字1,2,3,每个⼩球除数字外其他都相同.甲先从袋中随机取出1个⼩球,记下数字后放回;⼄再从袋中随机取出1个⼩球记下数字.(1)⽤画树形图或列表的⽅法,求取出的两个⼩球上的数字之和为3的概率;(2)求取出的两个⼩球的数字之和⼤于4的概率.18.已知:如图,在Rt△ABC中,∠B=90°,AE⊥CA,且AE=BC,点D在AC上,且AD=AB,求证:DE//AB.19.如图所⽰,在边长为1个单位的正⽅形⽹格中建⽴平⾯直⾓坐标系,△ABC的顶点均在格点上.(1)△A1B1C1与△ABC关于y轴对称,画出△A1B1C1(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1;并直接写出点A2、B2的坐标.20.每年11⽉9⽇为消防宣传⽇,今年“119”消防宣传⽉活动的主题是“全民参与,防治⽕灾”.为响应该主题,吴兴区消防⼤队到某中学进⾏消防演习.图1是⼀辆登⾼云梯消防车的实物图,图2是其⼯作⽰意图,AC是可以伸缩的起重臂,其转动点A离地⾯BD的⾼度AH为5.2m.当起重臂AC长度为16m,张⾓∠HAC为130°时,求操作平台C离地⾯的⾼度(结果精确到0.1m)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)21.某校组织九年级的三个班级进⾏趣味数学竞赛活动,各班根据初赛成绩分别选拔了10名同学参加决赛,决赛成绩(满分:10分)如下表所⽰:班级决赛成绩(单位:分)⼀班55677888910⼆班46777999 10 10三班567789991010(1)把下表补充完整(单位:分),其中a=______,b=______,c=______;班级平均分中位数众数⼀班7.3a8⼆班7.88b三班c8.59(2)8统计量进⾏说明;(3)为了在全市竞赛中取得好成绩,你认为应选派哪个班级代表学校去参加全市的竞赛?为什么?22.如图1,直线y=kx?2k(k<0)与y轴交于点A,与x轴交于点B,AB=2√5.(1)求A、B两点的坐标.(2)如图2,以AB为边,在第⼀象限内画出正⽅形ABCD,并求直线CD的解析式.23.甲、⼄两组同时加⼯某种零件,⼄组⼯作中有⼀次停产更换设备,更换设备后,⼄组的⼯作效率是原来的2倍.两组各⾃加⼯零件的数量y(件)与时间x(时)的函数图象如图所⽰.(1)直接写出甲组加⼯零件的数量y与时间x之间的函数关系式______;(2)求⼄组加⼯零件总量a的值;(3)甲、⼄两组加⼯出的零件合在⼀起装箱,每满300件装⼀箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?24.如图1,直⾓三⾓形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.25. 如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm.点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t(s).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.26. 23.已知⼆次函数y =x 2+bx ?34的图像经过点(2,54).(1)求这个⼆次函数的函数解析式;(2)若抛物线交x 轴于A ,B 两点,交y 轴于C 点,顶点为D ,求以A 、B 、C 、D 为顶点的四边形⾯积.。
2020年吉林省吉林市中考数学模拟试卷及答案解析

2020年吉林省吉林市中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3B.﹣(+3)与+(﹣3)C.4与﹣4D.5与2.(3分)华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×1011 3.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.4.(3分)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.5.(3分)一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.(3分)甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C为圆心,适当长度为半径画弧,交直线l于D,E两点(如图);第二步甲同学作∠DCE的平分线所在的直线,乙同学作DE的中垂线.则下列说法正确的是()A.只有甲的画法正确B.只有乙的画法正确C.甲,乙的画法都正确D.甲,乙的画法都不正确7.(3分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.8.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE =4,则k的值为()A.1B.2C.4D.二.填空题(共6小题,满分18分,每小题3分)。
2020年吉林省吉林市中考数学一模试卷

2020年吉林省吉林市中考数学一模试卷题号一二三总分得分一、选择题(本大题共6小题,共12.0分)1.计算|−3+2|的结果是()A. −5B. 5C. −1D. 12.如图所示,由7个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C.D.3.下列运算中,正确的是()A. x2+2x2=3x4B. x2⋅x3=x6C. (x2)3=x6D. (xy)3=xy34.不等式x+1<−1的解集在数轴上表示正确的是()A. B. C. D.5.如图,矩形OABC的顶点A在x轴上,点B的坐标为(1,2).固定边OA,向左“推”矩形OABC,使点B落在y轴的点B′的位置,则点C的对应点C′的坐标为()A. (−1,√3)B. (√3,−1)C. (−1,2)D. (2,−1)6.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,若∠BCO=α,则∠P的度数为()A. 2αB. 90°−2αC. 45°−2αD. 45°+2α二、填空题(本大题共8小题,共24.0分)7.计算√9−√8=______.8.吉林市北山四季越野滑雪场是亚洲首个具有国际水平,可进行全天候标准化越野滑雪专业训练场地,总投资约为990000000元.数字990000000用科学记数法表示为______.9.某网店去年的营业额是a万元,今年比去年增加10%,今年的营业额是______万元.10.方程2x =1x−3的解为______.11.关于x的一元二次方程x2+x−k4=0有两个不相等的实数根,则k的值可以为______(写出一个即可).12.如图,在▱ABCD中,AD=3,AB=5.AD⊥AC.若AB的垂直平分线分别交AB,AC于点E,点F,则FC+FB=______.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,连接CC′.若AB//CC′,则旋转角的度数为______°.14.图①中特种自行车的轮子形状为“勒洛三角形”,图②是其一个轮子的示意图,“勒洛三角形”是分别以等边三角形ABC三个顶点A,B,C为圆心,以边长为半径的三段弧围成的图形.若这个等边三角形ABC的边长为30cm,则这种自行车一个轮子的周长为______cm.三、解答题(本大题共12小题,共84.0分)15.先化简.再求值:(a+3)(a−3)+2(a2+4).其中a=√3.16.一个不透明的口袋中有三个小球,颜色分别为红、黄、蓝.除颜色外其余均相同.从口袋中随机摸出一个小球,记下小球颜色后放回并搅匀;再从口袋中随机摸出一个小球记下颜色.用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.17.李老师为学校购买口罩,第一次用3350元购买医用外科口罩1000个,KN95型口罩50个;第二次用5200元购买医用外科口罩1500个,KN95型口罩100个.若两次购买的同类口罩单价相同,求这两种口罩的单价.18.如图,四边形ABCD是正方形,分别以B,C为圆心,BC长为半径画弧,两弧交于点E,连接AE,BE,CE,DE.求证:△ABE≌△DCE.19.李老师为了准备网课直播,购买了一个三脚架,如图①所示,图②为其截面示意图.测得OC=OD=60cm,AO=100cm,∠COB=∠DOB=32°.求点A到地面CD的高度(结果精确到1cm).(参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62.)(x>0)的图象上,20.如图,点A(1,6)和点B在反比例函数y=kxAD⊥x轴于点D,BC⊥x轴于点C,BE⊥y轴于点E,交AD于点F.(1)求反比例函数的解析式;(2)若DC=5,求四边形DFBC的面积.21.图①,图②,图③都是由12个全等的小矩形构成的网格,每个小矩形较短的边长为1,每个小矩形的顶点称为格点,线段AB的端点在格点上.(1)在图①中画∠ABC=45°.使点C在格点上;(2)在图②中以AB为边画一个面积为5的平行四边形,且另外两个顶点在格点上;(3)在图③中以AB为边画一个面积最大的平行四边形,且另外两个顶点在格点上.22.为了调查八年级学生网课期间体育锻炼的时间情况,某校在八年级350名学生中随机抽取了男生,女生各18名,收集得到了以下数据:(单位:分钟)女生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105.