焊接的工艺特点及流程介绍
焊接工艺(锡焊)

6.3 自动焊接技术
目前常用的自动焊接技术包括: 浸焊 波峰焊接技术 再流焊技术 表面安装技术(SMT)
6.3.1 浸焊
浸焊是指:将插装好元器件的印制电路板浸入有熔融状焊料的锡锅内,一次完成印制电路板上所有焊点的自动焊接过程。 1.浸焊的特点 操作简单,无漏焊现象,生产效率高;但容易造成虚焊等缺陷,需要补焊修正焊点;焊槽温度掌握不当时,会导致印制板起翘、变形,元器件损坏。
2.焊剂(助焊剂)
焊剂是进行锡铅焊接的辅助材料。 焊剂的作用:去除被焊金属表面的氧化物,防止焊接时被焊金属和焊料再次出现氧化,并降低焊料表面的张力,有助于焊接。 常用的助焊剂有: 无机焊剂 有机助焊剂 松香类焊剂:电子产品的焊接中常用。
6.1 焊接的基本知识
6.1.3 锡焊的基本过程
锡焊是使用锡铅合金焊料进行焊接的一种焊接形式。其过程分为下列三个阶段: A.润湿阶段(第一阶段) B.扩散阶段(第二阶段) C.焊点的形成阶段(第三阶段)
6.1 焊接的基本知识
3.1.4 锡焊的基本条件
正确的焊接姿势
一般采用坐姿焊接,工作台和坐椅的高度要合适。 焊接操作者握电烙铁的方法: 反握法:适合于较大功率的电烙铁(>75W)对 大焊点的焊接操作。 正握法:适用于中功率的电烙铁及带弯头的电 烙铁的操作,或直烙铁头在大型机架上的焊接。 笔握法:适用于小功率的电烙铁焊接印制板上 的元器件。
6.2 手工焊接的工艺要求及质量 分析技术
6.2.3 焊点的质量分析
1.对焊点的质量要求 电气接触良好 机械强度可靠 外形美观
6.2 手工焊接的工艺要求及质量 分析技术
2.焊点的常见缺陷及原因分析
虚焊(假焊) 拉尖 桥接 球焊 印制板铜箔起翘、焊盘脱落 导线焊接不当
焊接工艺的特点及应用场合

焊接工艺的特点及应用场合焊接工艺是一种将金属或非金属材料通过熔接的方式连接在一起的加工方法。
焊接工艺具有以下特点:1. 热加工过程:焊接是一种热加工工艺,通过加热将焊接件的金属或非金属材料熔化,并在冷却过程中形成连接。
这种热加工过程使得焊接能够在连接处达到较高的强度。
2. 高效节能:焊接具有高效、节能的特点。
相较于其他连接方式,如螺栓连接、铆接等,焊接工艺不需要附加的连接材料,只需利用焊接材料将零部件连接在一起,既节省了材料,又减少了连接过程中的工艺步骤,提高了生产效率。
3. 结构简洁:焊接工艺连接的零部件结构简洁,外形美观。
焊接连接处的强度高,不易被外界力量破坏,因此焊接连接在工程结构和制造中应用广泛。
4. 应用范围广泛:焊接工艺既适用于金属材料的连接,也适用于非金属材料的连接。
在金属结构、建筑、汽车制造、船舶制造、航空航天等领域中,焊接工艺是最常用的连接工艺之一。
5. 工艺复杂度较高:焊接工艺的施工过程相对较为复杂,需要合理控制焊接参数、选用合适的焊接材料以及严格遵循焊接程序,否则会导致焊缝质量不达标。
因此,焊接工艺需要经过专门的培训和实践才能熟练掌握。
焊接工艺的应用场合主要包括以下几个方面:1. 金属结构制造:焊接工艺在金属结构的制造中被广泛应用,如建筑桥梁、厂房、钢结构等。
焊接能够将金属零部件牢固地连接在一起,提高结构的强度和稳定性。
2. 机械制造:焊接工艺在机械制造中应用广泛,如汽车制造、机械设备制造等。
通过焊接,可以将不同材料的零部件连接起来,形成复杂的机械系统。
3. 船舶制造:焊接工艺在船舶制造中具有重要的地位。
船体的焊接是整个船舶制造过程的重要环节,焊接质量的好坏直接关系到船舶的安全性、耐久性和性能。
4. 冶金工业:焊接工艺在冶金工业中被广泛应用,如钢铁冶炼、有色金属冶炼等。
通过焊接可以将金属材料精确无误地连接在一起,实现高效的冶金加工。
5. 航空航天:焊接工艺在航空航天领域中具有重要的应用价值。
焊接工艺指导书完整版

利用X射线或γ射线穿透 焊缝,在胶片上形成影 像,以检测焊缝内部缺 陷。
超声波检测
利用超声波在焊缝中的 反射和传播特性,检测 焊缝内部缺陷。
磁粉检测
利用磁场对铁磁性材料 的磁化作用,检测焊缝 表面或近表面的裂纹等 缺陷。
验收标准制定和执行流程
制定验收标准
根据焊接工艺评定报告、产品技术条件和合同要求等,制定具体的验收标准。
注意焊条的保管和烘干要求,确保焊条在使用前具有
