机械振动 习题及答案

合集下载

机械振动习题及答案

机械振动习题及答案

机械振动一、选择题1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C )()A 小球在地面上作完全弹性的上下运动()B 细线悬挂一小球在竖直平面上做大角度的来回摆动()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动解析:A 小球不是做往复运动,故A 不是简谐振动。

B 做大角度的来回摆动显然错误。

D 由于球形是非线性形体,故D 错误。

2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。

若从松手时开始计时,则该弹簧振子的初相位应为图一( D )()0A ()2πB()2π-C ()πD解析:3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。

若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B )()63TA ()36TB ()TC 2 ()TD 6解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。

故由公式k m T π2=,可得此弹簧振子的周期为36T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B )()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上振动()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作竖直振动解析:由公式kmT π2=可知,周期不同于质量有关,故选B 5. 一个质点做简谐振动,已知质点由平衡位置运动到二分之一最大位移处所需要的最短时间为0t ,则该质点的振动周期T 应为 ( B )()04t A ()012t B ()06t C ()08t D解析:6. 已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为 ( C )()T A 6 ()6T B ()T C 6 ()6T D解析:由公式glT π2=可知,该振动周期为T 6 7.一简谐振动的旋转矢量图如图2所示,设图中圆的半径为R ,则该简谐振动的振动方程为 ( A )()⎪⎭⎫ ⎝⎛+=4cos ππt R x A ()⎪⎭⎫ ⎝⎛+=4sin ππt R x B()⎪⎭⎫ ⎝⎛-=4cos ππt R x C ()⎪⎭⎫ ⎝⎛+42cos ππt R D解析:8.已知某简谐振动的振动曲线如图3所示,位移的单位为米,时间的单位为秒,则此简谐振动的振动方程为 ( C )()()SI t x A ⎪⎭⎫ ⎝⎛+=322411cos 10ππ ()()SI t x B ⎪⎭⎫ ⎝⎛-=67247cos 10ππ()()SI t x C ⎪⎭⎫ ⎝⎛-=32247cos 10ππ ()()SI t x D ⎪⎭⎫ ⎝⎛-=322411cos 10ππ解析:9.某弹簧振子的振动曲线如图4所示,则由图可确定s t 2=时,振子的速度为 ( A )()s m A π3 ()s m B π3- ()s m C 3 ()s m D 3-解析:10.一质量为m 的物体与一个劲度系数为k 的轻质弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E .若将其弹簧分割成3等份,将两根弹簧并联组成新的弹簧振子,则新的弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等 ( A )()2A A ()4A B ()2A C ()A D解析:由题可得2242121A k kA E '==,所以2A A =' 11.两同方向同频率的简谐振动的振动方程为()SI t x ⎪⎭⎫⎝⎛+=25cos 61π,()SI t x ⎪⎭⎫ ⎝⎛-=25cos 22π,则它们的合振动的振动方程应为 ( D )()()SI t x A 5cos 4= ()()()SI t x B π-=5cos 8()()SI t x C ⎪⎭⎫ ⎝⎛-=210cos 4π ()()SI t x D ⎪⎭⎫ ⎝⎛+=25cos 4π解析:12.已知两同方向同频率的简谐振动的振动方程分别为()SI t A x ⎪⎭⎫ ⎝⎛+=3cos 11πω,()SI t A x ⎪⎭⎫ ⎝⎛-=6cos 22πω,则它们的合振幅应为( C )()21A A A - ()21A A B +()2221+A C ()2221A A D -解析: 二.填空题1.若简谐振动()0cos ϕω+=t A x 的周期为T ,则简谐振动()πϕω++='0cos t n B x 的周期为nT。

机械振动专题练习 (含答案)

机械振动专题练习 (含答案)