男生:37,48,78,99,56,62,35,109,29,87,88,69,73,55,90,98,69,72.整理数据:制作了如下统计表.时间x0≤x≤3030<x≤6060<x≤90x>90女生2m74男生15n3分析数据:两组数据的平均数,中位数、众数如表所示.平均数中位数众数女生66.7a70男生69.770.5b(1)请将上面的表格补充完整:m=______,n=______,a=______,b=______;(2)若该校学生60%为男生,根据调查的数据,估计八年级居家体育锻炼的时间在90分钟以上(不包含90分钟)的男生约有多少名?(3)体育老师分析表格数据后,认为八年级的男生居家体育锻炼做得比女生好,请你结合统计数据,写出一条同意体育老师观点的理由.23.在抗击“新冠肺炎”疫情期间,需要印刷一批宣传单.某印刷厂由甲、乙两台机器同时印刷,甲机器印刷一段时间后,出现故障,停下来维修,推除故障后继续以原来的速度印刷.两台机器还需印刷总量y(份)与印刷时间x(分钟)的函数关系如图所示.(1)甲机器维修的时间是______分钟,甲乙两台机器一分钟共印宣传单______份;(2)求线段AB的函数解析式,并写出自变量的取值范围;(3)若甲机器没有发生故障,可提前多少分钟印刷完这批宣传单.24.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B′.(1)如图①,连接CD,则CD的长为______;(2)如图②,B′E与AC交于点F,DB′//BC.①求证:四边形BDB′E为菱形;②连接B′C,则△B′FC的形状为______;(3)如图③,则△CEF的周长为______.25.如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,AD=4cm,过点D作DE//AC,交AB于点E,DF//AB,交AC于点F.动点P从点A出发以1cm/s的速度向终点D运动,过点P作MN//BC,交AB于点M,交AC于点N.设点P运动时间为x(s),△AMN与四边形AEDF重叠部分面积为y(cm2).(1)AE=______cm,AF=______cm;(2)求y关于x的函数解析式,并写出x的取值范围;(3)若线段MN中点为O,当点O落在∠ACB平分线上时,直接写出x的值.26.如图,抛物线y=ax2+bx+c(a<0)与x轴交于点A(−2,0)和点B,与y轴交于点C,对称轴为直线x=1;连接AC,BC,S△ABC=15.2(1)求抛物线的解析式;(2)①点M是x轴上方抛物线上一点,且横坐标为m,过点M作MN⊥x轴,垂足为点N.线段MN有一点H(点H与点M,N不重合),且∠HBA+∠MAB=90°,求HN的长;②在①的条件下,若MH=2NH,直接写出m的值;(3)在(2)的条件下,设d=S△MAN,直搂写出d关于m的函数解析式,并写出m的S△NBH取值范围.2020年吉林省吉林市中考数学一模试卷答案和解析【答案】1. D2. D3. C4. A5. A6. B7. 3−2√2 8. 9.9×108 9. 1.1a 10. x =6 11. 3(答案不唯一) 12. 4 13. 100 14. 30π15. 解:原式=a 2−9+2a 2+8=3a 2−1, 当a =√3时, 原式=9−1=8.16. 解:根据题意画图如下:共有9种等可能的情况数,其中两次摸出的小球颜色相同的有3种, 则两次摸出的小球颜色相同的概率是39=13.17. 解:设医用外科口罩的单价为x 元/个,KN 95型口罩的单价为y 元/个,依题意,得:{1000x +50y =33501500x +100y =5200,解得:{x =3y =7.答:医用外科口罩的单价为3元/个,KN 95型口罩的单价为7元/个.18. 证明:由题意可得,BE =BC =CE , 则△BCE 是等边三角形, 故∠EBC =∠ECB =60°, ∵四边形ABCD 是正方形,∴∠ABC =∠DCB =90°,AB =DC , ∴∠ABE =∠DCE =30°,在△ABE和△DCE中,{AB=DC∠ABE=∠DCE BE=CE,∴△ABE≌△DCE(SAS).19. 解:如图所示:延长OB交DC与点E,∵OC=OD=60cm,∠COB=∠DOB=32°,∴AO⊥CD,∴cos32°=OECO =OE60,解得:OE=60×0.85=51(cm),则AO+EO=100+51=151(cm).答:点A到地面CD的高度约为151cm.20. 解:(1)∵点A(1,6)和点B在反比例函数图象上,∴k=1×6=6,∴反比例函数的表达式为:y=6x;(2)∵AD⊥x轴于点D,∴D(1,0),∵BC⊥x轴于点C,DC=5.∴B的横坐标为6,将x=6代入y=6x解得,y=1,即BC=1,∵BC⊥x轴,AD⊥y轴,∴四边形DFBC是矩形,∴四边形DFBC的面积=DC⋅BC=5×1=5.21. 解:(1)如图①,点C即为所求;(2)如图②,平行四边形ABCD即为所求;(3)如图③,平行四边形ABEF即为所求.22. 5 9 68.56923. 10 40024. 5 等腰三角形5√225. 2 2√326. 解:(1)∵点A(−2,0),对称轴为直线x=12,则点B(3,0),则AB=5,∵S△ABC=15=12×AB⋅OC=12×5×OC,解得OC=6,故点C(0,6),则设抛物线的表达式为y=a(x−x1)(x−x2)=a(x+2)(x−3),将点C的坐标代入上式得:6=a(0+2)(0−3),解得a=−1,故抛物线的表达式为y=−x2+x+6;(2)如图,∵A(−2,0),B(3,0),设M(m,−m2+m+6),则N(m,0),①∵MN⊥x轴,∴∠HNB=∠ANM=90°,∴∠BHN+∠HBN=90°,又∵∠HBA+∠MAB=90°,∴∠BHN=∠MAB,∴△BNH∽△MNA,∴HNAN =BNMN,∴HMm+2=3−m−m2+m+6,整理得:HN=1;②∵MH=MN−HN=MN−2=2HN=2,即MN=3,则−m2+m+6=3,解得m=1±√132;(3)∵S△MAN=12×MN⋅AN=12×(−m2+m+6)(m+2)=−12(m+2)2(m−3),而S△NBH=12×BN⋅HN=12×(3−m)×1=−12(m−3),则d=S△MANS△NBH=(m+2)2(m≠3).【解析】1. 解:|−3+2|=|−1|=1,故选:D.先利用有理数加法法则计算,再根据绝对值的性质可求解.本题主要考查有理数的加法及绝对值,属于基础题.2. 解:从上面看:共分3列,从左往右分别有2,2,1个小正方形.故选:D.找到从上面看所得到的图形即可.考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3. 解:A.结果是3x2,故本选项不符合题意;B.结果是x5,故本选项不符合题意;C.结果是x6,故本选项符合题意;D.结果是x3y3,故本选项不符合题意;故选:C.根据合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方求出每个式子的值,再判断即可.本题考查了合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.4. 解:∵x+1<−1,∴x<−2,故选:A.根据解一元一次不等式基本步骤:移项、合并同类项可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5. 解:∵四边形OABC是矩形,点B的坐标为(1,2),∴OA=1,AB=2,由题意得:AB′=AB=2,四边形OAB′C′是平行四边形,∴OB′=√AB′2−OA2=√22−12=√3,B′C′=OA=1,∴点C的对应点C′的坐标为(−1,√3);故选:A.由矩形的性质得OA=1,AB=2,由题意得AB′=AB=2,四边形OAB′C′是平行四边形,得B′C′=OA=1,由勾股定理求出OB′,即可得出答案.本题考查了矩形的性质、坐标与图形性质、平行四边形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和勾股定理是解题的关键.6. 解:∵OC=OB,∴∠BCO=∠ABC=α,∴∠AOP=2∠ABC=2α,∵PA是⊙O的切线,∴PA⊥AB,∴∠PAO=90°,∴∠P=90°−∠AOP=90°−2α,故选:B.由圆周角定理可求得∠AOP的度数,由切线的性质可知∠PAO=90°,则可中求得∠P.本题主要考查切线的性质及圆周角定理,根据圆周角定理可切线的性质分别求得∠AOP 和∠PAO的度数是解题的关键.7. 解:原式=3−2√2.故答案为:3−2√2.直接化简二次根式进而得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.8. 解:将990000000用科学记数法表示为:9.9×108.故答案为:9.9×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9. 解:由题意可得,今年的营业额是a(1+10%)=1.1a(万元),故答案为:1.1a.根据题意,可以用含a的代数式表示出今年的营业额.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.10. 解:去分母得:2x−6=x,解得:x=6,经检验x=6是分式方程的解,故答案为:x=6分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.