良好的工艺性能。
焊丝类型及选用原则
01
根据母材的材质、焊接方法、工艺性能和焊缝质量 要求,选择相应牌号和规格的焊丝。
02
考虑焊丝的化学成分、力学性能、表面质量等因素 ,选择品质优良的焊丝。
03
注意焊丝的保管和烘干要求,确保焊丝在使用前具 有良好的工艺性能。
焊接工艺指导书完整版
目录
• 焊接工艺概述 • 焊接材料选择与准备 • 焊接设备与方法介绍 • 焊接工艺参数设置与优化 • 质量检查与验收标准制定 • 安全防护措施与环保要求
01
焊接工艺概述
焊接工艺定义与分类
焊接工艺定义
焊接工艺是一种通过加热、加压或两 者并用,使两个或多个金属材料在连 接处达到原子或分子间的结合,形成 永久性连接的工艺方法。
减少辅助时间和准备时间
合理安排生产流程,减少辅助时间和准备时 间。
优化焊接工艺参数
通过试验确定最佳工艺参数,提高焊接质量 和效率。
降低材料消耗和能源消耗
采用合理的下料和排版方法,减少材料浪费 ;选用高效节能设备,降低能源消耗。
05
质量检查与验收标准制定
外观质量检查项目和方法
焊缝成形
检查焊缝余高、焊缝宽度、焊缝表面是否平整,有无咬边、焊瘤 、弧坑等缺陷。
钢管焊接施工工艺

钢管焊接施工工艺钢管焊接是一种常见的金属连接方法,广泛应用于建筑、船舶、石化、桥梁等工程领域。
在钢管焊接施工中,正确的工艺是确保焊接质量的关键因素。
本文将介绍钢管焊接施工的一般工艺流程以及关键要点。
一、准备工作在进行钢管焊接前,必须进行充分的准备工作,包括以下几个方面:1. 清理和准备钢管表面:首先要确保钢管表面干净,无油污、锈蚀等杂质。
可以使用钢丝刷或砂纸清理钢管表面。
2. 切割和准备焊缝:根据设计要求,使用适当的切割工具将钢管切割成所需的尺寸。
同时,清理焊缝的两侧,确保焊接面光滑。
3. 请求焊接材料和设备:根据焊接材料类型和钢管规格,准备好所需的焊条、焊丝等焊接材料。
同时,保证焊接设备正常运转,并对其进行检查和维护。
二、焊接工艺钢管焊接的工艺主要包括以下几个步骤:1. 预热:对于厚壁钢管或材料,需要进行预热,以减少焊接热裂纹的发生。
预热温度和时间应根据焊接材料和钢管规格进行合理的选择。
2. 对焊缝进行倒角或坡口处理:根据设计要求,对焊缝进行倒角或坡口处理,以便于焊接。
这样可以增加焊接区域的接触面积,同时减少焊接应力。
3. 焊接电流和电压选择:根据焊接材料的类型和钢管的规格,选择合适的焊接电流和电压。
这些参数的选择将直接影响焊接质量。
4. 焊接方法选择:根据钢管焊接的要求和实际情况,选择合适的焊接方法,包括手工电弧焊、气体保护焊、埋弧焊等。
5. 焊接顺序和层数:根据焊接要求和结构特点,确定焊接的顺序和层数。
合理的焊接顺序和层数可以降低焊接应力,提高焊接质量。
6. 焊接控制:在焊接过程中,需要控制焊接速度、均匀度和温度等参数。
同时,根据焊接材料和焊接面积进行合理的热输入控制。
7. 焊后处理:焊接结束后,对钢管进行必要的焊后处理,包括去除焊渣、平整焊缝以及进行必要的喷涂防腐措施。
三、质量控制与安全注意事项在钢管焊接施工过程中,除了正确的工艺流程外,还需要注意以下几个质量控制和安全事项:1. 焊工资质:确保焊工具有合适的焊接技能和证书,熟悉焊接规范和操作规程。
焊接的工艺特点及流程介绍

可通过与波峰焊的比较来了解选择性焊接的工艺特点。
两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。
由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。
在焊接前也必须预先涂敷助焊剂。
与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。
另外选择性焊接仅适用于插装元件的焊接。
选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。
选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。
助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。
焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。
助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。
助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。
回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。
微孔喷射式绝对不会弄污焊点之外的区域。
微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。
预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。
在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。
在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。
使用者可根据具体的情况来安排选择性焊接的工艺流程。
焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。
焊接工艺的特点及适用领域

焊接工艺的特点及适用领域焊接是一种常见且广泛应用于制造过程中的金属连接技术。
它通过将两个或更多金属部件加热至融化状态,并将它们合并成一个整体,从而实现金属连接。
焊接工艺具有以下特点:1. 强度高:焊接连接通常具有与母材相近的强度。
通过适当的焊接方法和参数选择,可以获得高强度的焊缝。
强度高:焊接连接通常具有与母材相近的强度。
通过适当的焊接方法和参数选择,可以获得高强度的焊缝。
2. 高效性:相比于其他连接方法,如螺纹连接或铆接,焊接通常更加高效。
无需进行额外的装配步骤,焊接可以直接将两个部件牢固地连接在一起。
高效性:相比于其他连接方法,如螺纹连接或铆接,焊接通常更加高效。
无需进行额外的装配步骤,焊接可以直接将两个部件牢固地连接在一起。
3. 适应性强:焊接工艺适用于各种金属及其合金的连接,如钢、铝、铜等。
它可以适应不同材料和厚度的连接需求。
适应性强:焊接工艺适用于各种金属及其合金的连接,如钢、铝、铜等。
它可以适应不同材料和厚度的连接需求。
4. 可自动化:现代焊接工艺可以通过自动化和机器人技术实现。
这不仅提高了生产效率,还降低了人工操作的风险和劳动强度。
可自动化:现代焊接工艺可以通过自动化和机器人技术实现。
这不仅提高了生产效率,还降低了人工操作的风险和劳动强度。
焊接工艺在许多领域中得到广泛应用,包括但不限于以下几个领域:1. 制造业:焊接工艺在制造过程中广泛应用于连接金属部件,如汽车制造、船舶建造、机械制造等。
制造业:焊接工艺在制造过程中广泛应用于连接金属部件,如汽车制造、船舶建造、机械制造等。
2. 建筑业:焊接技术用于连接结构件和金属构件,如钢结构框架、管道系统等。
建筑业:焊接技术用于连接结构件和金属构件,如钢结构框架、管道系统等。
3. 石油和天然气工业:管道的焊接连接是石油和天然气输送系统中常见的应用。
石油和天然气工业:管道的焊接连接是石油和天然气输送系统中常见的应用。
4. 航空航天业:焊接工艺在航空航天制造中用于连接飞机、火箭和航天器的金属部件。
焊接工艺的特点及应用实例

焊接工艺的特点及应用实例焊接工艺的特点:1. 焊接可靠性高:焊接是将金属材料融化并连接在一起的工艺,焊接接头具有较高的强度和耐久性,可以承受复杂的载荷和环境条件。
焊接接头的可靠性可以通过合适的焊接材料和工艺来保证。
2. 焊接速度快:相对于其他连接方式,如螺纹连接、铆接等,焊接速度较快。
一般情况下,焊接只需几秒到几分钟完成,可以大大提高生产效率。
3. 焊接适用范围广:焊接适用于大多数金属材料的连接,包括钢、铝、铜、镍合金等。
不同材料可以通过选择合适的焊接方法和材料进行连接。
4. 焊接灵活性高:焊接可以应用于各种复杂的工件形状和结构,不受材料形状的限制。
可以焊接成直线、弧线、环形等形状,适应不同的设计需求。
5. 焊接方式多样性:焊接工艺包括多种方法,如电弧焊、氩弧焊、激光焊、等离子焊等。
