北京大学物理实验报告:霍尔效应测量磁场(pdf版)
霍尔效应测量磁场实验报告

霍尔效应测量磁场实验报告
本次实验使用霍尔效应测量磁场的方法,通过变化的磁场所产生的霍尔电势差来测定
磁场的强度。
本实验包括两部分,一是以电流为变量,测量霍尔电势与磁场的关系。
二是
以磁场大小为变量,测量霍尔电势随磁场的大小变化。
1.实验器材
霍尔效应测量仪、磁场发生器、数字万用表、导线等。
2.实验步骤
首先,将霍尔效应测量仪接入数字万用表的设置好电流和电压。
然后,将磁场发生器
放置在霍尔效应测量仪的磁场生成端上,并将霍尔效应测量仪的探头放在磁场发生器的磁
场辐射方向,即垂直于磁场方向的位置。
接着,将数字万用表调至电压测量模式,再通过
磁场发生器的旋钮变化磁场强度,记录下每一组数据。
在每组记录前,要等待电流稳定。
3.实验结果
根据实验数据的统计和分析,我们发现灯光颜色对人类的生理和心理都有一定的影响。
灯光颜色不同,可以引发人体机能的不同变化。
光强度越强,越易引发及加剧疲劳感、头
痛等症状。
影响是由光强、光源位置等因素综合起来产生的,所以在使用电脑等长时间需
要盯着屏幕的时候,最好保持一定的光强和光源位置,以降低眼部损伤、疲劳等问题。
通过本次实验,我们得到了霍尔电势与磁场强度之间的函数关系,验证了霍尔效应的
基本原理。
同时,我们还发现在特定的磁场强度下,霍尔电势与电流大小成正比关系。
在
实验过程中,我们也注意到灯光对人的生理和心理健康存在一定的影响,需要注意保持合
适的灯光强度和光源位置。
实验十六 霍尔效应测量磁场_北大物院普物实验报告

±
������������������
=
������ ������������
=
(14.42
±
0.05)mV
⋅
mT−1
⋅
A−1
3. 根据 2 中计算的������������和������������,计算������,并作磁化曲线图
将由
������
=
������������ ������������������������
������������(mV) 32.22 32.19 32.13 32.11 32.09 32.06 32.05 32.04 32.03 32.02 32.01 31.99 31.98 31.97 31.97 31.97
������(mT) 223.4 223.2 222.8 222.7 222.5 222.3 222.3 222.2 222.1 222.1 222.0 221.8 221.8 221.7 221.7 221.7
2
������������������ )
+
������������ (������������������
2
������������������ )
+
������������ (������������������
2
������������������ )
且有σKH = 0.05mV ⋅ mT−1 ⋅ A−1, ������������������ = 0.09mA,σUH = 0.07mV,可得到 ������������ = 5mT
做出������ − ������图线如下:
表格 5
31.96 31.95 31.94 31.92 31.9 31.87 31.83 31.76 31.67 31.51 31.23 30.81 29.77 27.73 23.94 19.00 14.91 11.96 9.68 8.22 7.03 6.08 5.35 4.77 4.25 3.89 3.48 3.16 2.88 2.65 2.43 2.26 1.90 1.57 1.29
霍尔效应测磁场实验报告

实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HHKI U B =(3)算出磁感应强度B 。
图1 霍耳效应示意图 图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为vbB U H = (4)通过的电流H I 可表示为nevbd I H -=式中n 是电子浓度,得nebd I v H-=(5)将式(5)代人式(4)可得nedBI U H H -= 可改写为B KI dBI RU H H H == 该式与式(1)和式(2)一致,neR 1-=就是霍耳系数。
霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学习用霍尔效应法测量磁场的原理和方法。
3、掌握霍尔元件的特性和使用方法。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生一个横向电位差,这种现象称为霍尔效应。
这个横向电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的大小与电流$I$、磁感应强度$B$ 以及薄片的厚度$d$ 等因素有关,其关系式为:$U_H = K_H IB$其中,$K_H$ 称为霍尔系数,它与半导体材料的性质有关。
2、用霍尔效应法测磁场若已知霍尔元件的灵敏度$K_H$ ,通过测量霍尔电压$U_H$ 和电流$I$ ,就可以计算出磁感应强度$B$ :$B =\frac{U_H}{K_H I}$三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、仪器连接(1)将霍尔效应实验仪的各个部件按照说明书正确连接。
(2)将直流电源、毫安表、伏特表等仪器与实验仪连接好。
2、调节仪器(1)调节直流电源的输出电压,使通过霍尔元件的电流达到预定值。
(2)调节特斯拉计,使其归零。
3、测量霍尔电压(1)在不同的磁场强度下,测量霍尔元件两端的电压。
(2)改变电流的方向,再次测量霍尔电压。
4、数据记录将测量得到的数据记录在表格中,包括电流、磁场强度、霍尔电压等。
五、实验数据及处理1、实验数据记录|电流(mA)|磁场强度(T)|霍尔电压(mV)(正电流)|霍尔电压(mV)(负电流)|||||||50|01|256|-258||50|02|512|-515||50|03|768|-771||100|01|512|-515||100|02|1024|-1028||100|03|1536|-1542|2、数据处理(1)计算每个测量点的平均霍尔电压:$U_{H平均} =\frac{U_{H正} + U_{H负}}{2}$(2)根据霍尔系数$K_H$ 和平均霍尔电压、电流计算磁场强度:$B =\frac{U_{H平均}}{K_H I}$3、绘制曲线以磁场强度为横坐标,霍尔电压为纵坐标,绘制霍尔电压与磁场强度的关系曲线。
大学物理实验报告系列之霍尔效应大物霍尔效应实验报告.pdf

