《三线摆》实验报告

合集下载

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告
实验名称:三线摆测转动惯量实验
实验目的:通过测定三线摆的周期及其它相关数据,求出三维
转动刚体的转动惯量,并掌握三线摆测定转动惯量的方法和原理。

实验原理:
三线摆是通过重锤质心的三维弧线运动,来模拟刚体围绕任意
轴的转动,在周期性的运动过程中,可以测得摆线的长度、倾角
和周期等数据,从而求出刚体绕任意轴的转动惯量。

根据转动惯
量的定义公式:I=Mr²,其中M为刚体质量,r为旋转半径。

所以
可通过实验测量M、r和转动周期T,计算出转动惯量I的值。

实验步骤:
1.调整三线摆的摆线长度,使其在运动过程中不挂到其它物体。

2.安装刚体,调整三线摆使其处在平衡状态。

3.使刚体在摆的周期内绕任意轴转动,记录下实验数据:周期T、摆线长度l,及摆线的倾角α。

4.再通过反复实验,取多组数据,求出平均值。

实验数据处理:
1.数据测量误差:根据实验精度和精确度,将测量误差控制在正负3%之内。

2.数据处理公式:根据公式I=Mr²/T²求解平均值,并通过t-分布检验和误差分析,对实验结果进行评价。

实验结论:
通过三线摆测转动惯量实验,我们得到刚体绕任意轴的转动惯量I的数值,通过t-分布检验和误差分析,证明实验结果具有一定的可靠性和准确性。

同时,此实验也让我们掌握了三线摆测定转动惯量的方法和原理。

总之,本次实验对于我们深入理解转动惯量有着积极意义,我们通过实际操作和数据处理的掌握,加深了对转动惯量理论的理解,对之后的学习与研究具有指导意义。

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告实验报告:三线摆测转动惯量实验一、实验目的本次实验的主要目的是通过三线摆的测量,研究物体在不同摆动角度下的转动惯量。

转动惯量是描述物体旋转特性的一个重要参数,对于理解物体的运动规律和动力学性能具有重要意义。

二、实验原理1. 三线摆的构造三线摆是由三条相互垂直的细线组成,其中两条细线固定在同一端点,另一条细线则通过一个支点悬挂。

当三线摆摆动时,细线的张力会产生扭矩,使得摆锤绕支点旋转。

2. 转动惯量的计算公式转动惯量的计算公式为:I = m * r^2,其中m为物体的质量,r为物体的半径。

在本实验中,我们将通过测量三线摆在不同摆动角度下的周期和角速度,从而求得物体的转动惯量。

三、实验步骤与结果分析1. 实验准备(1) 准备三线摆、计时器、直尺等实验工具。

(2) 将三线摆调整至水平状态,使两条细线的夹角为90°。

(3) 在三线摆的一端挂上质量为m的小球。

(4) 将三线摆调整至合适的初始位置,使其摆动幅度较小。

2. 实验过程与数据记录(1) 以一定的时间间隔记录三线摆的周期T;(2) 以一定的时间间隔记录三线摆的角速度ω。

(3) 根据公式I = 2π/T * ω^2 * r,计算出小球的转动惯量I;(4) 重复以上步骤,分别测量三线摆在不同摆动角度下的数据。

3. 结果分析根据实验数据,我们可以得到以下结论:(1) 随着三线摆摆动角度的增大,其周期T逐渐减小;这是因为在摆动过程中,重力作用在小球上的分力逐渐增大,使得小球受到的回复力减小,从而导致摆动周期变短。

角速度ω也随之增大;这是因为在摆动过程中,小球受到的回复力与重力分力的合力方向始终保持不变,使得小球绕支点做圆周运动的速度不断增大。

因此,我们可以得出结论:物体在不同摆动角度下的转动惯量与其固有属性有关。

用三线摆测刚体转动惯量实验报告(一)

用三线摆测刚体转动惯量实验报告(一)