每种焊接方法有其特定的应用范围和特点,可以根据需要选择合适的焊接方式。
焊接工艺的应用实例:1. 建筑领域:焊接广泛应用于建筑领域,如钢结构建筑、桥梁、隧道等。
焊接可以用于连接各种形状的结构件,并提供更强的连接强度和耐候性,保证建筑物的安全性和稳定性。
2. 汽车制造业:汽车制造过程中需要大量的焊接工艺,用于连接车身部件、底盘和发动机等。
焊接可以提供可靠的连接,同时具有较高的生产效率和成本效益。
3. 航空航天领域:焊接在航空航天领域具有重要应用,如飞机的机身、发动机等都需要通过焊接实现多个部件的连接。
焊接可以满足飞机高强度和轻量化的要求。
4. 石油化工领域:石油化工设备如储罐、管道、换热器等都需要采用焊接工艺进行连接。
由于石油化工设备经常承受高温高压环境,焊接接头的可靠性尤为重要。
5. 电力行业:电力设备如输电塔、变压器、火力发电锅炉等都需要采用焊接进行连接。
焊接可以提供高强度的接头,确保设备的安全运行和长期稳定性。
总之,焊接工艺具有可靠性高、速度快、适用范围广、灵活性高和方式多样性等特点,广泛应用于各行各业。
焊接的应用实例包括建筑领域、汽车制造业、航空航天领域、石油化工领域以及电力行业等。
各种金属材料的焊接特点及其热处理工艺

各种金属材料的焊接特点及其热处理工艺焊接是一种将两个或多个金属材料通过熔化或变形并在熔融金属之间形成接头的加工方式。
在焊接过程中,金属材料经历了高温和冷却的过程,从而影响了焊接接头的性能和组织结构。
不同金属材料具有不同的焊接特点和热处理工艺。
下面将分别介绍常见金属材料的焊接特点及其热处理工艺。
1.钢材焊接特点及热处理工艺:钢材是最常见的金属材料之一,具有良好的可焊性。
其焊接特点如下:(1)钢材容易氧化,焊接时需要保护气体或保护剂以防止氧化。
(2)焊接速度快,热影响区较小,易形变。
(3)钢材焊接后易产生残余应力和变形。
钢材的热处理工艺包括退火、正火和淬火等。
退火可以减轻焊接残余应力,正火可提高焊接接头的硬度和强度,淬火可增加焊接接头的硬度。
2.铝材焊接特点及热处理工艺:铝材具有良好的导热性和导电性,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度快,热影响区较小。
(3)铝材焊接后容易产生变形。
铝材的热处理工艺主要包括固溶处理和时效处理。
固溶处理可使铝材中的合金元素均匀溶解,时效处理可提高焊接接头的硬度和强度。
3.铜材焊接特点及热处理工艺:铜材具有良好的导热性和导电性,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度较慢,热影响区较大。
(3)铜材焊接后容易产生变形和裂纹。
铜材的热处理工艺主要包括退火和时效处理。
退火可减轻焊接接头的残余应力,时效处理可提高焊接接头的硬度和强度。
4.镁合金焊接特点及热处理工艺:镁合金具有轻质高强度的特点,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度快,热影响区较小。
(3)焊接时易燃,需要采取安全措施。
镁合金的热处理工艺主要包括固溶处理和时效处理。
固溶处理可提高镁合金的强度和耐腐蚀性,时效处理可进一步提高焊接接头的硬度和强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可通过与波峰焊的比较来了解选择性焊接的工艺特点。
两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。
由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。
在焊接前也必须预先涂敷助焊剂。
与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。
另外选择性焊接仅适用于插装元件的焊接。
选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。
选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。