1.如图所示为一个水平方向的弹簧振子,小球在MN间做简谐运动,O是平衡位置.关于小球的运动情况,下列描述正确的是(D)A.小球经过O点时速度为零B.小球经过M点与N点时有相同的加速度C.小球从M点向O点运动过程中,加速度增大,速度增大D.小球从O点向N点运动过程中,加速度增大,速度减小2.做简谐运动的物体,振动周期为2 s,下列说法正确的是(C)A.运动经过平衡位置时开始计时,那么当t=1.2 s时,物体正在做加速运动,加速度的值正在增大(1.2s正在由平衡位置向最大位置运动)B.运动经过平衡位置时开始计时,那么当t=1.2 s时,正在做减速运动,加速度的值正在减小C.在1 s时间内,物体运动的路程一定是2AD.在0.5 s内,物体运动的路程一定是A(没有说明是哪1/4周期)3.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图所示,下列结论正确的是(A)A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从B到O的过程中,振动的能量不断增加4.若物体做简谐运动,则下列说法中正确的是(C)A.若位移为负值,则速度一定为正值,加速度也一定为正值B.物体通过平衡位置时,所受合力为零,回复力为零,处于平衡状态C.物体每次通过同一位置时,其速度不一定相同,但加速度一定相同D.物体的位移增大时,动能增加,势能减少5.弹簧振子在做简谐振动时,若某一过程中振子的速率在减小,则此时振子的(C)A.速度与位移方向必定相反B.加速度与速度方向可能相同C.位移的大小一定在增加D.回复力的数值可能在减小6.(多选)做简谐振动的质点在通过平衡位置时,为零值的物理量有(AC)A.加速度B.速度C.位移D.动能7.如图所示为某质点在0~4 s内的振动图象,则(C)A.质点振动的振幅是2 m,质点振动的频率为4 HzB.质点在4 s末的位移为8 mC.质点在4 s内的路程为8 mD.质点在t=1 s到t=3 s的时间内,速度先沿x轴正方向后沿x轴负方向,且速度先增大后减小8.某质点的振动图象如图所示,下列说法正确的是(D)A.1 s和3 s时刻,质点的速度相同B.1 s到2 s时间内,速度与加速度方向相同C.简谐运动的表达式为y=2 sin(0.5πt+1.5π) cmD.简谐运动的表达式为y=2 sin(0.5πt+0.5π) cm9.如图甲所示是一个弹簧振子的示意图,O是它的平衡位置,振子在B、C之间做简谐运动,规定向右为正方向.图乙是它的速度v 随时间t变化的图象.下列说法中正确的是(C)A.t=2 s时刻,它的位置在O点左侧4 cm处B.t=3 s时刻,它的速度方向向左,大小为2 m/sC.t=4 s时刻,它的加速度为方向向右的最大值D.振子在一个周期内通过的路程是16 cm10.如图为一水平弹簧振子的振动图象,由此可知(B)A.在t1时刻,振子的动能最大,所受的弹力最大B.在t2时刻,振子的动能最大,所受的弹力最小C.在t 3时刻,振子的动能最小,所受的弹力最小D.在t4时刻,振子的动能最小,所受的弹力最大11.某质点在0~4 s的振动图象如图所示,则下列说法正确的是(C)A.质点振动的周期是2 sB.在0~1 s内质点做初速度为零的加速运动C.在t=2 s时,质点的速度方向沿x轴的负方向D.质点振动的振幅为20 cm12.(多选)某弹簧振子在水平方向上做简谐运动,其位移x随时间t变化的关系为x=A sinωt,振动图象如图所示,下列说法正确的是(ABD)A.弹簧在第1 s末与第3 s末的长度相同B.第3 s末振子的位移大小为C.从第3 s末到第5 s末,振子的速度方向发生变化D.从第3 s末到第5 s末,振子的加速度方向发生变化13.一单摆做小角度摆动,其振动图象如图所示,以下说法正确的是(D)A.t1时刻摆球速度最大,悬线对它的拉力最小B.t2时刻摆球速度为零,悬线对它的拉力最小C.t3时刻摆球速度为零,悬线对它的拉力最大D.t4时刻摆球速度最大,悬线对它的拉力最大14.已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m,则两单摆摆长la与lb 分别为(B)A.la=2.5 m,lb=0.5 m B.la=0.9 m,lb=2.5 mC.la=2.4 m,lb=4.0 m D.la=4.0 m,lb=2.4 m15.如图所示是一个单摆做受迫振动时的共振曲线,表示振幅A与驱动力的频率f的关系,下列说法正确的是(C)A.摆长约为10 cm B.摆长约为2 mC.若增大摆长,共振曲线的“峰”将向左移动D.若增大摆长,共振曲线的“峰”将向右移动16.如图所示,质量相同的四个摆球悬于同一根横线上,四个摆的摆长分别为L1=2 m、L2=1.5 m、L3=1 m、L4=0.5 m.现以摆3为驱动摆,让摆3振动,使其余三个摆也振动起来,则摆球振动稳定后(D)A.摆1的振幅一定最大B.摆4的周期一定最短C.四个摆的振幅相同D.四个摆的周期相同17.如图所示,在曲轴上悬挂一弹簧振子,转动摇把,曲轴可以带动弹簧振子上下振动.开始时不转动摇把,让振子自由上下振动,测得其频率为2 Hz;然后以60 r/min的转速匀速转动摇把,当振子振动稳定时,它的振动周期为(C)A.0.25 s B.0.5 s C.1 s D.2 s18.如图所示,在一根张紧的绳上挂几个单摆,其中C、E两个摆的摆长相等,先使C摆振动,其余几个摆在C摆的带动下也发生了振动,则(C)A.只有E摆的振动周期与C摆相同B.B摆的频率比A、D、E摆的频率小C.E摆的振幅比A、B、D摆的振幅大D.B摆的振幅比A、D、E摆的振幅大19.一个打磨得很精细的小凹镜,其曲率很小可视为接近平面.将镜面水平放置如图所示.将一个小球从镜边缘释放,小球在镜面上将会往复运动,以下说法中正确的是(C)A.小球质量越大,往复运动的周期越长B.释放点离最低点距离越大,周期越短C.凹镜曲率半径越大,周期越长D.周期应由小球质量、释放点离平衡位置的距离,以及曲率半径共同决定20.(多选)如图所示为同一地点的两单摆甲、乙的振动图象,下列说法中正确的是(ABD) A.甲、乙两单摆的摆长相等B.甲摆的振幅比乙摆大C.甲摆的机械能比乙摆大D.在t=0.5 s时有正向最大加速度的是乙摆21.某个质点的简谐运动图象如图所示.(1)求振动的振幅和周期;(2)写出简谐运动的表达式.21.【答案】(1)10cm8 s(2)x=10sin (t) cm【解析】(1)由题图读出振幅A=10cm简谐运动方程x=A sin代入数据得-10=10sin得T=8 s.(2)x=A sin=10sin (t) cm.。

