全国高考理科数学试题分类 汇编 :集合
全国各地高考数学真题分章节分类汇编之集合讲义.doc

20##全国各地高考数学真题分章节分类汇编之集合一、选择题:1.<20##高考##卷理科1>已知全集U=R,集合M={x||x-1|2},则<A>{x|-1<x<3} <B>{x|-1x3} <C>{x|x<-1或x>3} <D>{x|x-1或x3}[答案]C[解析]因为集合,全集,所以,故选C.[命题意图]本题考查集合的补集运算,属容易题.2<20##高考##卷理科2>设集合A=,B=,则A∩B的子集的个数是A. 4B.3C.2D.1[答案]A[解析]由题意知A∩B中有两个元素,所以A∩B的子集的个数是4个,故选A。3.<20##高考##卷理科2>若集合,则A、B、C、D、2.A4. <20##高考##卷理科9>设集合A=,B=。若,则实数必满足<A><B><C><D>[答案]D[解析]由题意可得:,对集合B有或,因为,所以有或,解得或,即,选D。[命题意图]本小题考查绝对值不等式的解法、集合之间的关系等基础知识,考查同学们数形结合的数学思想。5.<20##高考##卷理科1>已知集合,,则A.B.C.D.[答案]C[解析]故选C.[命题意图]本题考查集合的交集与子集的运算,属容易题.6.<20##高考##卷理科1>若集合A={-2<<1},B={0<<2}则集合A∩B=<>A. {-1<<1}B. {-2<<1}C. {-2<<2}D. {0<<1}[答案]D[解析].7.<20##全国高考##卷1>已知集合},,则<A><0,2> <B>[0,2] <C>{0,2] <D>{0,1,2}[答案]D解析:由已知得,所以.8.<20##高考##卷理科1>集合A= {x∣},B={x∣x<1},则=<D><A>{x∣x>1} <B> {x∣x≥ 1} <C> {x∣} <D> {x∣}[答案]D[解析]∵,∴.故选.9.<20##高考卷理科1>集合,则=<A> {1,2} <B> {0,1,2} <C>{x|0≤x<3}<D> {x|0≤x≤3} [答案]B[解析]因为,所以={0,1,2},故选B。10.<20##高考##卷理科2>若集合,,则A.B.C.D.[答案]C11.<20##高考##卷1>设P={x |x<4},Q={x |x2<4},则<A> <B><C> <D>[答案]B12.<20##高考##卷10>设函数的集合平面上点的集合则在同一直角坐标系中,中函数的图像恰好经过Q中两个点的函数的个数是<A>4 <B> 6 <C>8 <D>10[答案]B13.<20##高考##卷理科1>已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},<B∩A={9},则A=<A>{1,3} <B>{3,7,9} <C>{3,5,9} <D>{3,9}[答案]D二、填空题:1.<20##高考##卷理科16>设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。下列命题:①集合S={a+bi|<为整数,为虚数单位>}为封闭集;②若S为封闭集,则一定有;③封闭集一定是无限集;④若S为封闭集,则满足的任意集合也是封闭集.其中真命题是 <写出所有真命题的序号>解析:直接验证可知①正确.当S为封闭集时,因为x-y∈S,取x=y,得0∈S,②正确对于集合S={0},显然满足素有条件,但S是有限集,③错误取S={0},T={0,1},满足,但由于0-1=-1 T,故T不是封闭集,④错误答案:①②2.<20##高考##卷试题1>设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲_____.[答案]1[解析] 考查集合的运算推理。3B, a+2=3, a=1.3.<20##高考##市理科14>以集合U=的子集中选出4个不同的子集,需同时满足以下两个条件:<1>a、b都要选出;<2>对选出的任意两个子集A和B,必有,则共有种不同的选法。[答案]364.<20##高考##市理科12>设,,若C,则实数________.[答案]-3解析:,A={0,3},故m= -3.5.<20####市春季高考4>已知集合,则。答案:解析:由题知,,故.三、解答题:1.<20##高考市理科20><本小题共13分>已知集合对于,,定义A与B的差为A与B之间的距离为<Ⅰ>证明:,且;<Ⅱ>证明:三个数中至少有一个是偶数<Ⅲ> 设P,P中有m<m≥2>个元素,记P中所有两元素间距离的平均值为<P>.证明:<P>≤.<考生务必将答案答在答题卡上,在试卷上作答无效><20><共13分>证明:<I>设,,因为,,所以,从而又由题意知,,.当时,;当时,所以<II>设,,,,.记,由<I>可知所以中1的个数为,的1的个数为。设是使成立的的个数,则由此可知,三个数不可能都是奇数,即,,三个数中至少有一个是偶数。<III>,其中表示中所有两个元素间距离的总和,设种所有元素的第个位置的数字中共有个1,个0则=由于所以从而。