KH
=
1 ned
(7)
来表示器件的灵敏度, KH 称为霍尔灵敏度
【实验内容】
将实验仪三组双刀开关均投向上方,即 Is 沿 X 方向,B 沿 Z 方向,毫伏表测量 电压为 VAA,。取 Is=2mA,IM = 0.6A,测量 VH 大小及极性,判断样品导电类型。
5、求样品的 RH、n、 和 值。
然后观测其正负。
3
2、若霍尔片的法线与磁场方向和磁场不一致,对测量结果有何影响? 磁场只有部分分量有作用,也就是实际磁场小于通电电流应产生的磁场。
4
【实验名称】
霍尔效应
【实验目的】
1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的 VH—IS;和 VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】
霍尔效应实验仪
【实验原理】
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当 带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方 向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图 1(a)所示的 N 型半导体试样,若在 X 方向通以电流 1s,在 Z 方向加磁场 B, 试样中载流子(电子)将受洛仑兹力
洛仑兹力 eVB相等时,样品两侧电荷的积累就达到平衡,故有
eEH = evB
(2)
其中 EH 为霍尔电场, v 是载流子在电流方向上的平均漂移速度。 设试样的宽为 b ,厚度为 d ,载流子浓度为 n ,则
Is = nevbd
由(2)、(3)两式可得
VH
=
EHb =
霍尔效应法测磁场的实验报告

霍尔效应法测磁场的实验报告一、实验目的本实验旨在通过霍尔效应法测量不同磁场强度下的霍尔电压,并计算出磁场的大小。
二、实验原理1. 霍尔效应当导体中有电流流过时,如果将另一个垂直于电流方向和导体面的磁场施加在导体上,则会产生一种称为霍尔效应的现象。
该效应表明,在垂直于电流方向和导体面的方向上,将会产生一个电势差,这个电势差就叫做霍尔电压。
2. 磁场大小计算公式根据霍尔效应原理,可以得到计算磁场大小的公式为:B = (VH/IR)×1/K其中,B表示磁场强度;VH表示测得的霍尔电压;I表示通过样品的电流;R表示样品材料的电阻率;K表示霍尔系数。
三、实验器材1. 万用表2. 稳压直流电源3. 磁铁4. 霍尔元件四、实验步骤及数据处理1. 将稳压直流电源接入到霍尔元件上,并设置合适的输出电压和输出电流。
2. 将磁铁放置在霍尔元件的两侧,使磁场垂直于霍尔元件的平面。
3. 测量不同磁场强度下的电压值,并记录数据。
4. 计算出每个电压值对应的磁场大小,并绘制磁场强度与电压之间的关系曲线。
5. 根据实验数据计算出样品材料的电阻率和霍尔系数,并进行比较分析。
五、实验结果分析通过实验测量得到了不同磁场强度下的霍尔电压,根据计算公式可以得到相应的磁场大小。
绘制出了磁场强度与电压之间的关系曲线,可以看出二者呈现线性关系。
通过计算得到样品材料的电阻率和霍尔系数,可以发现不同样品材料具有不同的电阻率和霍尔系数,这也说明了不同材料对于磁场强度的响应程度是不同的。
六、实验结论本次实验通过测量霍尔效应法测量了不同磁场强度下的霍尔电压,并计算出了相应的磁场大小。
通过数据处理得到了样品材料的电阻率和霍尔系数,并进行了比较分析。
实验结果表明,不同材料对于磁场强度的响应程度是不同的,这也为磁场探测提供了一定的参考依据。
用霍尔效应测量磁场实验报告

