物理实验技术中的材料薄膜制备与测量技巧
第二章 薄膜制备的物理方法

反应方程举例如下:
Al(激活蒸汽) O2 (活性气体) Al2O3(固相沉积)
Sn(激活蒸汽) O2(活性气体) SnO2 (固相沉积) 在反应蒸发中,蒸发原子或低价化合物分子与活
为了避免污染薄膜材料,蒸发源中所用的支撑材 料在工作温度下必须具有可忽略的蒸汽压,以避 免支撑材料原子混入蒸发气体中。
通常所用的支撑材料为难熔的金属和氧化物。
同时,选择某一特殊支撑材料时,一定要考虑蒸 发物与支撑材料之间可能发生的合金化和化学反 应、相互润湿程度等问题。
支撑材料的形状则主要取决于蒸发物。
源,则膜厚分布为:
d
1
d0 1 l / h2 2
沉积速率和膜厚分布
沉积速率和膜厚分布
实际蒸发过程中,蒸发粒子都要受到真空室中残 余气体分子的碰撞,碰撞次数取决于分子的平均 自由程。设有N0个蒸发分子,飞行距离l后,未受 到残余气体分子碰撞的数目N为:
N N0 exp(l / )
同时,脉冲激光沉积可以实现高能等离子体沉积 以及能在气氛中实现反应沉积。
PLA的局限性:
(1)小颗粒的形成。在PLA膜中通常有0.110um的小颗粒,解决的办法是利用更短波 长的紫外线、靶转动和激光束扫描以保持 靶面平滑,更有效的办法是转动快门将速 度慢的颗粒挡住。
(2)膜厚不够均匀。熔蒸“羽辉”(发光部 分类似羽毛)具有很强的定向性,只能在 很窄的范围内形成均匀厚度的膜。
第二章 薄膜制备的物理方法
物理气相沉积
薄膜沉积的物理方法主要是物理气相沉积法,物 理气相沉积(Physical Vapor Deposition,简称 PVD)是应用广泛的一系列薄膜制备方法的总称, 包括真空蒸发法,溅射法,分子束外延法等。
北科大物理实验低真空的获得、测量与用直流溅射法制备金属薄膜

低真空的获得,测量与用直流实验报告溅射法制备金属薄膜学院材料班级材料1510 学号 41503000 姓名张问一、实验目的与实验仪器实验目的:1)学习真空基本知识和真空的获得与测量技术基础知识。
2)学习用直流溅射法制备薄膜的原理与方法。
3)实际操作一套真空镀膜装置,使用真空泵和真空测量装置,研究该真空系统的抽气特性。
4)用直流溅射法制备一系列不同厚度的金属薄膜,为实验研究金属薄膜厚度对其电阻率影响制备样品。
实验仪器:SBC-12 小型直流溅射仪(配有银靶),机械泵,氩气瓶、超声波清洗器、玻璃衬底二、实验原理(要求与提示:限400 字以内,实验原理图须用手绘后贴图的方式)1.真空基本知识:该实验首先需制造一个真空条件,在中真空状态,机械泵抽真空2.用直流溅射法制备薄膜溅射就是指荷能粒子轰击表面,使得固体表面原子从表面射出的现象,这些从固体表面射出的粒子大多呈原子状态,通常称为被溅射原子。
溅射粒子轰击靶材,使得表面成为被溅射原子,被溅射原子沉积到衬底上就形成了薄膜。
所以这种方法称为溅射法,干燥气体在正常状态下是不导电的,若在气体中安置两个电极并加上电压,少量初始带电粒子与气体院子相互碰撞,使束缚电子脱离气体原子成为电子,这时有电流通过气体,这个现象称为气体放电。
本实验所使用的是直流溅射法,利用了直流电压产生的辉光放电,如图所示,在对系统抽真空后,充入适当压力的惰性气体,作为气体放电的载体,在正负极高压下,气体分子被大量电离,并伴随发出辉光。