=0有两个不相等的实数根,11. 解:∵关于x的一元二次方程x2+x−k4)=1+k>0,∴△=12−4×1×(−k4解得k>−1,取k=3,故答案为:3(答案不唯一).先根据根的判别式求出k的范围,再在范围内取一个符合的数即可.本题考查了根的判别式,能根据根的判别式的内容得出关于k的不等式是解此题的关键.12. 解:∵四边形ABCD是平行四边形,∴CD=AB=5,∵∠DAC=90°,AD=3,∴AC=√CD2−AD2=√52−32=4,∵AB的垂直平分线分别交AB,AC于点E,点F,∴AF=BF,∴FC+BF=AF+FC=4,故答案为:4.根据平行四边形的性质得出DC=AB=5,利用勾股定理得出AC的长,进而利用线段垂直平分线的性质解答即可.本题考查了平行四边形性质,勾股定理,线段垂直平分线的性质的应用,关键是求出AC.13. 解:∵AB//CC′,∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°−∠ACB=90°−50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°−40°−40°=100°,即旋转角为100°.故答案为100.先利用平行线的性质得到∠C′CB=90°,则可计算出∠ACC′=40°,再根据旋转的性质得AC=AC′,∠C′AC等于旋转角,然后根据等腰三角形的性质和三角形内角和计算出∠C′AC 即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行线的性质.=30π(cm).14. 解:自行车一个轮子的周长=3×60π⋅30180故答案为30π.直接利用弧长公式计算即可.(弧长为l,圆心角度数为n,圆的半径为R).也考查了等本题考查了弧长公式:l=n⋅π⋅R180边三角形的性质.15. 根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16. 根据题意画出树状图得出所有等可能的情况数,找出符合题意的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.17. 设医用外科口罩的单价为x元/个,KN95型口罩的单价为y元/个,根据“第一次用3350元购买医用外科口罩1000个,KN95型口罩50个;第二次用5200元购买医用外科口罩1500个,KN95型口罩100个”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18. 根据题意,可以得到△BEC时等边三角形,再根据正方形的性质,即可得到△ABE≌△DCE的条件,从而可以证明结论成立.本题考查正方形的性质、等边三角形的性质、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.19. 直接根据题意得出O到地面的距离进而得出答案.此题主要考查了解直角三角形的应用,正确得出O到地面的距离是解题关键.20. (1)根据待定系数法即可求得反比例函数的解析式组,进而确定出B横坐标坐标,横坐标代入即可确定出纵坐标;(2)求出D点的坐标,由反比例函数解析式求出BC,根据矩形面积公式可求得结论.此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征以矩形的面积等,熟练掌握待定系数法是解本题的关键.21. (1)根据网格线画出AB的垂线AC,进而可得∠ABC=45°;(2)根据网格可得符号条件的平行四边形;(3)根据网格可得符合条件的平行四边形.本题考查了作图−应用与设计作图、全等图形,解决本题的关键是利用网格准确画图.22. 解:(1)由统计女生数据,可得在30<x≤60组的频数m=5,由统计男生数据,可得在60<x≤90组的频数n=9;=68.5,因此将女生数据从小到大排列后,处在第9、10位的两个数的平均数为68+692中位数a=68.5,男生数据出现次数最多的是69,因此众数是69,即b=69;故答案为:5,9,68.5,69;(2)由题意得:八年级350名学生中男生人数为350×60%=210(人),=35(人);由数据可得锻炼时间在90分钟以上的男生有3人,210×318即估计八年级居家体育锻炼的时间在90分钟以上(不包含90分钟)的男生约有35名;(3)理由一:因为69.7>66.7,所以男生锻炼时间的平均时间更长,因此男生周末做得更好.理由二:因为70.5>68.5,所以从中位数看男生比女生成绩更好,因此男生周末做得更好.(1)根据频数统计方法,可得出各个分组的频数,进而确定m 、n 的值,通过对男生、女生数据的整理,求出中位数、众数即可;(2)求出该校八年级男生人数,再求出男生锻炼时间超过90分钟的人数所占的百分比,用210去乘这个百分比即可;(3)通过比较男女生的中位数、平均数得出理由.本题考查频数分布表、中位数、众数、平均数的意义和计算方法,理解各个统计量的意义,是正确计算的前提,样本估计总体是统计常用的方法.23. 解:(1)由图象可知,甲机器维修的时间是:40−30=10(分钟),甲乙两台机器一分钟共印宣传单:20000−800030=400(份),故答案为:10;400;(2)设甲机器每分钟印宣传单x 张,则乙机器每分钟印宣传单(400−x)张,根据题意得: 8000−(55−30)×(400−x)=(55−40)x ,解得x =200,所以甲机器每分钟印宣传单200张,乙机器每分钟印宣传单:400−200=200(张), ∴m =8000−200×10=6000,设线段AB 的函数解析式为y =kx +b ,根据题意得:{30k +b =800040k +b =6000, 解得{k =−200b =14000, ∴线段AB 的函数解析式为:y =−200x +14000(30≤x ≤40);(3)若甲机器没有发生故障,所需时间为:20000÷400=50(分),55−50=5(分),答:若甲机器没有发生故障,可提前5分钟印刷完这批宣传单.(1)根据图象的特殊点的坐标求解即可;(2)先求出m 的值,利用待定系数法求解即可;(3)根据甲、乙两台机器的工作效率和解答即可.本题考查了一次函数的应用:利用待定系数法求一次函数解析式,然后根据一次函数性质解决实际问题.注意自变量的取值范围.24. (1)解:∵△ABC是等腰直角三角形,点D是斜边AB的中点,AB=10,AB=5,∴CD=12故答案为:5;(2)①证明:由折叠的性质得:B′D=BD,B′E=BE,∠B′DE=∠BDE,∵DB′//BC,∴∠B′DE=∠BED,∴∠BDE=∠BED,∴BD=BE,∴B′D=BE,∴四边形BDB′E是平行四边形,又∵B′D=BD,∴四边形BDB′E为菱形;②解:∵△ABC是等腰直角三角形,点D是斜边AB的中点,AB=BD,∴CD=12由折叠的性质得:B′D=BD,∴CD=B′D,∴∠DCB′=∠DB′C,∵∠ACB=90°,∴AC⊥BC,∵DB′//BC,∴DB′⊥AC,∴∠ACB′=90°−∠DB′C,由①得:四边形BDB′E为菱形,∴AB//B′E,∵CD⊥AB,∴CD⊥B′E,∴∠EB′C=90°−∠DCB′,∴∠ACB′=∠EB′C,∴FB′=FC,即△B′FC为等腰三角形;故答案为:等腰三角形;(3)解:连接B′C,如图③所示:∵△ABC是等腰直角三角形,点D是斜边AB的中点,AB=10,∴BC=√22AB=5√2,∠B=45°,CD=12AB=BD,∠ACD=12∠ACB=45°,由折叠的性质得:B′D=BD,∠B′=∠B=45°,∴CD=B′D,∴∠DCB′=∠DB′C,∴∠FCB′=∠FB′C,∴CF=B′F,∴△CEF的周长=EF+CF+CE=EF+B′F+CE=B′E+CE=BE+CE=BC=5√2;故答案为:5√2.(1)由直角三角形斜边上的中线性质即可得出答案;(2)①由折叠的性质得B′D=BD,B′E=BE,∠B′DE=∠BDE,证出B′D=BE,得四边形BDB′E是平行四边形,进而得出结论;②证出CD=B′D,得∠DCB′=∠DB′C,证出DB′⊥AC,则∠ACB′=90°−∠DB′C,证出CD⊥B′E,则∠EB′C=90°−∠DCB′,得∠ACB′=∠EB′C,即可得出结论;(3)连接B′C,由等腰直角三角形的性质得BC=√22AB=5√2,∠B=45°,CD=12AB=BD,∠ACD=12∠ACB=45°,证出CF=B′F,进而得出答案.本题是四边形综合题目,考查了菱形的判定与性质、平行四边形的判定与性质、等腰直角三角形的性质、折叠的性质、等腰三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,熟练掌握菱形的判定与性质和等腰三角形的判定与性质是解题的关键.25. 