用三线摆测刚体转动惯量实验报告(一)用三线摆测试刚体转动惯量实验报告引言•实验目的:通过使用三根细线来测量刚体的转动惯量,并验证转动定律的准确性。

•实验器材:三线摆装置、刚体、测微卡尺、计时器等。

•实验原理:利用三线摆装置的固定原理,测量刚体对不同轴的转动惯量。

实验步骤1.搭建实验装置,将刚体依次放在三根细线上,保证刚体可以自由转动。

2.使用测微卡尺测量刚体的质量、长度以及其他相关参数。

3.将刚体从静止放置状态释放,记录下摆动的周期,并计算出刚体对应不同轴的转动惯量。

4.重复实验多次,取得多组数据进行平均计算,提高实验的准确性。

5.对比实验结果,验证转动定律的准确性。

实验结果和分析•根据实验数据计算得到的转动惯量与刚体质量、长度等参数呈现一定的关系,符合转动定律的理论预期。

•实验结果的误差主要来源于实际操作中的不确定因素,如刚体与线的接触点不精确、误差的累积等。

•可以通过增加实验次数、提高测量精度等方法来进一步减小误差。

结论•通过实验验证了刚体对不同轴的转动惯量符合转动定律的理论预期。

•实验结果与理论计算值相近,证明了实验的可靠性和准确性。

•实验过程中发现的误差来源可以通过改进实验装置和增加实验次数等方法来进一步减小。

致谢感谢导师的悉心指导和同学们的合作,为本次实验的顺利进行提供了宝贵的帮助。

注意:文章中出现一些实验数据和计算结果,这里省略。

用三线摆测试刚体转动惯量实验报告引言•实验目的:通过使用三根细线来测量刚体的转动惯量,并验证转动定律的准确性。

•实验器材:三线摆装置、刚体、测微卡尺、计时器等。

•实验原理:利用三线摆装置的固定原理,测量刚体对不同轴的转动惯量。

实验步骤1.搭建实验装置,将刚体依次放在三根细线上,保证刚体可以自由转动。

2.使用测微卡尺测量刚体的质量、长度以及其他相关参数。

3.将刚体从静止放置状态释放,记录下摆动的周期,并计算出刚体对应不同轴的转动惯量。

4.重复实验多次,取得多组数据进行平均计算,提高实验的准确性。

三线摆实验报告数据

三线摆实验报告数据

三线摆实验报告数据目录1. 实验目的1.1 原理介绍1.1.1 三线摆1.1.2 摆的运动规律1.2 实验步骤1.2.1 材料准备1.2.2 实验操作2. 实验结果2.1 观察现象2.2 数据记录3. 结论4. 参考文献1. 实验目的1.1 原理介绍1.1.1 三线摆三线摆是由三根不同长度的线所组成的摆,分别悬挂在不同高度的支点上,当摆动时会呈现出复杂的运动规律。

1.1.2 摆的运动规律根据三线摆的特点和运动规律,可以观察到摆的周期和振幅之间存在一定的关系,同时摆的运动会受到空气阻力等因素的影响。

1.2 实验步骤1.2.1 材料准备- 三根不同长度的线- 支点- 实验台1.2.2 实验操作1. 在支点上分别悬挂三根不同长度的线,确保它们处于同一竖直面上。

2. 给其中一个摆加力使其摆动,观察三线摆的运动情况。

3. 记录摆的运动周期和振幅。

2. 实验结果2.1 观察现象通过实验观察,发现三线摆在运动过程中呈现出复杂的非线性运动,摆动的幅度和周期并不是简单的线性关系。

2.2 数据记录通过记录摆的运动周期和振幅数据,可以进一步分析三线摆的运动规律,了解摆在不同条件下的运动特性。

3. 结论实验结果表明,三线摆的运动规律受到多种因素的影响,包括线的长度、重力以及空气阻力等。

通过对摆的运动规律的研究,可以深入了解摆的运动特性及其在物理学中的应用价值。

4. 参考文献- 作者1. (年份). 标题. 期刊名, 卷(期), 页码.- 作者2. (年份). 标题. 期刊名, 卷(期), 页码.。

三线摆法测量转动惯量实验报告

三线摆法测量转动惯量实验报告

三线摆法测量转动惯量实验报告1. 实验目的说到转动惯量,这个名词听起来是不是有点高深莫测?其实啊,转动惯量就像是物体在转动时的一种“固执程度”,越大就越难转,越小则容易旋转。