由放电形成的气体正离子被朝着阴极方向加速,正离子和快速中性粒子获得能量到达靶材,在这些粒子的轰击下,被溅射出来的靶材原子冷凝在阳极上,从而形成了薄膜。
三、实验步骤(要求与提示:限400 字以内)(1)把银靶装在镀膜室顶盖上,并使其到工作台的距离为40mm。
(2)把玻璃衬底放入盛有无水乙醇的烧杯中,用超声波清洗机清洗3分钟,用吹风机烘干玻璃衬底,烘干后放在镀膜室的工作台上;盖上镀膜室上盖。
薄膜材料的表征方法

图3-1 椭偏法测量y和Δ的原理图
椭偏仪一般包括以下几个部分:激光光源、起偏器、样品台、检偏器和光 电倍增管接收系统。图3-1所示是反射消光椭偏仪的原理图,激光光源发 出的光, 经过仪器的起偏器变成线偏振光, 通过补偿器1/4波片形成椭圆 偏振光, 然后投射到待测光学系统薄膜上,待测光学系统具有沿正交坐标 x和y轴的正交线性偏振态, 从待测光学系统射出的光, 偏振态已经发生 了变化(椭圆的方位和形状与原入射椭偏光不同) , 通过检偏器和探测器 就可以进行检测了。
(1)椭偏仪法测量的基本原理 椭圆偏振测量, 就是利用椭圆偏振光通过薄膜时, 其反射和 透射光的偏振态发生变化来测量和研究薄膜的光学性质。 椭偏仪法利用椭圆偏振光在薄膜表面反射时会改变偏振状 态的现象,来测量薄膜厚度和光学常数,是一种经典的测 量方法。 光波(电磁波)可以分解为两个互相垂直的线性偏振的S波 和P波,如果S波和P波的位相差不等于p/2的整数倍时,合 成的光波就是椭圆偏振光。当椭圆偏振光通过薄膜时,其 反射和透射的偏振光将发生变化,基于两种介质界面四个 菲涅耳公式和折射定律,可计算出光波在空气/薄膜/衬底多 次反射和折射的反射率R 和折射率T。
膜厚d 的计算
通常,光波的偏振状态由两个参数描述:振幅和相位。为方便 起见,在椭偏仪法中,采用Ψ 和△这两个参数描述光波反射时 偏振态的变化,它们的取值范围为: 0 ≤Ψ ≤π/ 2 ,0≤△< 2π。 (Ψ , △) 和( Rp , Rs) 的关系定义为总反射系数的比值,如下 式所示 Rp/Rs=tanyexp(iΔ) 式中, tgΨ 表示反射前后光波P、S 两分量的振幅衰减比, △=δp -δs 表示光波P、S 两分量因反射引起的相应变化之 差。 由此可见,Ψ 和△直接反映出反射前后光波偏振状态的变化。 在波长、入射角、衬底等确定的条件下,Ψ 和△是膜厚和薄 膜折射率( n) 的函数,写成一般函数式为Ψ = Ψ( d , n) , △= △( d , n) 结合公式,测量y和Δ,就可以求出薄膜折射率n和薄膜的 厚度d。
薄膜材料的表征方法

6.2 薄膜形貌的表征方法 电子束与固体样品作用时产生的信号
6.2 薄膜形貌的表征方法
➢ 二次电子:外层价电子激发SEM ➢ 背散射电子:被反弹回来的一部分入射电子 S
EM ➢ 透射电子TEM
➢ 俄歇电子:内层电子激发AES,表面层成分分析
6.2 薄膜形貌的表征方法
6.3 薄膜结构的表征方法
6.3.1 X射线衍射法 -- 物相定性分析
材料的成份和组织结构是决定其性能的基本因素,化学分析能给 出材料的成份,金相分析能揭示材料的显微形貌,而X射线衍射分 析可得出材料中物相的结构及元素的存在状态.因此,三种方法不 可互相取代.
物相分析不仅能分析化学组成,更重要的是能给出元素间化学结 合状态和物质聚集态结构.
