简述船舶操纵自动舵原理
船舶操纵的基本原理

3)反移量(偏距)LK 反移量(偏距) 反移量是指转舵后,船舶重心从原航向向操舵相反 反移量是指转舵后, 一侧横移的距离。又称偏距。在满舵旋回时, 一侧横移的距离。又称偏距。在满舵旋回时,当船 舶回转达到一个罗经点时,反移量达到最大值, 舶回转达到一个罗经点时,反移量达到最大值,约 为船长的1%左右 左右, 为船长的1%左右,而船尾反移量的最大值可达船 长的1/10~1/5。 长的1/10~1/5。 4)旋回圈初径DT 旋回圈初径DT 旋回圈初径是指开始操舵到航向转过180° 旋回圈初径是指开始操舵到航向转过180°时重心 所移动的横向距离。在内河, 所移动的横向距离。在内河,对船舶选择旋回掉头 的位置是很重要的参考。 的位置是很重要的参考。 5)旋回圈直径D 旋回圈直径D 旋回圈直径是指船舶进入定常旋回运动时的旋回圈 直径(D=2r)。 直径(D=2r)。 船舶旋回圈各要素是船舶操纵的重要依据, 船舶旋回圈各要素是船舶操纵的重要依据,特别是 航向改变量为30° 40°时的纵距、横距、 航向改变量为30°~40°时的纵距、横距、反移量
船舶制动能力是指船舶在某一船速下,主机停车或 船舶制动能力是指船舶在某一船速下, 倒车以后,船舶对主机工况的反应能力。 倒车以后,船舶对主机工况的反应能力。它可用主 机停车或倒车后船舶对岸相对静止所需的时间和船 舶滑行距离的长短来衡量。 舶滑行距离的长短来衡量。 第二节 旋回圈要素与船舶操纵性的关系 船舶在定速直航状态下,操某一舵角(一般为满舵) 船舶在定速直航状态下,操某一舵角(一般为满舵), 船舶将作纵向和横向相结合的复合运动, 船舶将作纵向和横向相结合的复合运动,称为旋回 运动。船舶作旋回运动时重心运动的轨迹, 运动。船舶作旋回运动时重心运动的轨迹,称为旋 回圈。旋回圈几何特征是: 回圈。旋回圈几何特征是: 最初重心除继续前移外, 最初重心除继续前移外,同 时向操舵相反一侧横移, 时向操舵相反一侧横移,随 后变成瞬时曲率半径r1逐渐 插入图1 后变成瞬时曲率半径r1逐渐 插入图11(船舶操纵75页)。 1(船舶操纵 页 船舶操纵75 减小的螺旋线; 减小的螺旋线;当航向改变 θ≈900~1200之后 之后, 量θ≈900~1200之后,进入 定常旋回运动,此时, 定常旋回运动,此时,曲率
船舵转向的原理

船舵转向的原理船舵是用来控制船只航向的设备,通过调整舵角,可以改变船只的前进方向。
舵角的调整是通过舵机等装置来完成的。
那么船舵转向的原理是什么呢?首先,我们需要了解船的运动特性。
船只在水中运动时,受到水流的阻力和推动力的影响。
船只行驶的方向也受到水流的影响,而舵角的调整可以改变船只和水流的相对位置,从而改变船只的前进方向。
船舵转向的原理可以简单地归纳为以下几点:1. 操控舵机:船舵转向是通过操控舵机来完成的。
舵机是一种用来改变舵角的装置,它通过操纵杆或遥控设备来进行控制。
当操纵杆或遥控设备的舵角发生变化时,舵机会相应地调整舵角。
2. 舵角的调整:舵角是指舵叶相对于船体纵轴线的角度。
舵叶是连接在船舵上的可转动的部件,它的角度可以调整。
当舵机调整舵角时,舵叶会相应地转动,改变舵叶的角度。
3. 受力平衡原理:舵叶的改变会导致水流对舵叶的作用力发生变化。
舵叶与水流之间的相对位置和舵叶的角度决定了水流对舵叶的作用力的大小和方向。
当舵叶处于船舵中正位置时,水流对舵叶的作用力平衡,不会对船只的前进方向产生影响。
当舵叶发生偏转时,水流对舵叶的作用力就会改变,从而对船只的运动方向产生影响。
4. 船只转向:当舵叶偏转时,水流对舵叶的作用力会产生一个力矩,该力矩会使船只产生一个转向的力。