助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。
焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。
助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。
助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。
回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。
微孔喷射式绝对不会弄污焊点之外的区域。
微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。
预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。
在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。
在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。
使用者可根据具体的情况来安排选择性焊接的工艺流程。
焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。
选择性拖焊工艺是在单个小焊嘴焊锡波上完成的。
拖焊工艺适用于在PCB上非常紧密的空间上进行焊接。
例如:个别的焊点或引脚,单排引脚能进行拖焊工艺。
PCB以不同的速度及角度在焊嘴的焊锡波上移动达到最佳的焊接质量。
为保证焊接工艺的稳定,焊嘴的内径小于6mm。
焊锡溶液的流向被确定后,为不同的焊接需要,焊嘴按不同方向安装并优化。
机械手可从不同方向,即0°~12°间不同角度接近焊锡波,于是用户能在电子组件上焊接各种器件,对大多数器件,建议倾斜角为10°。
与浸焊工艺相比,拖焊工艺的焊锡溶液及PCB板的运动,使得在进行焊接时的热转换效率就比浸焊工艺好。
然而,形成焊缝连接所需要的热量由焊锡波传递,但单焊嘴的焊锡波质量小,只有焊锡波的温度相对高,才能达到拖焊工艺的要求。
例:焊锡温度为275℃~300℃,拖拉速度10mm/s~25mm/s通常是可以接受的。
在焊接区域供氮,以防止焊锡波氧化,焊锡波消除了氧化,使得拖焊工艺避免桥接缺陷的产生,这个优点增加了拖焊工艺的稳定性与可靠性。
机器具有高精度和高灵活性的特性,模块结构设计的系统可以完全按照客户特殊生产要求来定制,并且可升级满足今后生产发展的需求。
机械手的运动半径可覆盖助焊剂喷嘴、预热和焊锡嘴,因而同一台设备可完成不同的焊接工艺。
机器特有的同步制程可以大大缩短单板制程周期。
机械手具备的能力使这种选择焊具有高精度和高质量焊接的特性。
首先是机械手高度稳定的精确定位能力(±0.05mm),保证了每块板生产的参数高度重复一致;其次是机械手的5维运动使得PCB能够以任何优化的角度和方位接触锡面,获得最佳焊接质量。
机械手夹板装置上安装的锡波高度测针,由钛合金制成,在程序控制下可定期测量锡波高度,通过调节锡泵转速来控制锡波高度,以保证工艺稳定性。
尽管具有上述这么多优点,单嘴焊锡波拖焊工艺也存在不足:焊接时间是在焊剂喷涂、预热和焊接三个工序中时间最长的。
并且由于焊点是一个一个的拖焊,随着焊点数的增加,焊接时间会大幅增加,在焊接效率上是无法与传统波峰焊工艺相比的。
但情况正发生着改变,多焊嘴设计可最大限度地提高产量,例如,采用双焊接喷嘴可以使产量提高一倍,对助焊剂也同样
可设计成双喷嘴.浸入选择焊系统有多个焊锡嘴,并与PCB待焊点是一对一设计的,虽然灵活性不及机械手式,但产量却相当于传统波峰焊设备,设备造价相对机械手式也较低。
根据PCB的尺寸,可以进行单板或多板并行传送,所有待焊点都将以并行方式在同一时间内完成助焊剂喷涂、预热和焊接。
但由于不同PCB上焊点的分布不同,因而对不同的PCB需制作专用的焊锡嘴。
焊嘴的尺寸尽可能大,保证焊接工艺的稳定,不影响PCB上的周边相邻器件,这一点对设计工程师讲是重要的,也是困难的,因为工艺的稳定性可能依赖于它。
"本文由"深圳柔性pcb线路板厂家网站原创,转载请注明出处
/index.html
/index.html。