全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)一、选择题1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭ ,故选:D5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,4【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.4【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.6【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,2【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,2【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.4【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅ 【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.0【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎛⎫ ⎪ ⎪⎝⎭,,22⎛⎫- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C﹑D 看只有C 选项满足题意.23.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,)2(D)3(,3)2【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D.26.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,2【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A⊆D.A B ⊆【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B.。
集合高考试题汇编.doc

《集合高考试题汇编》1.已知{(,)|20},{(,)|0}A x y ax y B x y x y b =++>=-+<,M 点的坐标为(1,1),若 ,M A M B ∈∉且,,a b 则应满足A.30a b >->且B.30a b >-<且C.30a b >-≤且D.30a b >-≥且 【参考答案】D.2.已知集合,{|21},{|x U R M x N y y ==>==则A.MN N = B.M N N = C.()U M N R =ð D.(){0}U M N =ð【参考答案】D.3.设全集U 是实数集R ,={|20},M x x -≥{|3},N x x =<则()U M N =ðA.{|23}x x ≤<B.{|2}x x <C.{|2}x x ≤D.{|3}x x ≥ 【参考答案】B.4.设集合{|11},{|02}A x x B x x =-<<=<<,则A B =A.(0,1)B.(1,2)-C.(1,2)D.(1,0)- 【参考答案】B.5.已知集合{1,2,3},{2,3,4},M N ==则A.M N ⊆B.N M ⊆C.{2,3}M N =D.{1,4}M N = 【参考答案】C.6.设集合2{1,0,1},{|},M N x x x =-=≤则M N =A.{0}B.{0,1}C.{1,1}-D.{1,0,1}- 【参考答案】B.7.已知集合{|123},{|24},A x x x B x x =<-≤<=-≤<或则_________.A B = 【参考答案】(,4)-∞8.若集合{|2},{|}A x x B x x a =≤=≥满足{2},A B =则实数_____.a = 【参考答案】29.已知集合{|1},{|},A x x B x x a =≤=≥且,A B R =则实数a 的取值范围是_________. 【参考答案】(,2]-∞ 10.若集合{|1},{|02},A x x B x x =>=<<则_______.A B = 【参考答案】(1,2)11.已知集合1{|2},{|0},1A x xB x x =<=>+则_______.A B =【参考答案】(1,2)-12.若全集,U R =集合{|1}{|0},A x x x x =≥≤则_____.U A =ð 【参考答案】(0,1)13.