这个力的作用方向与舵叶的偏转方向相反。
根据牛顿第三定律,船只会受到一个与该力相等但方向相反的力,从而改变船只的运动方向。
总结起来,船舵转向的原理是通过调整舵角来改变舵叶和水流之间的相对位置,从而改变水流对舵叶的作用力。
水流对舵叶的作用力又会产生一个转向的力,最终改变船只的前进方向。
虽然这是一个简单的解释,但实际上船舵转向的过程还涉及到许多复杂的因素,比如船只的速度、舵叶的形状等。
不同类型的船只在转向时还有各自特殊的设备和原理,但总的来说,船舵转向的原理都是基于力学和流体力学的基本原理。
这些原理的应用使得舵叶能够对水流产生合适的作用力,从而改变和控制船只的运动方向。
自动操舵系统的基本要求和工作原理

自动操舵系统的基本要求和工作原理1.自动操舵系统基本要求在给定的航向上,为使船舶以足够的精度安全航行自动舵必须满足以下的基本要求:(1)自动操舵性能良好当船舶偏离给定航向一定角度(超过系统灵敏度所整定的角度)时,系统应立即工作,使舵叶偏转一定的角度,这个初始转舵角叫做一次偏舵角。
初始舵角应有适当的数值,如果过大会降低船舶航行速度,过小则产生的转船力矩不足以使船舶回到正航向来。
如果给出初始偏航舵角后船舶仍然偏离预定航向,自动舵必须保证有附加舵角(二次偏舵角)。
上述要求,实质上是选择比例舵的比例系数问题。
此外,在自动舵中还应具有微分和积分(或压舵)校正环节,其目的是使自动舵在调节过程中具有良好的动态性能和静态性能。
(2)具有必要的调节装置为了使同一型号的自动舵装置能够适用于不同的排水量、装载量、航速及舵机拖动装置的船舶,并能适应各种天气、海况,在自动舵系统中应有如下的基本调节装置:①灵敏度调节(俗称天气调节)。
灵敏度是指系统开始投入工作时的最小偏航角。
它视天气、海况而定。
在风平浪静时,灵敏度要调高一些;在大风大浪下,应适当降低自动舵的灵敏度,以减少动舵次数。
②舵角比例调节。
偏舵角与偏航角之比(即K1的数值)的大小,直接影响自动舵给出的一次偏舵角和二次偏舵角的数值,因此要根据船型、装载、航速等情况调节舵角比例,以获得一个合适的舵角比。
③反舵角调节。
偏航中的船舶在自动舵的作用下回复到正航向时,舵叶应先回到艏艉线上,然后再向另一舷偏过一个小角度,以防止船舶因惯性力而继续向另一侧偏航,这个预先的偏舵角称之为反舵角(又称制动舵角,稳舵角,纠偏舵角),应根据船型、装载、天气等情况进行调节。
反舵角可以由微分环节来实现反舵角调节主要调节微分系数K2,又称微分调节。
④压舵调节。
为了纠正船舶由于受到单侧风浪、水流等因素影响而引起的不对称偏航单侧偏航,自动舵中应当设有自动压舵/人工压舵的调节装置。
在具有航向积分环节的自动舵中,则设有积分调节,主要调节积分系数K3。
船舶舵原理

船舶舵原理
船舶舵原理是指通过改变舵的角度,控制船的航向。
舵的角度决定了船舶在水中的运动方向。
船舶舵由舵柄、舵轮和舵机组成。
船员通过转动舵柄或舵轮,使舵机旋转,进而改变舵的角度。
当舵向一侧转动时,水流被舵板或舵叶撞击,产生阻力,使船的前部转向相反方向。
这种反作用力使得船舶改变航向,向舵旁边转动。
舵的角度越大,阻力越大,船舶转向越明显。
船舶转向的速度取决于船舶的速度、舵的角度和船舶的尺寸。
船舶在高速行驶时,船舶转向需要更大的角度和更长的距离。
舵的位置还可以影响船舶的稳定性。
当舵位于船的尾部时,称为尾舵,可以提高船舶的机动性,但会降低船舶的稳定性。
当舵位于船的中心或前部时,称为前舵或中舵,可以提高船舶的稳定性,但会降低船舶的机动性。
船舶舵原理在航海中起着至关重要的作用。
舵手需要准确地掌握舵的角度和舵的位置,以便实现船舶的精确操纵。
通过合理地运用舵原理,船舶可以实现航向的改变,避免与其他船只和障碍物的碰撞,确保航行安全。