质量的方法,甚至可以将薄膜厚度的测量精度提高至低于一个 原子层的高水平.
6.1.2 薄膜厚度的机械测量方法
6.1.2.2 石英晶体振荡器法 基于适应晶体片的固有振动频率随其质量的变化而变化的物
理现象. 使用石英晶体振荡器测量薄膜厚度需要注意两个问题:
一,石英晶体的温度变化会造成其固有频率的漂移; 二,应采用实验的方法事先对实际的沉积速度进行标定. 在大多数的情况下,这种方法主要是被用来测量沉积速度. 将其与电子技术相结合,不仅可实现沉积速度、厚度的检测,还 可反过来控制物质蒸发或溅射的速率,从而实现对于薄膜沉积 过程的自动控制.
垂直入射的单色光的反射率随着薄膜的光学厚度n1h的变化而发 生振荡.
当n1> n2n2=1.5,相当于玻璃时,反射极大的位置: h = 2m+1λ/4n1
对于n1< n2,反射极大的条件变为: h = m+1λ/2n1
薄膜材料及其制备技术

课程设计实验课程名称电子功能材料制备技术实验项目名称薄膜材料及薄膜技术专业班级学生姓名学号指导教师薄膜材料及薄膜技术薄膜技术发展至今已有200年的历史。
在19世纪可以说一直是处于探索和预研阶段。
经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。
其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。
这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。
以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。
一、薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。
自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。
生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。
生物体生命现象的重要过程就是在这些表面上进行的。
细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。
膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。
细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。
细胞膜的这些结构和功能带来了生命,带来了神奇。
二、薄膜材料的分类目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。
3 薄膜制备技术(PVD)(溅射)

直流溅射的基本原理:
在对系统抽真空后,充入一定压力的惰性气体,如氩气。在正负电极 间外加电压的作用下,电极间的气体原子将被大量电离,产生氩离 子和可以独立运动的电子,电子在电场作用下飞向阳极,氩离子则 在电场作用下加速飞向阴极—靶材料,高速撞击靶材料,使大量的 靶材料表面原子获得相当高的能量而脱离靶材料的束缚飞向衬底。
射频溅射装臵示意图
射频电场对于靶材的自偏压效应: 由于电子的运动速度比离子的速度大得多,因而相对于等离子体来说,等离 子体近旁的任何部位都处于负电位。 设想一个电极上开始并没有任何电荷积累。在射频电压的驱动下,它既可作 为阳极接受电子,又可作为阴极接受离子。在一个正半周期中,电极将接受大 量电子,并使其自身带有负电荷。在紧接着的负半周期中,它又将接受少量运 动速度较慢的离子,使其所带负电荷被中和一部分。经过这样几个周期后,电 极上将带有一定数量的负电荷而对等离子体呈现一定的负电位,此负电位对电 子产生排斥作用。 设等离子电位为Vp(为正值),则接地的真空室(包含衬底)电极(电位为 0)对等离子的电位差为-Vp,设靶电极的电位为Vc(是一个负值),则靶电 极相对于等离子体的电位差为Vc-Vp。 |Vc-Vp|幅值要远大于| -Vp|。因此,这 一较大的电位差使靶电极实际上处在一个负偏压之下,它驱使等离子体在加速 后撞击靶电极,从而对靶材形成持续的溅射。