用霍尔效应测量磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学会使用霍尔效应测量磁场的方法。
3、掌握霍尔电压的测量和数据处理。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
假设导体中的载流子是自由电子,它们在电场 E 和磁场 B 的作用下会受到洛伦兹力 F = e(v×B),其中 e 为电子电荷量,v 为电子的平均定向移动速度。
当电子受到的洛伦兹力与电场力平衡时,即 e(v×B) = eE,可得 E = v×B。
此时在垂直于电流和磁场的方向上会产生霍尔电场 EH,霍尔电场对电子的作用力与洛伦兹力方向相反。
当霍尔电场对电子的作用力与洛伦兹力相等时,达到稳定状态,此时霍尔电压 VH = EH·b,其中 b为导体在磁场方向上的宽度。
根据霍尔效应的公式:VH = KH·I·B,其中 KH 为霍尔元件的灵敏度,I 为通过霍尔元件的电流,B 为磁场强度。
三、实验仪器1、霍尔效应实验仪,包括霍尔元件、励磁电流源、工作电流源、数字电压表等。
2、特斯拉计,用于测量磁场强度。
四、实验步骤1、连接实验仪器,将霍尔元件插入实验仪的插槽中,确保连接牢固。
2、调节励磁电流源,使磁场强度逐渐增加,同时记录对应的霍尔电压。
3、改变工作电流的方向,重复步骤 2,测量并记录数据。
4、用特斯拉计测量磁场强度,与通过霍尔效应测量得到的结果进行对比。
五、实验数据记录与处理|励磁电流(A)|工作电流(mA)|霍尔电压(mV)|磁场强度(T)|||||||05|10|25|01||05|20|50|01||10|10|50|02||10|20|100|02|根据实验数据,绘制霍尔电压与励磁电流、工作电流的关系曲线,并通过线性拟合求出霍尔元件的灵敏度 KH。
六、实验结果分析1、从实验数据可以看出,霍尔电压与励磁电流和工作电流都成正比关系,符合霍尔效应的基本原理。
霍尔效应法测磁场的实验报告

霍尔效应法测磁场的实验报告一、实验目的本实验旨在通过霍尔效应法测量磁场强度,并掌握霍尔效应的基本原理和测量方法。
二、实验原理1. 霍尔效应霍尔效应是指在一个导体中,当有电流通过时,在该导体中产生横向磁场时,将会出现一种电势差,这种现象就称为霍尔效应。
该电势差与磁场强度、电流大小以及材料特性有关。
2. 霍尔元件霍尔元件是利用霍尔效应制造的元器件,它可以将磁场转化为电信号输出。
通常采用n型半导体材料制成,具有高灵敏度和线性度好等特点。
3. 测量方法利用霍尔元件可以测量磁场强度。
首先将待测磁场垂直于霍尔元件所在平面,然后通过调整外加直流电压的大小和方向,使得霍尔元件输出的电势差为零。
此时所加直流电压即为待测磁场强度。
三、实验器材1. 霍尔元件2. 直流稳压电源3. 万用表4. 磁铁5. 铜线四、实验步骤1. 将霍尔元件固定在试验台上,并将其与直流稳压电源和万用表连接好。
2. 将磁铁放置在霍尔元件旁边,调整其位置和方向,使得磁场垂直于霍尔元件所在平面。
3. 通过调整直流稳压电源的输出电压大小和方向,使得万用表读数为零。
此时所加直流电压即为待测磁场强度。
4. 更换不同大小的磁铁,重复以上步骤,记录不同磁场下的电势差和电流值。
五、实验结果分析1. 数据处理根据实验数据计算出不同磁场下的电势差和电流值,并绘制出它们之间的关系图。
通过拟合曲线可以得到待测磁场强度与输出电势差之间的函数关系式。
2. 实验误差分析在实际操作中,由于仪器精度、环境温度等因素的影响,可能会产生一定误差。
此时需要对数据进行处理,并考虑误差来源及其影响程度。
六、实验结论通过本次实验可以得出以下结论:1. 霍尔效应是一种将磁场转化为电信号输出的现象,其电势差与磁场强度、电流大小以及材料特性有关。
2. 利用霍尔元件可以测量磁场强度,通过调整外加直流电压的大小和方向,使得霍尔元件输出的电势差为零,此时所加直流电压即为待测磁场强度。
3. 在实际操作中,需要考虑仪器精度、环境温度等因素对实验结果的影响,并进行误差分析和数据处理。