老式船舶操舵原理

老式船舶操舵原理船舶操舵原理是船舶操作中不可或缺的一环。
在老式船舶中,操舵原理是通过转动舵轮或使用操杆掌控舵机来控制船舶的方向。
本文将介绍老式船舶操舵原理的基本知识和操作技巧。
一、船舶舵机舵机是一个由机械装置和液压系统构成的设备,能够转动舵轮或操杆,从而控制舵片的旋转角度。
舵机通常由一个接口单元、一组截止阀、一台泵和一个液压缸组成。
液压油经过泵提供动力,通过接口单元被传递到液压缸中,使舵片旋转。
在老式船舶中,舵机通常安装在船舵的下方,由水泵或液压泵供油。
液压油进入液压缸,从而推动扭角杆旋转舵片。
液压泵通过由船舶动力系统提供的动力驱动,以此与船舶操舵系统相对应。
二、船舶转向原理船舶转向原理是指控制船舶方向的方式。
在老式船舶中,转向通常由舵轮或操杆控制。
当轮舵或操杆旋转时,它们向舵机发出指令,控制舵片旋转角度。
船舶转向方向取决于舵片的旋转方向和角度,舵片旋转角度越大,船舶转向半径越小。
船长通过舵轮或操杆控制船舶方向时,要根据船舶的状态和水流及风速等自然因素作出相应调整。
例如,如果船舶正在下行流的区域操作,则需要更大的舵轮或操作杆输入才能完成相应的转向。
这是因为水流对船舶的方向具有一定的影响力,因此需要更大的控制输入才能反向船舶。
1.掌握船舶转向的时间。
在老式船舶中,船舶转向需要一定的时间才能完成。
因此,需要提前预期所需的转向角度,以便及时制动舵轮或转杆。
2.掌握船舶航向的变化速度。
船舶航向的变化速度取决于舵轮或操作杆的输入速度和船舶的回转半径。
舵轮输入过快会导致船舶失控并产生剧烈倾斜。
舵轮输入过慢则会导致转弯半径变大,从而无法顺利完成转向操作。
3.掌握船舶在水上的状态。
如前所述,船舶转向的具体实现受到自然因素的影响。
因此,在水上操纵船舶时,请注重水流和风速等因素的变化,以便需要时作出相应的舵轮或操杆调整。
总之,老式船舶的操舵原理是一个非常重要的技能,其成功完成对于船舶安全而言是至关重要的。
操作时请务必注意舵轮或操杆的输入和掌握船舶的航向变化速度,以便在必要时及时转弯或制动无需产生不利的异常情况。
船舶舵机控制原理

船舶舵机控制原理船舶舵机控制原理第一章:引言1.1 研究背景随着航运业的迅猛发展,船舶舵机控制系统的研究就显得尤为重要。
舵机作为船舶重要的操纵设备,对船舶的转向性能和航行稳定性有着至关重要的影响。
因此,研究船舶舵机控制原理的目的在于提高船舶的操纵能力和安全性。
1.2 研究目的本章主要介绍船舶舵机控制原理的研究背景和研究目的,为后续章节的内容展开做铺垫。
第二章:舵机系统架构2.1 舵机系统组成舵机系统由舵盘、舵机、传感器和控制器组成。
舵盘通过舵杆与舵机相连,舵机负责驱动舵盘转动。
传感器用于采集舵盘的角度信息,并反馈给控制器。
控制器根据传感器的反馈信息,控制舵机的工作状态。
2.2 舵机系统原理舵机系统的工作原理是通过控制舵机的方向和角度,改变舵盘的方向,从而实现船舶的转向操作。
控制器根据传感器的反馈信息,对舵机施加不同的电压信号,控制舵盘的转动角度。
第三章:舵机控制算法3.1 PID控制算法PID控制算法是舵机控制中常用的一种算法。
它主要通过比较目标值与实际值之间的误差,计算出控制量,并且根据误差的大小和方向,调整控制量的大小,从而实现舵盘的精确控制。
3.2 模糊控制算法模糊控制算法是一种可以处理非线性系统的控制算法。
它通过将输入和输出的关系进行模糊化,建立模糊规则库,并根据当前的输入信息,模糊推理出合适的输出,从而实现舵盘的控制。
第四章:实验验证4.1 实验准备本章将通过实验验证舵机控制原理的有效性。