若集合2{|1},{|4},A x x B x x =≥=≤则_______.A B = 【参考答案】[1,2]14.若集合{|210},{|12},A x x B x x =+>=-<则_______.A B =【参考答案】1(,3)2- 15.若集合{1,2,},{2,5}.A k B ==若{1,2,3,5}A B =,则____.k = 【参考答案】316.已知集合3{|0},{|3},1x M x N x x x +=<=≤--则集合{|1}x x ≥= A.M N B.M N C.()R C M N D.()R C M N 【参考答案】D.17.已知集合{|35},{|55},M x x N x x =-<≤=-<<则M N = A.{|55}x x -<< B.{|35}x x -<< C.{|55}x x -<≤ D.{|35}x x -<≤ 【参考答案】B.18.已知,A B 均为集合{1,3,5,7,9}U =的子集,且{3},(){9},U A B B A ==ð则A = A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 【参考答案】D.19.已知,M N 为集合I 的非空真子集,且,M N 不相等,若,I N M =∅ð则M N = A.M B.N C.I D.∅ 【参考答案】A.20.已知全集{0,1,2,3,4,5,6,7,8,9}U =,集合{0,1,3,5,8}A =,集合{2,4,5,6,8}B =,则 ()()U U A B =痧 A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6} 【参考答案】B.21.已知集合4{|0log 1},{|2},A x x B x x =<<=≤则A B =A.(0,1)B.(0,2]C.(1,2)D.(1,2] 【参考答案】D.22.已知全集,U R ={|0},{|1},A x x B x x =≤=≥则()U AB =ð A.{|0}x x ≥ B.{|1}x x ≤ C.{|01}x x ≤≤ D.{|01}x x << 【参考答案】D.23.设集合{|23},{|8},,S x x T x a x a S T R =->=<<+=则a 的取值范围是A.(3,1)--B.[3,1]--C.(,3][1,)-∞--+∞D.(,3)(1,-∞--+∞ 【参考答案】A.24.设集合{|1},{|2},A x R x a T x R x b =∈-<=∈->若,A B ⊆则实数,a b 必满足A.3a b +≤B.3a b +≥C.3a b -≤D.3a b -≥ 【参考答案】D.25.已知集合1{|349},{|46,(0,)},A x R x x B x R x t t t=∈++-≤=∈=+-∈+∞则集合_______.A B = 【参考答案】[2,5]-26.已知集合{|23},{|()(2)0},A x R x B x R x m x =∈+<=∈--<且(1,),A B n =- 则____,_____.m n == 【参考答案】1,1m n =-=27..已知集合{|2},{|1},A x R x B x R x =∈≤=∈≤则AB =A.(,2]-∞B.[1,2]C.[2,2]-D.[2,1]- 【参考答案】D.28.已知全集,U R =集合2{|20},A x x x =->则U A =ðA.[0,2]B.(0,2)C.(,0)(2,)-∞+∞D.(,0][2,)-∞+∞ 【参考答案】A.29.若集合{,,,}{1,2,3,4},a b c d =且下列四个关系:①1;a =②1;b ≠③2;c =④4d ≠有且仅有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是_____________. 【参考答案】630.满足1234{,,,},M a a a a ⊆且12312{,,}{,}Ma a a a a =的集合M 的个数是A.1B.2C.3D.4 【参考答案】B.31.集合2{0,2,},{1,},A a B a ==若{0,1,2,4,16},A B =则a 的值为 A.0 B.1 C.2 D.4 【参考答案】D.32.已知全集,U R =集合{|12},M x x =-<则U M =ðA.{|13}x x -<<B.{|13}x x -≤≤C.{|13}x x x <->或D.{|13}x x x ≤-≥或 【参考答案】D.33.设集合2{|60},M x x x =+-<{|13},N x x =≤≤则M N =A.[1,2)B.[1,2]C.(2,3]D.[2,3] 【参考答案】A.34.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,集合{2,4}B =,则()U A B =ð A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4 35.