解:(1)∵∠B=30°,AD⊥BC于D,∴∠BAD=60°∵∠BAC=90°,∴∠CAD=30°,∵DE//AC,DF//AB,∴∠AED=∠AFD=90°,∵AD=4cm,∴AE=AD⋅cos60°=2cm,AF=AD⋅cos30°=2√3cm,故答案为:2;2√3;(2)过点E作EG⊥AD于点G,过点F作FH⊥AD于点H,如图1,∴EG=AE⋅cos60°=√3cm,AH=AF⋅cos30°=3cm,当0≤x≤√3时,如图1,则AP=xcm,∵MN//BC,∴∠AMN=∠B=30°,∴AM=2AP=2x,∴AN=AM⋅tan30°=2x⋅√33=2√33x(cm),∴y=12AM⋅AN=2√33x2,即y=2√33x2(0≤x≤1);当1<x≤3时,如图2,则ME=AM−AE=2x−2(cm),∴EH=ME⋅tan∠EMH=√33(2x−2)(cm),∴S△MEH=12ME⋅EH=4√33(x−1)2,∴y=S△AMN−S△MEH=2√33x2−4√33(x−1)2=−2√33x2+8√33x−4√33,即y==−2√33x2+8√33x−4√33(√3<x≤3);当3<x≤4时,如图3,∴AN=APcos30∘=x√32=2√33x(cm),∵MN//BC,∴∠ANG=∠C=60°,∵NF=AN−AF=2√33x−2√3(cm),∴FG =FN ⋅tan60°=2x −6(cm),∴S △FGN =12FG ⋅FN =2√33(x −3)2, ∴y =S △AMN −S △EMH −S △FNG =2√33x 2−4√33(x −1)2−2√33(x −3)2, 即y =−4√33x 2+2√33x −22√33(3<x ≤4);综上,y ={ 2√33x 2(≤x ≤1)−2√33x 2+8√33x −4√33(1<x ≤3)−4√33x 2+2√33x −22√33(3<x ≤4); (3)过点O 作OH ⊥BC 于点H ,OG ⊥AC 于点G ,OK ⊥AB 于点K ,连接OA ,OB ,如图4,∵OC 平分∠ACB ,∴OH =OG ,∵MN//BC ,∴∠AMN =∠ABC =30°,∠ANM =∠ACB =60°,∴OK =OM ⋅sin30°=12OM , OG =ON ⋅sin60°=√32ON , ∵OM =ON ,∴OG =√3OK ,∵AC =AB ⋅tan30°=8√33,BC =2AC =16√33, ∵S △ABC =12AB ⋅AC =12AB ⋅OK +12AC ⋅OG +12BC ⋅OH ,∴8×8√33=8OK +8√33×√3OK +16√33×√3OK , ∴OK =23√3,∴PD =OH =√3OK =2,∴AP =2,∴x=2.(1)利用直角三角形的性质求出∠BAD和∠CAD的度数,再解直角三角形求得AE和AF;(2)过点E作EG⊥AD于点G,过点F作FH⊥AD于点H,解直角三角形得AP=√3,AH= 3,则分三种情况:0≤x≤√3;√3<x≤3;3<x≤4.分别画出图形,结合图形列出函数解析式;(3)过点O作OH⊥BC于点H,OG⊥AC于点G,OK⊥AB于点K,连接OA,OB,如图4,证明OH=OG=√3OK,由三角形的面积公式列出OK的方程,求得OK,进而求得AP便可.本题主要考查了直角三角形的性质,解直角三角形,角平分线的性质,求函数的解析式,第(2)题关键是分情况进行讨论.26. (1)由S△ABC=15=12×AB⋅OC=12×5×OC,解得OC=6,故点C(0,6),再用待定系数法即可求解;(2)①证明△BNH∽△MNA,则HNAN =BNMN,即HMm+2=3−m−m2+m+6,即可求解;②∵MH=MN−HN=MN−2=2HN=2,即MN=3,进而求解;(3)∵S△MAN=12×MN⋅AN=12×(−m2+m+6)(m+2)=−12(m+2)2(m−3),而S△NBH=12×BN⋅HN=12×(3−m)×1=−12(m−3),即可求解.本题是二次函数的综合题:主要考查了二次函数图象上点的坐标特征、二次函数的性质,用待定系数法求函数解析式,考查了相似三角形的性质与判定,考查了利用数形结合的思想解决数学问题.。
吉林省吉林市普通中学2020届数学中考模拟试卷

吉林省吉林市普通中学2020届数学中考模拟试卷一、选择题1.如图,直线l1∥l2,且分别与直线l交于C、D两点,把一块含30o角的三角尺按如图所示的位置摆放,若∠1=53o,则∠2的度数是( )A.93oB.97oC.103oD.107o2.如图,在O中,AB是直径,CD是弦,AB CD⊥,垂足为点E,连接CO,AD,若30BOC∠=︒,则BAD∠的度数是()A.30°B.25︒C.20︒D.15︒3,那么这个矩形就称为黄金矩形.如图,已知A、B两点都在反比例函数y=kx(k>0)位于第一象限内的图像上,过A、B两点分别作坐标轴的垂线,垂足分别为C、D和E、F,设AC与BF交于点G,已知四边形OCAD和CEBG都是正方形.设FG、OC的中点分别为P、Q,连接PQ.给出以下结论:①四边形ADFG为黄金矩形;②四边形OCGF为黄金矩形;③四边形OQPF为黄金矩形.以上结论中,正确的是()A.①B.②C.②③D.①②③4.如图,在△ABC中,AC和BC的垂直平分线l1和l2分别交AB于点D、E,若AD=3,DE=4,EB=5,则S△ABC等于( )A.36 B.24 C.18 D.125.我市在旧城改造中,需要在一块如图所示的三角形空地上铺设草坪,如果每平方米草坪的价格为x 元,则购买草坪需要的花费大概是()≈1.732A.150x元B.300x元C.130x元D.260x元6.在同平面直角坐标系中,函数y=x﹣1与函数y=1x的图象大致是()A.B.C.D.7.如图,线段AB两个端点的坐标分别为A(1,3)、B(3,0),以原点为位似中心,将线段AB放大得到线段CD,若点C的坐标为(6,0),则点D的坐标为()A.(3,6)B.(2,4.5)C.(2,6)D.(1.5,4.5)8.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是()A. B. C. D.9.下列命题正确的是()A.对角线互相垂直平分的四边形是正方形B.两边及其一角相等的两个三角形全等C 3D.数据4,0,4,6,6的方差是4.810.如图,扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分的面积,那么P和Q的大小关系是()A.P>Q B.P<Q C.P=Q D.无法确定11.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是()A.32°B.35°C.36°D.40°12.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B.AD=1,AC=2,△ADC的面积为S,则△BCD的面积为()A.S B.2S C.3S D.4S二、填空题13.如图,在Rt△ABC中,∠C=90°,AC=BC=4,点D是AC的中点,点F是边AB上一动点,沿DF所在直线把△ADF翻折到△A′DF的位置,若线段A′D交AB于点E,且△BA′E为直角三角形,则BF的长为_____.14.如图,二次函数y=ax2+bx+c(a≠0).图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C.下面三个结论:①2a+b=0;②a+b+c>0;③只有当12a 时,△ABD是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)15.直角三角形的两边长分别为3和5,则第三条边长是________.16.不等式组1024xx-≤⎧⎨-<⎩的整数解...是_______.17.两个无理数的和为有理数,这两个无理数可以是______和_______.18.如图,AB是⊙O的直径,OB=3,BC是⊙O的弦,∠ABC的平分线交⊙O于点D,连接OD,若∠BAC=20°,则的长等于.三、解答题19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.某校为了解七年级学生体育课足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,按A、B、C、D四个等级进行统计,制成了如图所示的不完整的统计图:根据所给信息,解答以下问题:(1)在扇形统计图中,求等级C对应的扇形圆心角的度数,并补全条形统计图;(2)该校七年级有300名学生,请估计足球运球测试成绩达到A等级的学生有多少人?21.有四张完全一样的卡片,在正面分別写上2、3、4、6四个数字后洗匀,反面朝上放在桌上.小明从中先后任意抽取两张卡片,然后把先抽到的卡片上的数字作为十位数,后抽到的卡片上的数字作为个位数,组成一个两位数.求这个两位数恰好能被4整除的概率.(请用“画树状图”或“列表”等方法写出分析过程)22.某中学为了丰富同学们的课外活动生活,开设了“第二课堂”.课堂设置了十几个动项目,根据(1)班学生报名参加的项目,绘制成如下的不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题(1)这个班学生人数有人;(2)补全条形统计图,在扇形统计图中其它项目所对的圆心角为;(3)喜欢羽毛球的有3名女同学,其余为男同学,现要从中随机抽取2名同学参加学校的羽毛球队,用列表或树状图求出所抽取的2名同学,恰好2人都是男同学的概率.23.问题提出(1)如图①,在等腰Rt△ABC中,斜边AC=4,点D为AC上一点,连接BD,则BD的最小值为;问题探究(2)如图②,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,求AD的最小值;问题解决(3)如图③,四边形ABCD是规划中的休闲广场示意图,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=km,AB=3km,点M是BC上一点,MC=4km.现计划在四边形ABCD内选取一点P,把△DCP建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP、MP,从实用和美观的角度,要求满足∠PMB=∠ABP,且景观绿化区面积足够大,即△DCP区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P?