这次实验的目的就是用三线摆法来测量转动惯量,弄明白这个“固执”的家伙到底是怎么回事。

2. 实验原理2.1 三线摆的构造三线摆,顾名思义,就是有三根线的摆。

这三根线可不是随便的线,而是精心设计过的,用来让我们测量转动惯量的。

在实验中,通常会有一个旋转的物体,比如一个小圆盘,然后把它固定在三根线的底端,让它可以自由转动。

这样的设计不仅有趣,还特别实用,简直是物理界的“神器”!2.2 转动惯量的计算转动惯量的计算公式有点复杂,但别怕,咱们只要记住几个关键点。

首先,要知道物体的质量和它的形状,这些都会影响到转动惯量。

然后,通过测量摆动的角度和时间,我们就能用公式把这些数据转化成转动惯量。

简直就是数学和物理的完美结合,既能动脑又能动手!3. 实验步骤3.1 准备工作实验开始之前,我们得先准备好所有的工具和材料。

首先要有一个稳稳当当的三线摆,别让它像风筝一样乱飞。

然后就是我们的小圆盘,别忘了它的质量哦!接下来,准备一个计时器,用来测量摆动的时间。

这可不是“玩儿命”,而是要让数据更加准确。

3.2 实际操作一切准备就绪后,开始实验啦!首先把圆盘挂在三线摆的底端,调整好位置,确保它能顺利转动。

然后,轻轻地拉一下线,让圆盘开始摆动。

此时,大家都要屏息凝神,静静观察,记下摆动的时间和角度。

每个人的心里都像打鼓一样,不知道结果会不会让我们大吃一惊。

4. 数据记录与分析实验结束后,数据就像金矿一样,等着我们去挖掘!记录下每次摆动的时间和对应的角度,把这些数据整理成表格,简直就像是给自己上了一堂数学课。

然后,利用转动惯量的公式,把这些数据代入计算,得出最终结果。

此时,心里简直乐开了花,看到数值就像是在解锁成就,既有成就感又充满期待。

5. 实验总结经过一番折腾,转动惯量终于在我们的手中显现!在这个过程中,不仅学到了物理知识,还体会到了动手实验的乐趣。

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告一、实验目的1、掌握三线摆测量物体转动惯量的原理和方法。

2、学会使用秒表、游标卡尺、米尺等测量工具。

3、研究物体的转动惯量与其质量分布、形状和转轴位置的关系。

二、实验原理三线摆是由三根等长的悬线将一圆盘水平悬挂而成。

当圆盘绕中心轴扭转一个小角度后,在重力作用下圆盘将做简谐振动。

其振动周期与圆盘的转动惯量有关。

设圆盘的质量为$m_0$,半径为$R$,对于通过其中心且垂直于盘面的轴的转动惯量为$J_0$,上下圆盘之间的距离为$H$,扭转角为$\theta$。

当下圆盘转过角度$\theta$ 时,圆盘的势能变化为:$\Delta E_p = m_0g \Delta h$其中,$\Delta h$ 为下圆盘重心的升高量,可近似表示为:$\Delta h =\frac{R^2 \theta^2}{2H}$根据能量守恒定律,圆盘的势能变化等于其动能变化,即:$\frac{1}{2} J_0 \omega^2 = m_0g \frac{R^2 \theta^2}{2H}$又因为圆盘做简谐振动,其角频率$\omega =\frac{2\pi}{T}$,所以有:$T^2 =\frac{4\pi^2 J_0}{m_0gR^2} \cdot \frac{H}{R^2}$设待测物体的质量为$m$,放在下圆盘上,此时系统的转动惯量为$J$,则系统的振动周期为$T'$,有:$T'^2 =\frac{4\pi^2 J}{(m + m_0)gR^2} \cdot \frac{H}{R^2}$则待测物体对于中心轴的转动惯量为:$J =\frac{T'^2 (m + m_0)gR^2 H}{4\pi^2 R^2} J_0$三、实验仪器三线摆实验装置、游标卡尺、米尺、秒表、待测物体(圆柱体、圆环等)、天平。

四、实验步骤1、用天平测量下圆盘、待测物体的质量。

2、用游标卡尺测量下圆盘、待测物体的直径和高度。

三线摆与扭摆实验报告(共10篇)

三线摆与扭摆实验报告(共10篇)

三线摆与扭摆实验报告(共10篇)三线摆实验报告课题用三线摆测物理的转动惯量教学目的1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴的转动惯量;2、学会秒表、游标卡尺等测量工具的正确使用方法,掌握测周期的方法;3、加深对转动惯量概念的理解。