.DISTANCE(Torr-cm)
辉光放电的巴邢曲线
等离子体鞘层
辉光放电等离子体中电离粒子的密度和平均能量均较低, 而放电的电压则较高,此时质量较大的离子、中性原子和 原子团的能量远远小于质量极小的电子的能量,这是因为 电子由于质量小极易在电场中加速而获得能量。 不同粒子还具有不同的平均速度
电子速度:9.5*105ms-1, Ar离子和Ar原子:5*102ms-1
50-110nm高反射率多层膜的设计、制备与检测

第1章绪论1.1引言第1章绪论自20世纪50年代以来,人们开始了对光学多层膜的研究【“。
经过几代人的不懈努力,多层膜的研究与应用几乎遍布了整个电磁波谱[25/,如图1.1所示。
从红外到软x射线以至于波长更短的硬x射线波段,多层膜都以其特有的优势在科学研究与技术应用领域发挥着不可替代的作用。
然而,电磁波谱中,在极紫外与真空紫外约t0-200加1波段,人们的研究并不深入。
主要是因为材料在这一波段具有不同于其他波段的吸收特性,研制符合应用要求的多层膜光学元件有一定困难。
即便如此,人们还是可以采用常规的多层膜结构在小于50nl"n和大于110am波段实现了光学元件的反射率增强。
然而在50—110nna强吸收波段,长期的研究工作却难有突破。
主要是因为所有材料在这一波段的吸收特性尤其明显,几乎可以吸收全部辐射光。
正是这种强吸收特性,使得常规的多层膜难以产生适合的光学特性。
近年来,随着空间科学与技术的发展,真空紫外与极紫外波段光谱在天体物理,大气物理,太阳光谱学以及卫星表面膜层的温度控制等众多领域有着迫切的应用需要【4】,同时在同步辐射光学系统以及皿微米光刻技术【5l中也突显出重要的研究价值。
要在这些领域进行研究工作,性能良好的50-110姒波段高反射镜是必备的光学元件。
因此,科学技术的进步迫切需要人们致力于50.110nln强吸收波段高反射镜的研究。
图1.150.110nlm波段在电磁波谱中的位置Figure1.1ThepositionofS0·110minthewavelengthrangeoflightl3.2磁控溅射3.2.1磁控溅射原理磁控溅射法是在与靶表面平行的方向上施加磁场,利用电场和磁场相互垂直的磁控管原理.使靶表面发射的二次电子只能在靶附近的封闭等离子体内作螺旋式运动,电子在阴极区的行程增加,造成电子与气体分子碰撞几率增加,电离效率提高,同时减少了电子对基片的轰击降低7基扳温度,实现低温高速溅射,如图3.1所示。
物理实验技术中的薄膜材料与薄膜器件应用

物理实验技术中的薄膜材料与薄膜器件应用导言:薄膜材料和薄膜器件应用在当今的物理实验技术中扮演着重要的角色。
随着科学技术的不断进步,薄膜已经成为诸多领域的基础材料。
本文将讨论薄膜材料的性质和制备方法,并探讨其在物理实验技术中的应用。
薄膜材料的性质:薄膜材料相对于传统材料来说,具有独特的性质。
首先,薄膜具有较大的比表面积,这使得它们具有更高的反应活性。
其次,薄膜具有较好的光学透明性,这使得它们在传感器、显示器和光学设备等领域有着广泛的应用。
此外,薄膜还具有较高的机械强度和耐腐蚀性,这使得它们适用于各种环境下的应用。
薄膜材料的制备方法:目前,常用的薄膜制备方法主要包括物理气相沉积法、化学气相沉积法、溅射法、溶液法和光化学法等。
物理气相沉积法通过在真空环境下使源材料蒸发并在基底表面沉积形成薄膜。
化学气相沉积法利用气相反应将源材料沉积在基底上。
溅射法则是通过溅射源将材料溅射到基底上形成薄膜。
溶液法是将源材料溶解在溶液中,然后通过浸泡、涂覆等方式使溶液中的材料在基底上沉积形成薄膜。
光化学法则是利用光与化学反应相结合,使源材料在基底上沉积形成薄膜。