机械振动试题及答案

机械振动试题及答案

一、填空题1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动,连续振动和离散系统。

2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。

3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。

4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励无关。

5、研究随机振动的方法是(数理统计),工程上常见的随机过程的数字特征有:(均值)(方差)(自相关函数)和(互相关函数)。

6、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或(余弦)函数。

7、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。

8、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。

9、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。

10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。

11、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。

12、叠加原理是分析(线性振动系统)和(振动性质)的基础。

二、简答题1、什么是机械振动?振动发生的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。

振动发生的内在原因是机械或结构具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。

外在原因是由于外界对系统的激励或者作用。

2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。

质量越大,固有频率越低;刚度越大,固有频率越高;阻尼越大,固有频率越低。

3、从能量、运动、共振等角度简述阻尼对单自由度系统振动的影响。

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。

求物体的振动方程。

根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。

根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。

2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。

求质点的角频率和振动周期。

根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。

在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。

如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。

根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。

3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。

当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。

根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。

机械振动题库(含答案)

机械振动题库(含答案)
2
…………2分 …………2分 …………2分 …………2分
16.有两个同方向、同频率的简谐振动,它们的振动表式为:
x1
0.05cos 10t
3 4
x2
0.06 cos 10t
1
4
(SI)
(1)求它们合成振动的振幅和初相位。

(2)若另有一振动 x3 0.07cos(10t 3), 问 3 为何值
7、在两个相同的弹簧下各悬一物体,两物体的质量
比为4∶1,则二者作简谐振动的周期之比为___2_:_1____ 。
8. 一简谐振动的振动曲线如图所示,则由图可得其振幅为
10 cm
_________
2
,其初相为___3______

xcm
10
其周期为__2_54___s___
O
2
x 0.1cos( 5 t 2 )
(A) 6T (B) T / 6 (C) 6T
(D) T
6
4.一个质点作简谐运动,振幅为A,在起始时质点的位移为
A / 2 ,且向x轴正方向运动,代表此简谐运动的旋转矢量
为( B )
A
OA x 2
A
2O
A
x
A
2
O
A
x
A
A O
x
2
(A)
(B)
(C)
(D)
5.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动
竖直放置 放在光滑斜面上
2. 如图所示,以向右为正方向,用向左的力压缩一弹簧,然后
松手任其振动,若从松手时开始计时,则该弹簧振子的初相位
为( D )
(A) 0
(B)
2

机械振动学(参考答案).docx

机械振动学(参考答案).docx

机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。

(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。

(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。

(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。

(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。

(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。

(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。

(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。

(X )9、隔振系统的阻尼愈大,则隔振效果愈好。

(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。

(J)二、计算题:1、一台面以f频率做垂直正弦运动。

如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。

所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。

的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。

试验装置如图1所示,记录其振动周期。

(完整版)大学机械振动课后习题和答案(1~4章总汇)

(完整版)大学机械振动课后习题和答案(1~4章总汇)