重难点1、理解三线摆测转动惯量的原理;2、掌握正确测三线摆振动周期的方法。

教学方法讲授、讨论、实验演示相结合学时3个学时一、前言转动惯量是刚体转动惯性的量度,它的大小与物体的质量及其分布和转轴的位置有关对质量分布均匀、形状规则的物体,通过简单的外形尺寸和质量的测量,就可以测出其绕定轴的转动惯量。

但对质量分布不均匀、外形不规则的物体,通常要用实验的方法来测定其转动惯量。

三线扭摆法是测量转动惯量的优点是:仪器简单,操作方便、精度较高。

二、实验仪器三线摆仪,游标卡尺,钢直尺,秒表,水准仪三、实验原理1、原理简述:将三线摆绕其中心的竖直轴扭转一个小小的角度,在悬线张力的作用下,圆盘在一确定的平衡位置左右往复扭动,圆盘的振动周期与其转动惯量有关。

悬挂物体的转动惯量不同,测出的转动周期就不同。

测出与圆盘的振动周期及其它有关量,就能通过转动惯量的计算公式算出物体的转动惯量。

2、转动惯量实验公式推导如图,将盘转动一个小角,其位置升高为h,增加的势能为mgh;当盘反向转回平衡位置时,势能E?0,此时,角速度?最大,圆盘具有转动动能:E?J0?02/2则根据机械能守恒有:mgh?J0?02/2 (1)上式中的m0为圆盘的质量,?0为盘过平衡位置时的瞬时角速度,J0为盘绕中心轴的转动惯量。

当圆盘扭转的角位移?很小时,视圆盘运动为简谐振动,角位移与时间t的关系为:0sin(2?t/T0??)(2)经过平衡位置时最大角速度为将?0代入(1)式整理后得式中的h是下盘角位移最大时重心上升的高度。

由图可见,下盘在最大角位移?0时,上盘B点的投影点由C点变为D点,即h?CD?BCBC2AB2BD2A'B2A'B2(R2r考虑到AB?A'所以因为?0很小,用近似公式sin?0??0,有将h代入式,即得到圆盘绕OO'轴转动的实验公式设待测圆环对OO'轴的转动惯量为J。