若存在,请求出△DCP面积的最小值;若不存在,请说明理由.24.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x(分)之间的关系如图所示.(1)甲的速度为千米/分,甲乙相遇时,乙走了分钟.乙的速度为千米/分.(2)求从乙出发到甲乙相遇时,y与x的函数关系式.(3)乙到达A地时,甲还需分钟到达终B地.25.先化简,再求值:2221(1)244x xx x x+++÷--+,其中x=3.【参考答案】*** 一、选择题13.6或28 514.①③15.416.-1,0,117.218..三、解答题19.(1)16;12.5;(2)详见解析;(3)9000(人次).【解析】【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【详解】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为216×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×616=9000(人次).【点睛】本题主要考查了条形统计图与扇形统计图,解题的关键是读懂统计图,从统计图中得到准确的信息.20.(1)117°;补图见解析;(2)30人.【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得,根据以上所求结果即可补全图形;(2)总人数乘以样本中A等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×1340=117°,补全条形图如下:(2)估计足球运球测试成绩达到A级的学生有300×440=30人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.这个两位数恰好能被4整除的概率为13.【解析】【分析】将可能出现的情况全部列举出来,一共12种可能,其中符合条件的只有4种可能即可求解【详解】画树状图如下:由树状图知共有12种等可能结果,其中这个两位数恰好能被4整除的有4种结果,所以这个两位数恰好能被4整除的概率为41 123.【点睛】此题考查了列表法或树状图法求概率22.(1)50;(2)答案见解析,108°;(3)1 10.【解析】【分析】(1)根据篮球的人数与占比即可求出这个班的人数;(2)求出羽毛球的人数及对应的圆心角即可;(3)根据题意画出树状图,即可用概率公式进行求解. 【详解】解:(1)这个班学生人数有2040%=50(人),故答案为:50;(2)羽毛球的人数有50﹣20﹣10﹣15=5人,补图如下:其它项目所对的圆心角为:360°×1550=108°;故答案为:108°;(3)根据题意画树状图如下:共有20种等情况数,恰好2人都是男同学的有2种,则恰好2人都是男同学的概率是220=110.【点睛】此题主要考查概率与统计,解题的关键是根据题意求出总人数,再根据题意画出树状图求概率.23.4;(3) 存在点P,使得△DCP的面积最小,△DCP﹣20)km2.【解析】【分析】(1)如图1,当BD⊥AC时,BD的值最小,根据直角三角形斜边中线的性质可得结论;(2)如图2,根据BM=DM可知:点D在以M为圆心,BM为半径的⊙M上,连接AM交⊙M于点D',此时AD值最小,计算AM和半径D'M的长,可得AD的最小值;(3)如图3,先确定点P的位置,再求△DCP的面积;假设在四边形ABCD中存在点P,以BM为边向下作等边△BMF,可知:A、F、M、P四点共圆,作△BMF的外接圆⊙O,圆外一点与圆心的连线的交点就是点P的位置,并构建直角三角形,计算CD和PQ的长,由三角形的面积公式可求得面积.【详解】解:(1)当BD⊥AC时,如图1,∵AB=BC,∴D是AC的中点,∴BD=12AC=12×4=2,即BD的最小值是2;故答案为:2;(2)如图2,由题意得:DM=MB,∴点D在以M为圆心,BM为半径的⊙M上,连接AM交⊙M于点D',此时AD值最小,过A作AE⊥BC于E,∵AB=AC=5,∴BE=EC=12BC=1632⨯=,由勾股定理得:AE=4,∵BM=4,∴EM=4﹣3=1,∴AM=,∵D'M=BM=4,∴AD'=AM﹣D'M﹣4,即线段AD﹣4;(3)如图3,假设在四边形ABCD中存在点P,∵∠BAD=∠ADC=135°,∠DCB=30°,∴∠ABC=360°﹣∠BAD﹣∠ADC﹣∠DCB=60°,∵∠PMB=∠ABP,∴∠BPM=180°﹣∠PBM﹣∠PMB=180°﹣(∠PBM+∠ABP)=180°﹣∠ABC=120°,以BM为边向下作等边△BMF,作△BMF的外接圆⊙O,∵∠BFM+∠BPM =60°+120°=180°,则点P 在BM 上,过O 作OQ ⊥CD 于Q ,交⊙O 于点P ,设点P'是BM 上任意一点,连接OP',过P'作P'H ⊥CD 于H ,可得OP'+P'H≥OQ=OP+PQ ,即P'H≥PQ,∴P 即为所求的位置,延长CD ,BA 交于点E ,∵∠BAD =∠ADC =135°,∠DCB =30°,∠ABC =60°,∴∠E =90°,∠EAD =∠EDA =45°,∵AD =,∴AE =DE =2,∴BE =AE+AB =5,BC =2BE =10,CE =,∴BM =BC ﹣MC =6,CD =﹣2,过O 作OG ⊥BM 于G ,∵∠BOM =2∠BFM =120°,OB =OM ,∴∠OBM =30°,∴∠ABO =∠ABM+∠MBO =90°,OB cos30BG ︒==, ∴∠E =∠ABO =∠OQE =90°,∴四边形OBEQ 是矩形,∴OQ =BE =5,∴PQ =OQ ﹣OP =5﹣∴S △DPC =11(52)22PQ CD ⋅=-= ﹣20,∴存在点P ,使得△DCP 的面积最小,△DCP 面积的最小值是(2﹣20)km 2. 【点睛】本题是四边形与圆的综合题,有难度,考查三角形的面积,等腰直角三角形的判定和性质,等边三角形,矩形的判定和性质,圆的有关性质等知识,解题的关键是学会添加常用辅助线,构造圆来解决问题,属于中考常考题型.24.(1)24,10;43;(2)y =3242x -+;(3)78【解析】【分析】(1)根据图形得出甲的速度,再得出乙的时间,设乙的速度是x 千米/分钟,根据题意列出方程,即可解答.(2)设y 与x 的函数关系式为y =kx+b ,根据题意两次相遇的情况列出方程组.【详解】解:(1)观察图象知A 、B 两地相距为16km ,∵甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟, ∴甲的速度是16千米/分钟; 由纵坐标看出乙走了:16﹣6=10(分),设乙的速度是x 千米/分钟,由题意,得 10x+16×16=16, 解得x =43, ∴乙的速度为43千米/分钟. 故答案为:24,10;43; (2)设y 与x 的函数关系式为y =kx+b ,根据题意得,615160k b k b +=⎧⎨+=⎩ ,解得3224k b ⎧=-⎪⎨⎪=⎩, ∴y =3-242x +;(3)相遇后乙到达A 站还需(16×16)÷43=403(千米) 相遇后乙到达A 站还需(16×16)÷43=2(分钟), 相遇后甲到达B 站还需(10×43)÷16=80分钟, 当乙到达终点A 时,甲还需80﹣2=78分钟到达终点B .故答案为:78.【点睛】此题考查函数的图象,解题关键在于理解题意看懂图中数据.25.3【解析】【分析】先算括号内的加法,把除法变成乘法,算乘法,再代入求出即可.【详解】2221(1)244x x x x x +++÷--+ 2222(2)21x x x x x -++-=⋅-+2(1)(2)21x x x x x +-=⋅-+ =x (x ﹣2)=x 2﹣2x ,当x =3时,原式=32﹣2×3=3.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.。
2020年吉林省吉林市中考数学一模试卷-

【答案】A
【分析】
根据矩形的性质和勾股定理求出 的长,得到点 的坐标.
【详解】
解:∵四边形OABC是矩形,点B的坐标为(1,2),
∴OA=1,AB=2,
由题意得:AB'=AB=2,四边形OAB'C'是平行四边形,
∴ , ,
∴点C的对应点 的坐标为 .
【答案】树状图或列表见解析,
【分析】
列举出所有情况,看两次摸出小球的颜色相同的情况占总情况的多少即可.
【详解】
解:树状图:
根据题意,可以画出如下树状图:
从树状图可以看出,所有等可能出现的结果共有 种,其中小球颜色相同的有 种,
列表法:根据题意,列表如下:
从表中可以看出,所有等可能出现的结果共有 种,其中小球颜色相同的有 种,
12.如图,在 中, .若 的垂直平分线分别交 于点 点 ,则 _________.
【答案】4
【分析】
先根据平行四边形的性质求出CD的长, 再根据勾股定理求AC得长度,根据线段垂直平分线的性质可得 ,进而可得答案.
【详解】
∵在 中, .
∴ .
∵ .
∴在Rt△DAC中, .
∵ 的垂直平分线分别交 于点 点 .
【详解】
∵ ,
∴
∵
∴
根据旋转可知
∴
∴
∴旋转角的度数为 .
故答案为:100.
【点睛】
本题主要考查了旋转的性质,平行线的性质,三角形的内角和定理,等腰三角形的性质等相关内容,熟练掌握相关角的计算方法是解决本题的关键.
14.图①中特种自行车的轮子形状为“勒络三角形”,图②是其一个轮子的示意图,“勒络三角形”是分别以等边三角形 三个顶点 为圆心,以边长为半径的三段弧围成的图形、若这个等边三角形 的边长为 则这种自行车一个轮子的周长为________ .