1.1 试举出振动设计、系统识别和环境预测的实例。

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。

机械振动学习题答案

机械振动学习题答案
固定端y?y??0,简支端y?y???0,自由端y???y????0
2受迫振动
杆、轴、弦的受迫振动微分方程分别为
?2u?2u
杆:?a2?ea2?f(x,t)
?t?x?2??2?
轴:j2?gip2?f(x,t), j??ip
?t?x?2y?2y
弦:?2?t2?f(x,t)
?t?x
?n?1
(8)
(9)
下面以弦为例。令y(x,t)??yn(x)?n(t),其中振型函数yn(x)满足式(2)和式(3)。代入式(9)得
lll
2
?n??n?n?
llqn(t)
, qn(t)??ynf(x,t)dx, b??yn2dx
00?b
(12)
当f(x,t)?f(x)ei?t简谐激励时,式(12)的稳态响应解为
qn(t)1l11i?t
?n(t)?yf(x)dxe?n2222?0?b?n???n???b全响应解为
?n(t)?
?1l1??
?d1sinkl1?c2coskl1?d2sinkl1
② ③
du1(l1)du2(l1)
?ea2 ?ad④ 11coskl1?a2?d2coskl1?c2sinkl1? dxdx
②式代入③式得d1tankl1?c2?1?tankl1tank(l1?l2)?
②式代入④式得所以频率方程即
d1?c2?tank(l1?l2)?tankl1?a2/a1
q(x)?ccoskx?
dsinkx,其中k?① ②
c?0, gipdkcoskl?t0 q(x)?
t0
sinkx
gipkcoskl
t0
sinkxsin?t
gipkcoskl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 选择题
1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ]
(A?)6π (B) 56π (C) 56π- (D) 6π- (E) 23
π- 2、已知一质点沿y 轴作简谐振动,如图所示。

其振动方程为3cos()4y A t πω=+
,与之对应的振动曲线为 [ B ]
3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大振幅2
A 处需最短时间为 [
B ] (A )
;4T (B) ;6T (C) ;8T (D) .12
T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体,此三个系统振动周期之比为 (A);2
1:2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4
1:2:1 5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。

若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为
(A);1s (B) ;32s (C) ;3
4s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分,且21nl l =,则相应的劲度系数1k ,2k 为 [ C ]
(A );)1(,121k n k k n n k +=+=
(B );1
1,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1
1,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的? [ C ]
(A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值;
(B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;
(C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;
(D ) 物体处于负方向的端点时,速度最大,加速度为零。

8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为
A 2
1,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]
9、弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为
(A) kA 2. (B) 22
1kA . (C) (1/4)kA 2. (D) 0. [ D ]
10、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 [ C ] (A) π23. (B) π. (C) π21. (D) 0. 二、填空题 1、无阻尼自由谐振动的周期和频率由 系统本身的性质和阻尼的强弱 决定。

对于给定的谐振动系统,其振幅、初相由 决定。

2、一个弹簧振子,第一次用力把弹簧压缩x 后开始振动,第二次把弹簧压缩2x 后开始振动,则两次振动的周期之比为 1:4 。

3、一弹簧振子作简谐振动,其运动方程用余弦函数表示。

若t = 0时,振子在负的最大位移处,则初相为___0_________。

4、一竖直悬持的弹簧振子,自然平衡时伸长量是0x ,此振子自由振动的周期-为 。

5、一弹簧振子系统具有J 0.1的振动能量,m 10.0的振幅和s m 0.1的最大速率,则弹簧的劲度系数为_______,振子的振动频率为___________。

6、弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所做的功为____ __J.
7、两个同频率余弦交变电流)(1t i 和)(2t i 的曲线如图所示,则相差=-12ϕϕ .
8、 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为
A =_____ _______;? =_________ ______;
? =____________.
9、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅
A =_0.05____________ ,初相? =____ayctan 4
5___________.
A/ -
10、一物体作余弦振动,振幅为15×10-2 m ,角频率为6? s -1,初相为0.5??,则振动方程为x = ___0.15cos 62x t ππ⎛⎫=+ ⎪⎝⎭_______ ______________(SI).
11、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有
正最大值的那一时刻为t = 0,则振动表达式为 2cos 2.52x t π⎛⎫=- ⎪⎝⎭ _________.
三、计算题
1、一质点作简谐振动)328cos(1.0ππ+
=t x 的规律振动。

求振动的角频率、周期、振幅、初相、最大速度及最大加速度。

2、作简谐运动的小球,速度最大值为3/m v cm s =,振幅2A cm =,若从速度为正的最大值的某一时刻开始计算时间。

(1) 求振动的周期
(2) 求加速度的最大值
(3) 写出振动方程。

3、某简谐振动,振幅为A ,周期为T 。

计时开始0=t 时,0,200>-
=v A x ,试求: (1) 其振动方程的初相;
(2) 由2
A x -=处运动到平衡位置O 处所需最短时间。

4、一简谐振动的振动曲线如图所示,求其振动方程。

5、一质量为g 10的物体作简谐运动,其振幅为cm 24,周期为s 4,当0=t 时,位移为cm 24+。

求:
(1)s t 5.0=时,物体所在位置和物体所受的力;
(2)由起始位置运动到cm x 12=处所需最少时间。

相关文档
最新文档