三线摆法测量物体的转动惯量实验报告

三线摆法测量物体的转动惯量实验报告

三线摆法测量物体的转动惯量实验报告一、实验目的。

本实验旨在通过三线摆法测量物体的转动惯量,探究物体的转动惯量与其质量、转动半径的关系,并通过实验数据的处理和分析,验证转动惯量的计算公式。

二、实验原理。

1. 转动惯量。

物体的转动惯量是描述物体对转动运动的惯性大小的物理量,通常用符号I表示。

对于质量均匀分布的物体,其转动惯量可由公式I=mr^2计算得出,其中m为物体的质量,r为物体的转动半径。

2. 三线摆法。

三线摆法是一种用来测量物体转动惯量的实验方法。

实验装置由一根轻绳和两个固定在同一直线上的固定点组成,物体通过轻绳悬挂在固定点上,并形成一个等腰三角形。

当物体受到外力作用时,将产生转动运动,通过测量物体的角加速度和转动半径,可以计算出物体的转动惯量。

三、实验装置。

1. 实验仪器,三线摆装置、计时器、测量尺、质量秤。

2. 实验器材,小球、细绳。

四、实验步骤。

1. 悬挂小球,将小球用细绳悬挂在三线摆装置上,并调整细绳的长度,使小球形成一个等腰三角形。

2. 测量转动半径,使用测量尺测量小球的转动半径r。

3. 施加外力,将小球摆开一个小角度,并释放,记录小球摆动的周期T。

4. 重复实验,重复以上步骤3次,取平均值作为最终实验数据。

五、实验数据处理与分析。

1. 计算角加速度,根据实验数据计算小球的角加速度α。

2. 计算转动惯量,利用公式I=mr^2,结合实验数据计算小球的转动惯量I。

3. 数据分析,对实验数据进行统计分析,绘制实验数据的图表,并进行数据的比较和讨论。

六、实验结果与结论。

通过实验数据处理和分析,得出小球的转动惯量I为x kg·m^2。

实验结果表明,物体的转动惯量与其质量和转动半径的平方成正比,验证了转动惯量的计算公式I=mr^2。

七、实验心得体会。

本次实验通过三线摆法测量物体的转动惯量,加深了对物体转动惯量的理解,同时也锻炼了实验操作和数据处理的能力。

在实验中,我们也发现了一些问题和不足之处,对于实验过程中的误差和影响因素,需要进一步探讨和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三线摆》实验报告
工程物理系工物22 方侨光 022041
1、 实验原理
根据能量守恒定律或者刚体转动定律都可以推出下圆盘绕中心轴的转动惯量
其中,m0为下圆盘的质量;r和R分别为上下悬点离各自圆盘中心的距离,本实验中就是上下圆盘的半径;H为平衡时上下圆盘间的垂直距离;T0为下圆盘的摆动周期;g为重力加速度,为9.80m·s-2。

将质量为m的待测刚体放在下圆盘上,并使它的质心位于中心轴上。

测出此时的摆动周期T和上下圆盘之间的距离H1,则待测刚体和下圆盘对中心轴的总转动惯量
待测刚体对中心轴的转动惯量
2、 实验任务
1. 用三线摆测定下圆盘对中心轴的转动惯量和大钢球对其质心轴的转动惯量。

要求测得的大刚球的转动惯量值与理论计算
值之间的相对误差不大于5%。

2. 用三线摆验证平行轴定理。

3、 实验步骤和数据记录
1. 估计测量周期时所需要的摆动次数。

各个数据的不确定度分别是:
要求
并且估测到(测10个周期)
于是得到
于是取n=100。

2. 下圆盘的质量m0=79.58g
上圆盘的半径r=14.70㎜
下圆盘的半径R=33.98㎜
平衡时上下圆盘间的垂直距离H=401.04㎜
下圆盘的摆动周期T0
序号123456平均值nT0/ms137938138330137529136721137048137741137551下圆盘对中心轴的转动惯量
3. 将钢球放在圆盘上,使其质心和中心轴重合:
钢球的质量m=111.77g
钢球的半径r1=15.08㎜
钢球相对中心轴的转动惯量理论值
上下圆盘间的垂直距离H1=403.38㎜
钢球和下圆盘的摆动周期T1
序号123456平均值nT1/ms10120110132210090299501.210048599524.9100469钢球和下圆盘相对中心轴的转动惯量
钢球相对中心轴的转动惯量实验值
相对误差ΔJ=25%
4. 将3个同样大小的钢球纺织3在均匀分布于下圆盘圆周上的三个孔上:
三个钢球的总质量m2=107.57g
小钢球的半径r2=10.32㎜(平均值)
球盘心距R1=21.65㎜
上下圆盘间的垂直距离H2=404.12㎜
三个钢球和下圆盘的摆动周期T2

123456平均值

nT2136953136006138429139770139709135165137672三个钢球和下圆盘相对中心轴的转动惯量
一个钢球相对中心轴的转动惯量实验值
一个钢球相对中心轴的转动惯量由平行轴定理给出的理论值
相对误差ΔJ=22%
实验结果和理论值很不符合!
4、 讨论
钢球的质量由电子天平给出,半径测了6次,R和r由实验室给出,错误的可能性不大;唯一可能出错的确实是周期,但是周期事实上测了十几次,选出的中间数值。

后来发现结果异常后,又重做了一次,结果和第五次的100485一致。

事实上,我一直怀疑周期应该更短才合理。

在实验过程中,发现起始振幅越大,周期就越长。

这是由于较大摆角不大满足近似条件而引起的。

那么不妨尝试一下实验任务2中得到的周期最小值98524.9(该数值是最小值而被剔除),那么得到的J1=5.80×10-5kg·m。

于是得到钢球的转动惯量J=1.14×10-5kg·m。

相对误差是12%,仍然很大。

对于任务3,测得的周期最小值是134082。

得到J2=1.032×10-
4kg·m。

那么得到J
=5.66×10-5kg·m。

相对误差是11%,也是很大。


x
两个数据表明,并不是因为振幅太大导致摆角大无法满足近似而导致实验失败的。

确切原因还不是很明了,希望可以重新做一次。

事实上,在做的过程中有这种不好的感觉,已经不断调整系统重新测量了,但结果好像都没怎么变。

另外,周期值的测量,标准方差太大了。

相关文档
最新文档