实验将设计一套舵机控制系统,通过对舵盘施加不同的控制信号,测量舵盘的转动角度,并与设计的目标值进行比较,验证控制算法的准确性和稳定性。
4.2 实验结果分析根据实验结果可以看出,舵机控制系统采用的PID控制算法/模糊控制算法,在控制舵盘转动过程中具有较低的误差和较好的稳定性。
通过分析实验数据,验证了舵机控制原理的有效性。
结论通过对船舶舵机控制原理的研究,可以得出舵机控制系统的具体构成和工作原理。
针对不同的控制需求,可以选择合适的控制算法。
自动舵工作原理

自动舵工作原理
自动舵是一种用于船舶、飞机、车辆等交通工具的设备,用于帮助控制航向或方向的稳定性。
其工作原理主要包括以下几个方面:
1. 传感器检测:自动舵系统通过使用各种传感器来检测船舶、飞机或车辆的当前状态和环境条件。
常见的传感器包括陀螺仪、加速度计、磁罗盘、气压计等,它们可以测量船体的倾斜角度、航向角度、速度和环境因素等。
2. 信息处理:传感器将收集到的数据传输给自动舵系统的中央处理器。
中央处理器根据输入的数据进行分析和计算,确定船舶、飞机或车辆当前的姿态和状态,然后生成相应的控制指令。
3. 控制执行:自动舵系统通过电动执行机构或液压控制系统,将计算得到的控制指令转化为实际的控制动作。
例如,对于船舶来说,自动舵可以通过舵机控制舵盘的转动角度,从而改变船舶的航向角度;对于飞机来说,自动舵可以通过控制副翼和方向舵的舵面来调整飞机的姿态和飞行方向。
4. 反馈控制:自动舵系统通常还具有反馈控制机制,以便及时对目标航向或方向进行修正。
通过不断地监测和调整船舶、飞机或车辆的状态和环境条件,自动舵系统可以保持目标航向或方向的稳定性。
总之,自动舵利用传感器检测船舶、飞机、车辆等交通工具的状态和环境信息,通过中央处理器进行数据处理和计算,然后
通过执行机构或控制系统实施相应的控制动作,以实现船舶、飞机、车辆的自动稳定航向或方向。
船用舵机工作原理

船用舵机工作原理
船用舵机是船舶上常见的一种控制装置,主要用于控制船舶的舵角,实现船舶的转向和航向调整。
船用舵机的工作原理如下:船用舵机主要由电动机、减速装置、传动机构和控制系统等部分组成。
控制系统根据船舶的航行需求,向舵机发出控制信号,电动机通过减速装置和传动机构将动力传递到舵叶上,从而实现船舶的转向。
舵机的控制信号可以来自舵机手柄、自动舵或GPS导航系统等。
在手动控制模式下,船员通过手柄上的转向操作,向舵机发出指令,控制舵叶的转向角度;在自动控制模式下,船用舵机通过接收GPS导航系统的信号,调整舵叶的角度,以保持船舶的航向。
船用舵机的工作原理可以说是一种简单而又可靠的机械控制系统,通过电动机和传动机构的配合,实现了船舶的灵活转向和航向调整。
在船舶的安全航行中,船用舵机起着非常重要的作用,也体现了现代化船舶控制技术的先进性。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述船舶操纵自动舵原理
摘要:船舶操纵的自动舵是船舶系统中的一个不可缺少的重要设备,是用来控制船舶航向的设备,能使船舶在预定的航向上运行,随着现代科学技术的不断进步,各种先进仪器的使用,使得船舶操纵开始向智能化方向发展,本文就船舶操纵自动舵的构成和工作原理方面进行了综述。
关键字:船舶自动舵现代船舶自动化
船舶操纵的自动舵是船舶系统中的一个不可缺少的重要设备,是用来控制船舶航向的设备,能使船舶在预定的航向上运行,它能克服使船舶偏离预定航向的各种干扰影响,使船舶自动地稳定在预定的航向上运行,是操纵船舶的关键设备。
它的性能直接关系到船舶的航行安全和经济效益。
代替人力操舵的自动舵的发展在相当程度上减少了人力,节省了燃料,降低了机械磨损,直接影响到船舶航行的操纵性、经济性和安全性。
舵机装置由操舵装置、舵机、传动机构和舵叶四部分组成。