薄膜材料的应用:薄膜材料在物理实验技术中的应用非常广泛。
首先,薄膜材料在光学器件中扮演着重要的角色。
例如,在太阳能光电转换器件中,薄膜材料可以用来制作阳极和阴极,从而实现太阳能的转化。
在显示器和光学器件中,薄膜材料可以用来制作透明电极和反射镜等。
其次,薄膜也被广泛应用于电子器件中。
例如,薄膜材料可以用来制造半导体器件中的晶体管和集成电路。
此外,薄膜材料还可以用于传感器和探测器等领域。
例如,在温度传感器中,薄膜材料可以通过测量电阻值的变化来实现温度的检测。
在生物医学传感器中,薄膜材料可以用来制作生物传感器,实现对生物分子的检测和监测。
结语:薄膜材料和薄膜器件应用在物理实验技术中具有重要地位。
薄膜材料的独特性质和多样的制备方法使得它们在各个领域具有广泛的应用。
无论是在光学器件、电子器件还是传感器等领域,薄膜材料都扮演着不可替代的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理实验技术中的材料薄膜制备与测量技巧
材料薄膜在物理实验中扮演着重要的角色。
它们广泛应用于电子器件、光学器件、储能设备等领域,具有独特的性能和应用前景。
但是,材料薄膜的制备与测量并不是一件简单的事情。
本文将针对物理实验技术中的材料薄膜制备与测量技巧展开探讨。
一、材料薄膜的制备技巧
材料薄膜制备过程中的关键问题是如何获得高质量的薄膜。
这包括薄膜的厚度均匀性、结晶度、界面质量等方面的要求。
下面将介绍两种常见的薄膜制备技术。
1. 物理气相沉积法(Physical Vapor Deposition,简称PVD)
PVD是一种利用物理手段将固态材料转化为气态,然后在衬底表面沉积成薄膜的方法。
其中,蒸发法、溅射法和激光热蒸发法是最常用的PVD技术。
在制备薄膜时,需要注意蒸发源的温度、蒸发速率以及衬底的温度和表面处理等因素,以保证薄膜的均匀性和质量。
2. 化学气相沉积法(Chemical Vapor Deposition,简称CVD)
CVD是一种利用化学反应在衬底表面生成具有所需性质的材料薄膜的方法。
通过控制反应条件和气相组分,可以制备出高质量的薄膜。
常见的CVD技术有热CVD、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)等。
在进行CVD制备时,需要注意反应流程的控制、反应气体的纯净度,以及衬底的温度和表面处理等因素。
二、材料薄膜的测量技巧
薄膜的制备完成后,我们需要对其进行测量以获得相关性能参数。
下面将介绍两种常见的薄膜测量技术。
1. 拉曼光谱测量
拉曼光谱是一种非侵入式的测量方法,可以获得材料的结构信息。
通过激光光源的散射,与物质交互作用后的光被收集,并进一步分析得到物质的振动模式和结构信息。
在薄膜研究中,拉曼光谱常用于表征薄膜的晶格结构、应力分布、杂质掺杂等方面的信息。
通过拉曼光谱测量,可以获得薄膜的结晶度、晶格纳米尺寸等重要参数。
2. X射线衍射测量
X射线衍射是一种利用X射线与晶体相互作用,通过对衍射峰的分析来获取晶体结构信息的方法。
在薄膜研究中,X射线衍射常用于测量薄膜的晶体结构、晶格常数、晶格缺陷等方面的信息。
通过X射线衍射测量,可以获得薄膜的晶体结构类型、晶面定向以及晶格异质性等重要参数。
通过以上介绍的几种技术,可以看出在物理实验技术中,材料薄膜的制备与测量涉及到多个方面的知识与技巧。
除了上述提到的技术,还有很多其他的技术在薄膜领域有着重要应用,比如椭偏仪测量、电子显微镜等。
这些技术都需要研究人员具备扎实的物理实验和仪器操作知识,以及对薄膜材料特性的深入理解。
总结一下,物理实验技术中的材料薄膜制备与测量技巧是物理研究中不可或缺的一部分。
通过合适的制备方法和准确的测量手段,可以获得高质量的薄膜材料,为研究者展开更深入的研究提供了可靠的基础。
在未来的研究中,我们可以期待更多关于薄膜制备和测量技术的创新,以推动科学技术的进步与应用的拓展。