2020年吉林省吉林市中考数学一模试卷 (含答案解析)

2020年吉林省吉林市中考数学一模试卷一、选择题(本大题共6小题,共12.0分)1.计算:|−5+3|的结果是()A. −2B. 2C. −8D. 82.用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.3.下列运算中,正确的是()A. x2+x2=x4B. (x3)2=x5C. x⋅x2=x3D. x3−x2=x4.不等式1+x<0的解集在数轴上表示正确的是()A. B.C. D.5.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. √3B. 2C. √5D. √66.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,若∠P=50°,则∠ABC的度数为()A. 20°B. 25°C. 40°D. 50°二、填空题(本大题共8小题,共24.0分)7.计算:2√12−√27=______.8.城市轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿元用科学记数法表示为______元.9.某熟食店在七月的营业额是a万元,八月的营业额上升25%.受流感的影响,九月的营业额比上月下降12%,那么九月的营业额是________万元.(结果保留最简式)10.方程3x =2x−2的解是______ .11.若关于x的一元二次方程x2−x+m=0有两个不相等的实数根,则m的值可能是______(写出一个即可).12.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是______ .13.如图,在△ABC中,∠CAB=75∘,在同一平面内,将△ABC绕点A旋转到AB′C′的位置,使CC′//AB,则∠BAB′的度数为________.14.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为______cm.三、解答题(本大题共12小题,共84.0分)15.先化简,再求值.x2(x−1)−(x−1)2−(x+3)(x−3),其中x=12.16.一个不透明的口袋中装有4个红球和白球,这些球除颜色外其余都相同,将球搅匀,从中任意.摸出一个球,恰好摸到红球的概率等于12(1)口袋中有几个红球⋅(2)先从口袋中任意摸出一个球,不放回后再摸出一个球,请用列表法或画树状图法求摸到一个红球一个白球的概率.17.某学校准备购买若干台A型电脑和B型打印机,如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.求每台A 型电脑和每台B型打印机的价格分别是多少元.18.如图所示,正方形ABCD中,E、F分别是AB和AD上的点,若CE⊥BF于点M,求证:AF=BE.19.如图是有桩公共自行车“达达通”车桩的截面示意图,点B、C在EF上,EF//HG,EH⊥HG,EH=4cm,AB=90cm,∠ABC=75°,求点A到地面的距离(结果精确到0.1cm).(参考数据:sin75°≈0.966,cos75°≈0.259,tan75°≈3.732)20.在平面直角坐标系中,点O是坐标原点,矩形OABC的边OA、OC分别在x轴和y轴上,OA=8,OC=4;点D是BC的四等(x>0)的图象经过点D,交分点,且CD<BD.反比例函数y=kxAB于点E.连接OE、OB.(1)求反比例函数的解析式;(2)求△BOE的面积.21.如图,方格中每个小正方形的边长都为1.(1)图1中△ABC的边长AC长为______,△ABC的面积为______.(2)在图2的4×4方格中,画一个面积为10的格点正方形.(四个顶点都在方格的顶点上)22.4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:一、数据收集,从全校随机抽取20学生,进行每周用于课外阅读时间的调查,数据如下(单位:min):二、整理数据,按如下分段整理样本数据并补全表格:三、分析数据,补全下列表格中的统计量:四、得出结论:①表格中的数据:a=______,b=______,c=______;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;③如果该校现有学生400人,估计等级为“B”的学生有______人;④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读______本课外书.23.甲、乙两名工人分别加工a个同种零件.甲先加工一段时间,由于机器故障进行维修后继续按原来的工作效率进行加工,当甲加工43小时后.乙开始加工,乙的工作效率是甲的工作效率的3倍.下图分别表示甲、乙加工零件的数量y(个)与甲工作时间x(时)的函数图象.解读信息:(1)甲的工作效率为______个/时,维修机器用了______小时(2)乙的工作效率是______个/时;问题解决:①乙加工多长时间与甲加工的零件数量相同,并求此时乙加工零件的个数;②若乙比甲早10分钟完成任务,求a的值.24.正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.若△AEB′为等边三角形,则∠BEF等于多少度.(2)在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(3)如图2,连接CB′,求△CB′F周长的最小值.25.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN//BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=√3EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.26.如图,已知直线y=−3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=−x2+bx+c经过点A,B,与X轴的另一个交点是C.(1)求抛物线的解析式.(2)点P是对称轴的左侧抛物线上的一点,当S△PAB=2S△AOB时,求点P的坐标;(3)连接BC,抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由-------- 答案与解析 --------1.答案:B解析:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.先计算−5+3,再求绝对值即可.解:原式=|−2|=2.故选:B.2.答案:B解析:解:如图所示的立体图形的俯视图为.故选:B.从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.答案:C解析:解:A、结果是2x2,故本选项不符合题意;B、结果是x6,故本选项不符合题意;C、结果是x3,故本选项符合题意;D、结果是x3−x2,不能合并,故本选项不符合题意;故选:C.先求出每个式子的值,再进行判断即可.本题考查了同底数幂的乘法,合并同类二次根式,积的乘方和幂的乘方等知识点,能正确求出每个式子的值是解此题的关键.4.答案:A解析:解:移项,得:x<−1,故选:A.移项即可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.答案:C解析:解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,2),∴OD=√12+22=√5,∴CE=√5,故选:C.根据勾股定理求得OD=√5,然后根据矩形的性质得出CE=OD=√5.本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.6.答案:A解析:本题考查了切线的性质和圆周角定理.根据切线的性质得∠PAO=90°,又∠P=50°,得知∠AOP=∠AOP,即可求解.40°,根据圆周角定理,∠ABC=12解:∵直线PA与⊙O相切于点A,∴∠PAO=90°,又∠P=50°,∴∠AOP=40°,∠AOP=20°.∴∠ABC=12故选A.7.答案:√3解析:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.直接化简二次根式进而得出答案.解:原式=2×2√3−3√3=√3.故答案为:√3.8.答案:2.537×1010解析:解:253.7亿用科学记数法表示为:2.537×1010,故答案为:2.537×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.9.答案:1.1a解析:本题主要考查了根据题意列代数式的知识,解决本题的关键是分清题意,列出代数式.依据题意,首先求出八月份的营业额为a(1+25%),再由九月份的营业额比上月下降12%,即可求解.解:根据题意得:八月份的营业额为a(1+25%)=54a,∴九月份的营业额为54a(1−12%)=54a×88100=1.1a.故答案为1.1a.10.答案:x=6解析:解:去分母得:3x−6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=6分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.11.答案:0解析:解:∵一元二次方程x2−x+m=0有两个不相等的实数根,∴△=1−4m>0,,解得m<14故m的值可能是0,故答案为0.若一元二次方程有两不等实数根,则根的判别式△=b2−4ac>0,建立关于m的不等式,求出m 的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2−4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意本题答案不唯一,只需满足m<1即可.412.答案:10解析:本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.解:∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故答案为:10.13.答案:30°解析:此题主要考查了旋转的性质,三角形内角和定理以及平行线的性质.掌握旋转的性质和平行线的性质定理是解题的关键.首先由平行可得∠BAC =∠ACC′=75°,再证明∠ACC′=∠AC′C ,然后运用三角形的内角和定理求出∠CAC′=30°,即可解决问题.解:由题意得:AC =AC′,∴∠ACC′=∠AC′C ,∵CC′//AB ,且∠BAC =75°,∴∠ACC′=∠AC′C =∠BAC =75°,∴∠CAC′=180°−2×75°=30°,由题意知:∠BAB′=∠CAC′=30°.故答案为30°.14.答案:6π解析:本题考查了弧长公式:l =n⋅π⋅R 180(弧长为l ,圆心角度数为n ,圆的半径为R).也考查了等边三角形的性质.直接利用弧长公式计算即可.解:该莱洛三角形的周长=3×60×π×6180=6π(cm).故答案为6π. 15.答案:解:原式=x 3−x 2−(x 2−2x +1)−(x 2−9)=x 3−x 2−x 2+2x −1−x 2+9=x 3−3x 2+2x +8,当x =12时,原式=18−34+1+8=678.