(1)操舵装置:操舵装置的指令系统,由驾驶室的发送装置和舵机房的接受装置组成。
(2)舵机:转舵的动力。
(3)传动机构:能将多机产生的转舵力矩传递给舵杆。
(4)舵叶:环绕舵柱偏转,承受水流的作用力,以产生转舵力矩。
在自动操舵仪中,按控制系统分类可分为三种操舵方式:
(1)直接控制系统或称单舵系统、应急操舵。
(2)随动控制系统。
(3)自动操舵控制系统,又称自动航向稳定系统。
自动操舵适用于船舶在海面上长时间航行.随动操舵供船舶经常改变航向时使用,如在内河、狭航道区和进出港口。
当自动航向/航迹、随动操纵出现故障时,可用应急的简单操舵,直接由人工控制电磁换向阀.使舵正、反或停转。
原理:利用电罗经检测船舶实际航向α,然后与给定航向K°进行比较,其差值作为操舵装置的输入信号,使操舵装置动作,改变偏舵角β。
在舵角的作用下,船舶逐渐回到正航向上。
船舶回到正航向后,舵叶不再偏转。
自动舵的控制原理:
(1)比例舵(P舵)
比例舵操舵的规律是:偏舵角β的大小与偏航角φ的大小成比例关系,即:
β=-K1φ(2-1)
β:偏舵角,K1:比例系数,φ:偏航角,-:偏舵角方向是消除偏航。
K1是可调的比例系数,一般根据船型、吃水、装载量来确定。
但船舶载荷增加(惯量J加大)而且航速变慢,使周期T变长。
为了缩短周期使船舶偏航迅速消除,就可加大K1。
随船型而不同,对万吨船来说,一般为2~3,即偏航1°时,偏舵角为2~3°。
比例系数过大,将使船舶偏航振幅加大。
因此比例操舵虽然简单、可靠,但航向稳定精度较差。
当受一舷持续偏航力矩作用时,不能保证船舶的定向航行。
性能:可消除偏航。
特点:机构简单,航行保持精度较差,船舶营运经济性较差(会出现S形航迹)。
比例舵的不足:偏航初期偏舵角较小,不能很快阻止船舶继续偏航;回航过程中船舶具有惯性,偏舵角不能及时减小,容易反向偏航。
(2)比例——微分舵(PD舵)
比例-微分舵操舵的规律是:偏舵角β的大小与偏航角φ的大小成比例-微分关系,即:
β=-(K1φ+K2dφ/dt)(2-2)
(表示偏舵角与偏航角和偏航角速度成比例)
如果传播偏航速度大,产生的-K2dφ/dt也大,则舵角β就增加,船回航时dφ/dt 变号,使回舵角增加。
微分部分作用是保证偏舵速度和偏舵角,从而能教好地克服船舶惯性,提高航向的精度,减少船舶的s航迹,使船舶较快的稳定在正航向上。
原理:船舶回到正航向前,已受到微分部分的反向舵作用,从而能有效地阻止因惯性
而向反方向的偏航。
微分舵又叫纠偏舵、稳舵角或反舵角。
偏航初期,偏航
角变化率大,比例-微分舵能及时给出大偏舵,有效地阻止船舶偏航(最大偏航角较小);回航时,偏航角变化率变为负值,能适时给出反舵角,阻止船舶反向偏航,即能有效阻止反向偏航。
主要特点:具有“超前校正”的控制作用,减小船舶航向的振荡,减轻舵机负担,增加航速,提高系统灵敏度和船舶的营运效益。
(3)比例——微分——积分舵(PID舵)
组成:是在比例-微分舵基础上增加积分环节。
β=-(K1φ+K2dφ/dt+K3òφdt)(2-3)
积分环节作用是——克服不对称偏航。
K3是积分系数。
积分环节工作原理:积分环节可以对偏航持续时间进行累积,当某舷(侧)偏航持续的
时间比另一舷(侧)持续时间长时,通过环节输出的信号(偏舵角)将继续保持,这个信号将通过执行机构使舵叶维持在一定的偏转角度上,从而使船舶具有克服单向偏航的能力。
由于卫星、计算机、雷达技术在船舶上的应用,现代船舶自动化程度相当高,自动操舵仪开始向智能舵发展。
但是不管怎样发展,虽然它们的控制规律各不相同,但控制的目的是一致的,即能按照偏航角的大小转动相应的舵角,并使船舶尽快地到达规定的航向。