已知集合{0,1,2}A =,集合{|,}B x y x A y A =-∈∈中元素的个数是 A.1 B.3 C.5 D.9 【参考答案】C.36.设集合{|12},A x x =-<集合{|2,[0,2]}xB y y x ==∈,则A B = A.[0,2] B.(1,3) C.[1,3) D.(1,4) 【参考答案】C.37.设集合2{|(1)37,},A x x x x R =-<+∈则集合A Z 中有______个元素. 【参考答案】638.已知集合2{|log 2},A x x =≤(,)B a =-∞,若,A B ⊆则实数a 的取值范围是(,)c +∞,其中_____.c = 【参考答案】439.设集合{1,1,3},A =-2{2,4},{3},B a a A B =++=则实数a 的值为________. 【参考答案】140.已知集合{1,1,2,4},A =-{1,0,2},B =-则_____.A B = 【参考答案】{1,2}-41.设集合222{(,)|(2),,},2m A x y x y m x y R =≤-+≤∈{(,)|2B x y m x y =≤+≤21,m +,}x y R ∈.若,A B ≠∅则实数m 的取值范围是__________.【参考答案】1[,2242.已知集合{1,2,4},A ={2,4,6},B =则_____.A B = 【参考答案】{1,2,4,6}43.已知集合{2,1,3,4},A =--{1,2,3},B =-则_____.A B = 【参考答案】{1,3}-44.定义集合运算:{|,,}.A B z z xy x A y B *==∈∈设{1,2},{0,2},A B ==则集合A B *的所有元素之和为A.0B.2C.3D.6 【参考答案】C.45.已知全集U A B =中有m 个元素,()()U U A B 痧中有n 个元素.若A B 非空,则A B 的元素个数为A.mnB.m n +C.n m -D.m n - 【参考答案】D.46.若集合{|1,},A x x x R =≤∈2{|,},B y y x x R ==∈则A B =A.{|11}x x -≤≤B.{|0}x x ≥C.{|01}x x ≤≤D.∅ 【参考答案】C.47.若集合{|1213},A x x =-≤+≤2{|0},x B x x-=≤则A B =A.{|10}x x -≤<B.{|01}x x <≤C.{|02}x x ≤≤D.{|01}x x ≤≤ 【参考答案】B.48.若集合{1,1},A =-{0,2},B =则集合{|,,}z z x y x A y B =+∈∈中的元素个数为 A.5 B.4 C.3 D.2 【参考答案】C.49.已知全集{1,2,3,4,5}U =,集合2{|320},A x x x =-+={|2,},B x x a a A ==∈则集合 ()U A B ð中元素的个数为A.1B.2C.3D.4 【参考答案】B.50.若不等式20x x -≤的解集为M ,函数()ln(1)f x x =-的定义域为N ,则M N = A.[0,1) B.(0,1) C.[0,1] D.(1,0]- 【参考答案】A.51.集合{|12},A x x =-≤≤{|1},B x x =<则()R A B =ðA.{|1}x x >B.{|1}x x ≥C.{|12}x x <≤D.{|12}x x ≤≤ 【参考答案】D.52.设集合22{|cos sin ,},M y y x x x R ==-∈1{|N x x i=-<,i x 为虚数单位},R ∈则M N =A.(0,1)B.(0,1]C.[0,1)D.[0,1] 【参考答案】C.53.集合{|lg 0},M x x =>集合2{|4},N x x =≤则M N =A.(1,2)B.[1,2)C.(1,2]D.[1,2] 【参考答案】C.54.设全集为,R 函数()f x =M ,则R M =ðA.[1,1]-B.(1,1)-C.(,1][1,-∞-+∞D.(,1)(1,)-∞-+∞【参考答案】D.55.设集合{|0,},M x x x R =≥∈2{|1,},N x x x R =<∈则M N =A.[0,1]B.[0,1)C.(0,1]D.(0,1) 【参考答案】B.56.已知集合{|23},A x x =-≤≤{|14},B x x x =<->或那么集合()R A B =ðA.{|24}x x -≤<B.{|34}x x x ≤≥或 C.{|21}x x -≤<- D.{|13}x x -≤≤ 【参考答案】D.57.集合2{|03},{|9}P x Z x M x R x =∈≤<=∈≤,则PM =A.{1,2}B.{0,1,2}C.{|03}x x ≤<D.{|03}x x ≤≤ 【参考答案】B.58.