解析:本题考查整式的混合运算−化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.先根据单项式乘多项式的法则,完全平方公式和平方差公式进行去括号运算,再合并同类项,结果化为最简后将x的值代入计算即可.16.答案:解:(1)设口袋中有x个红球,根据题意得x4=12,解得x=2,即口袋中有2个红球.(2)列表如下:所有等可能的结果有12种,其中摸到一个红球一个白球的结果有8种,则P(摸到一个红球一个白球)=812=23.解析:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.(1)设红球有x个,根据任意摸出一个球,恰好摸到红球的概率等于12,求出x的值即可;(2)列表得出所有等可能的情况数,找出两次摸到的球中一个是红球和一个是白球的情况数,即可求出所求的概率.17.答案:解:设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得{x +2y =5900,2x +2y =9400.解这个方程组,得{x =3500,y =1200.答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元.解析:本题考查的是二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系并列出方程组.设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2台B 型打印机的钱数=5900,2台A 型电脑的钱数+2台B 型打印机的钱数=9400”列出二元一次方程组,解之即可.18.答案:证明:∵四边形ABCD 是正方形,∴AB =BC ,∠A =∠ABC =90°,∴∠CBM +∠ABF =90°,∵CE ⊥BF ,∴∠ECB +∠MBC =90°,∴∠ECB =∠ABF ,在△ABF 和△BCE 中,{∠CBE =∠A AB =BC ∠ABF =∠BCE,∴△ABF≌△BCE(ASA),∴BE =AF .解析:首先证明利用等角的余角相等得出∠ECB =∠ABF ,再证明△ABF≌△BCE 即可得到BE =AF ; 此题主要考查了全等三角形的判定与性质,以及正方形的性质,关键是掌握全等三角形的判定方法. 19.答案:解:过点A 作AM ⊥BF 于点M ,在Rt △AMB 中,sin75°=AMAB ,∴AM =AB ⋅sin75°≈90×0.966=86.94cm ,∴AM +EH =86.94+4≈90.9cm .答:点A到地面的距离约为90.9cm.解析:过点A作AM⊥BF于点M,在Rt△AMB中,根据三角函数求出AM,进一步即可求得点A到地面的距离.此题主要考查了三角函数的应用以及解直角三角形的应用−坡度坡角问题,得出AM的长是解题关键.20.答案:解:(1)∵四边形ABCO是矩形,∴BC=AO=8,∵点D是BC的四等分点,且CD<BD,∴CD=2,∵OC=4,∴D(2,4),将点D(2,4)代入y=kx得k=8,∴反比例函数的解析式为:y=8x;(2)∵点E在AB上,将x=8代入y=8x得y=1,∴E(8,1),∴AE=1,BE=3,∴△BOE的面积=12BE·OA=12×3×8=12.解析:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等.(1)根据题意得出点D的坐标,从而可得出k的值;(2)根据三角形的面积公式和点E在函数的图象上,即可得出结论.21.答案:√13 3.5解析:解:(1)AC=√32+22=√13,△ABC的面积为:3×3−12×1×2−12×2×3−12×1×3=3.5.故答案为:√13,3.5;(2)如图2所示:正方形ABCD即为所求.(1)直接利用勾股定理以及利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用勾股定理进而得出答案.此题主要考查了应用设计与作图以及勾股定理,正确应用勾股定理是解题关键.22.答案:①5;4;80.5;②B;③160④13解析:解:①由已知数据知a=5,b=4,∵第10、11个数据分别为80、81,=80.5,∴中位数c=80+812故答案为:5、4、80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B,故答案为:B;=160(人),③估计等级为“B”的学生有400×820故答案为:160;×52=13(本),④估计该校学生每人一年(按52周计算)平均阅读课外书80320故答案为:13.①根据已知数据和中位数的概念可得;②由样本中位数和众数、平均数都是B等级可得答案;③利用样本估计总体思想求解可得;④用没有阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.23.答案:20 0.560解析:解:(1)甲的工作效率是10÷0.5=20(个/时),维修机器用的时间为:1−0.5=0.5(小时).故答案为20,0.5;(2)∵乙的工作效率是甲的工作效率的3倍,甲的工作效率是20个/时,∴乙的工作效率是20×3=60(个/时).故答案为60;①如图,设直线BC 对应的函数关系式为y =20x +b 1,把点B(1,10)代入得b 1=−10.则直线BC 所对应函数关系式为y =20x −10 ①.设直线DE 的关系式为y =60x +b 2,把点D(43,0)代入得b 2=−80.则直线DE 对应的函数关系式为y =60x −80②.−联立①②,得:{y =20x −10y =60x −80, 解得:{x =1.75y =25, 所以交点坐标为(1.75,25).1.75−1.75−43=512(小时).所以乙加工512小时与甲加工零件数量相同,此时乙加工25个零件;②设点E(x 1,a),点C(x 2,a),分别代入y =60x −80,y =20x −10,得x 1=a+8060,x 2=a+1020, ∵x 2−x 1=1060=16,∴a+1020−a+8060=16, 解得:a =30.(1)根据图象可以得到甲0.5小时加工了10个零件,则可以求得甲的工作效率,根据图象可以直接求出维修机器用的时间;(2)根据乙的工作效率是甲的工作效率的3倍可求乙的工作效率;①利用待定系数法求得乙的函数解析式以及甲在大于1小时时的函数解析式,联立两个函数的解析式,求出它们的交点坐标即可;②设点E(x 1,a),点C(x 2,a),分别代入两个函数的解析式,根据x 2−x 1=16小时,即可列方程求解.本题考查了一次函数的应用,一元一次方程的应用,函数的图象以及待定系数法求函数的解析式,正确利用数形结合思想,把数值的大小转化为点的坐标之间的关系是关键.24.答案:解:(1)当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=12∠BEB′=12×120°=60°,故答案为:60;(2)A B′//EF,证明:∵点E是AB的中点,∴AE=BE,由折叠可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF//AB′;(3)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE−B′E=5√5−5,∴B′C最小值为5√5−5,∴△CB′F周长的最小值=10+5√5−5=5+5√5.解析:本题属于四边形综合题,主要考查了折叠的性质,平行线的判定,等边三角形的性质,正方形的性质以及三角形周长最小值的计算,灵活运用相关知识是解题的关键.(1)当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=12∠BEB′=12×120°=60°;(2)依据AE=B′E,可得∠EAB′=∠EB′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,进而得出EF//AB′;(3)由折叠可得,CF+B′F=CF+BF=BC=10,依据B′E+B′C≥CE,可得B′C≥CE−B′E= 5√5−5,进而得到B′C最小值为5√5−5,故△CB′F周长的最小值=10+5√5−5=5+5√5.25.答案:解:(1)如图1中,作EH⊥MN于H.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=30°∴∠AEB=60°,∵EB=ED,∴∠EBD=∠EDB,∵∠AEB=∠EBD+∠EDB,∴∠EDB=∠EBD=30°,∵MN//BD,∴∠ENM=∠EBD,∠EMN=∠EDB=30°,∴∠ENM=∠EMN,∴EN=EM,∵EH⊥MN,∴NH=MH,在Rt△EMH中,cos30°=MHEM =√32,∴2MH=√3EM,∴MN=√3EM.(2)如图1中,作NK⊥AD于K.由(1)可知:BC=AD=6,AB=CD=2√3,AE=2,BE=DE=4,∵MN=√3EM,∴EM=√33x,∴DM=4−√33x,在Rt△MNK中,NK=12MN=12x,∴y=12MD⋅NK=−√312x2+x.(3)解:连接MC交BD于点J(如图2).∵点M是线段ED中点,∴EM=MD=2,MN=2√3.∵DC=AB=AE⋅tan60°=2√3,∴MC=√MD2+DC2=4.∴cos∠DMC=MDMC =12.∴∠DMC=60°.∴∠NMC=180°−∠EMN−∠DMC=90°.∵MN//BD,∴∠MJD=∠NMC=90°.∴MJ=12MD=1.NC=√MN2+MC2=2√7∵∠MGJ=90°−∠FMC,∠MCF=90°−∠FMC,∴∠MGJ=∠MCF.∵∠MJG=∠NMC=90°,∴△MJG∽△NMC,∴MGNC =PJMN,∴PG=2√3×2√7=√213.解析:(1)如图1中,作EH⊥MN于H.首先证明MH=HN,在Rt△EMH中,根据cos30°=MHEM =√32,即可解决问题;(2)如图1中,作NK⊥AD于K.只要求出NK、DM即可解决问题;(3)连接MC交BD于点J,可得∠NMC=90°,进而可得△MJG∽△NMC;可得MGNC =PJMN,解可得PG的长;本题考查是四边形综合题、矩形的性质、等腰三角形的判定和性质、直角三角形30度角性质、相似三角形的判定和性质、锐角三角函数、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.26.答案:解:(1)∵直线y =−3x +c 与x 轴相交于点A(1,0),∴0=−3+c ,c =3,∴y =−3x +3,当x =0时,y =3,∴B(0,3),∵抛物线y =−x 2+bx +c 经过点A ,B ,∴{−1+b +c =0c =3, 解得{b =−2c =3, ∴y =−x 2−2x +3;(2)∵A(1,0),B(0,3),∴OA =1,OB =3,∴S △PAB =2S △AOB =2×12×OA×OB=2×12×1×3=3,∵y =−x 2−2x +3=−(x +1)2+4,∴对称轴为x =−1,过点P 作PK ⊥BC ,交AB 的延长线于点K ,作PH ⊥x 轴于点H ,交AB 的延长线于点F ,可得∠F=∠ABO,∠PKF=∠AOB=90°,∴△PKF∽△AOB,∴PKAO =PFAB,∴AB·PK=AO·PF,∵AO=1,∴S△PAB=12AB·PK=12AO·PF=3,∴PF=6,设P(x,−x2−2x+3),x<−1,则F(x,−3x+3),∴PF=−3x+3−(−x2−2x+3)=x2−x=6,解得x1=−2,x2=3(不合题意舍去),∴P(−2,3);(3)(−1,4)或(12,7 4 ).解析:此题考查二次函数的图像和性质,一次函数的图像和性质,待定系数法求一次函数和二次函数的解析式,三角形的面积.(1)把A(1,0)代入y=−3x+c,可得一次函数的解析式,可求出点B坐标,把点A、B坐标代入y=−x2+bx+c,计算可得;(2)由题意可得S△PAB=2S△AOB =2×12×OA×OB=2×12×1×3=3,求出二次函数的对称轴,证明△PKF∽△AOB,根据比例式得出PF,再进一步计算即可;(3)利用tan∠MCB=tan∠ABO计算即可.。
吉林省2020年初中毕业升学考试数学模拟检测试卷

吉林省2020年初中毕业升学考试数学模拟检测试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个 (共10题;共38分)1. (4分) (2019七下·越秀期末) 已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A . ﹣x2B . 2xC .D . x【考点】2. (2分)(2020·台州模拟) 以下给出的几何体中,主视图是矩形,俯视图是圆的是()A .B .C .D .【考点】3. (4分) (2016·藁城模拟) 某县总人口为96万人,96万用科学记数法表示为9.6×10n ,其中n应为()A . 6B . 5C . 4D . 3【考点】4. (4分)下面各式中正确的是().A . 3x ·2x=6xB . ( xy ) = x yC . (2xy) =6x yD . x ·x =x【考点】5. (4分)分式有意义,则x的取值范围是()A . x≠2B . x≠﹣2C . x=2D . x=﹣2【考点】6. (4分)在Rt△ABC中,∠C=90°,∠B=α,AC=b,那么AB等于()【考点】7. (4分)如图,在△ABC中AB=AC,BC=4,面积是20,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段上一动点,则△CDM周长的最小值为()A .B .D .【考点】8. (4分) (2017七下·昭通期末) 买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔x支,铅笔y支,根据题意,可得方程组()A .B .C .D .【考点】9. (4分) (2018八上·四平期末) 在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是()A . 30B . 40C . 50D . 60【考点】10. (4分) (2019九下·包河模拟) 如图,在四边后ABCD中,∠A=∠B=90°,∠C=60°,BC=CD=8,将四边形ABCD折叠,使点C与点A重合,折痕为EF,则BE的长为()A . 1C .D .【考点】二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分) (2019八上·路北期中) 已知,,则代数式的值是________.【考点】12. (5分) (2019八下·峄城月考) 已知关于x的不等式组无解,则a的取值范围是________.【考点】13. (5分)(2019·杭州) 某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省吉林市2020年数学毕业升学考试模拟试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共7题;共14分)
1. (2分)在实数中有()
A . 绝对值最大的数
B . 绝对值最小的数
C . 相反数最大的数
D . 相反数最小的数
2. (2分) (2017八上·揭西期中) 如图,将△AOB绕点O逆时针旋转90°,得到△A′O′B′。
若A的坐标为,即A′的坐标为()
A .
B .
C .
D .
3. (2分)如图,直线AB与⊙O相切于点A,AC,CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()
A . 10
B . 8
C . 4
D . 4
4. (2分)下列方程中,没有实数根的是()
A . x2﹣4x+4=0
B . x2﹣2x+5=0
C . x2﹣2x=0
D . x2﹣2x﹣3=0
5. (2分) (2018八上·孟州期末) 如图,在Rt△ABC中,∠ACB=90°,,则下列结论中正确的是()
A .
B . sinB=
C . cosA=
D . tanB=2
6. (2分) (2016九上·临泽开学考) 如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2 ,则x的取值范围是()
A . x<2
B . x>2
C . x<﹣1
D . x>﹣1
7. (2分)一矩形纸片按图中(1)、(2)所示的方式对折两次后,再按(3)中的虚线裁剪,则(4)中的纸片展开铺平后的图形是()
A .
B .
C .
D .
二、填空题 (共7题;共7分)
8. (1分) (2019七上·潮南期末) 我市某天的最高气温是8℃,最低气温是-1℃,那么当天的最大温差是________.
9. (1分)(2017·黑龙江模拟) 在函数y= 中,自变量x的取值范围是________.
10. (1分)(2017·宁德模拟) 一元二次方程x(x+3)=0的根是________.
11. (1分)如图,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是________.
12. (1分) (2018八上·大田期中) 已知点,是一次函数图象上的两个点,则 ________ (填“>”或“<”“=”)
13. (1分) (2019九下·沈阳月考) 如图,一个正三角形经过变换依次成为正六边形、正十二边形、正二十四边形、….当这些正多边形的周长都相等时,正六边形的面积________正十二边形的面积(填不等的符号).
14. (1分) (2020九上·郑州期末) 已知圆锥的底面半径为,母线长为,则圆锥的侧面积是________.
三、解答题 (共12题;共93分)
15. (10分)(2018·汕头模拟) 如图,已知正比例函数y=2x与反比例函数y= (k>0)的图象交于A、B 两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y= (k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q 为顶点组成的四边形面积为224,求点P的坐标.
16. (5分)如图,为了测量河宽,在河的一边沿岸边选取B、C两点,在对岸岸边选择点A.测得∠B=45°,
(结果精确到1米,参考数据≈1.4,≈1.7)∠C=60°,BC=30米.求这条河的宽度(这里指点A到直线BC的距离).
17. (5分)解方程组:.
18. (5分)扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?
19. (5分) (2018九上·金华期中) 已知:如图,A,B,C,D是⊙O上的点,且AB=CD,求证:∠AOC=∠BOD.
20. (11分) (2016八上·泰山期中) 为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:
身高情况分组表(单位:cm)
组别身高
A x<155
B155≤x<160
C160≤x<165
D165≤x<170
E x≥170
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在________组,中位数在________组;
(2)样本中,女生身高在E组的人数有________人;
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?
21. (10分)在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).
(1)
当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为________.
(2)
若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;
(3)
设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.
①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标________ ;
②若<tan∠ODE<2,则b的取值范围是________.
22. (6分) (2016七上·临洮期中) 挑战自我!
下图是由一些火柴棒搭成的图案:
(1)
摆第①个图案用________根火柴棒,
摆第②个图案用________根火柴棒,
摆第③个图案用________根火柴棒.
(2)
按照这种方式摆下去,摆第n个图案用多少根火柴棒?
(3)
计算一下摆121根火柴棒时,是第几个图案?
23. (6分) (2017九上·东莞开学考) 已知:如图,在平面直角坐标系xoy中,一次函数y= x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)求直线A′B′的解析式;
(2)若直线A′B′与直线AB相交于点C,求S△A´BC:S△ABO的值.
24. (10分) (2017七下·大冶期末) 已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F在OD 上一点,且∠1=∠A.
(1)求证:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度数.
25. (15分) (2019九下·深圳月考) 如图,已知二次函数y=ax2+bx+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0),AB=4.
(1)求二次函数y=ax2+bx+c的表达式;
(2)
点M是二次函数对称轴上一动点,当点M运动到什么位置时,△ACM的周长最小?
(3)点P是直线BC上方的抛物线上一动点,当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
26. (5分)如图,在H市轨道交通的建设中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现选参照物C,测得点C在点A的东北方向上、在点B的北偏西60°方向上,B、C两点间距离为800m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:≈1.414,≈1.732)
参考答案一、单选题 (共7题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
二、填空题 (共7题;共7分)
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共12题;共93分)
15-1、
15-2、
16-1、17-1、18-1、
19-1、20-1、20-2、
20-3、21-1、
21-2、21-3、22-1、
22-2、22-3、
23-1、23-2、24-1、24-2、
25-1、25-2、
25-3、
26-1、。