已知集合2{|1},{}.P x x M a =≤=若,P M P =则a 的取值范围是A.(,1]-∞-B.[1,)+∞C.[1,1]-D.(,1][1,)-∞-+∞ 【参考答案】C.59.已知集合{|320},{|(1)(3)0}.A x R x B x R x x =∈+>=∈+->则A B =A.(,1)-∞-B.2(1,)3--C.2(,2)3- D.(3,)+∞【参考答案】D.60.已知集合{1,0,1},{|11},A B x x =-=-≤<则A B =A.{0}B.{1,0}-C.{0,1}D.{1,0,1}- 【参考答案】B.61.已知集合2{|20},{0,1,2},A x x x B =-==则A B =A.{0}B.{0,1}C.{0,2}D.{0,1,2} 【参考答案】C.62.已知{|(1,0)(0,1),},{|(1,1)(1,1),P m m R Q n n R ==+∈==+-∈a a b b 是两个向量集合,则P Q =A.{(1,1)}B.{(1,1)}-C.{(1,0)}D.{(0,1)} 【参考答案】A.63.集合22{(,)|1},{(,)|3},416x x y A x y B x y y =+===则A B 的子集的个数是 A.4 B.3 C.2 D.1 【参考答案】A.64.已知21{|log ,1},{|,2},U y y x x P y y x x==>==>则U P =ðA.1[,)2+∞B.1(0,)2C.(0,)+∞D.1(,0][,)2-∞+∞ 【参考答案】A.65.已知集合21{|()1},{|680},2x A x B x x x =≤=-+≤则()R A B =ðA.{|0}x x ≤B.{|24}x x ≤≤C.{|024}x x x ≤<>或D.{|024}x x x <≤≥或 【参考答案】C.66.设U 为全集,,A B 是集合,则“存在集合C 使得,U A C B C ⊆⊆ð”是“A B =∅”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【参考答案】C.67.已知集合{|212}M x x =-≤-≤和{|21,1,2,}N x x k k ==-=⋅⋅⋅的关系的韦恩图如图所示,则阴影部分所示的集合的元素共有A.3个B.2个C.1个D.无穷多个 【参考答案】A.68.若集合{|21},A x x =-<<{|02},B x x =<<则集合AB =A.{|11}x x -<<B.{|21}x x -<<C.{|22}x x -<< D.{|01}x x << 【参考答案】D.69.集合22{(,)|,1},{(,)|,},A x y x y x y B x y x y y x =+===为实数且为实数且则A B的元素个数是A.4B.3C.2D.1 【参考答案】C. 70.设集合={12,3,4,5,6},{1,2,4},U M =,则U M =ðA.UB.{1,3,5}C.{3,5,6}D.{2,4,6} 【参考答案】C. 71.设集合={12,3},{4,5},{|,,}A B M x x a b a A b B ===+∈∈,,则M 中元素的个数为 A.3 B.4 C.5 D.6 【参考答案】B.72.设集合22={|20,},{|20,},M x x x x R N x x x x R +=∈=-=∈则M N = A.{0} B.{0,2} C.{2,0}- D.{2,0,2}- 【参考答案】D.73.已知集合={1,0,1},{0,1,2},M N -=则M N =A.{0,1}B.{1,0,2}-C.{1,0,1,2}-D.{1,0,1}- 【参考答案】C.74.已知集合={|lg ,1},{2,1,1,2},A y R y x x B ∈=>=--则下列结论中正确的是A.{2,1}A B =--B.()(,0)R A B =-∞ð C.(0,)A B =+∞ D.(){2,1}R A B =--ð 【参考答案】D.75.若集合21={|213},{|0},3x A x x B x x+-<=<-则A B =A.1{|123}2x x x -<<-<<或 B. {|23}x x <<C. 1{|2}2x x -<<D.1{|1}2x x -<<-【参考答案】D.76.若集合121={|log },2A x x ≥则R A =ðA.2(,0](,)2-∞+∞ B.,)2+∞ C.2(,0][,)2-∞+∞ D.,)2+∞ 【参考答案】A.77.已知集合={1,2,3,4,5,6},{4,5,6,7,8},A B =则满足S A S B ⊆≠∅且的集合S 的个数是A.57B.56C.49D.8 【参考答案】B.78.设集合={|32},{|13},M m Z m N n Z n ∈-<<=∈-≤≤则M N =A.{0,1}B.{1,0,1}-C.{0,1,2}D.{1,0,1,2}- 【参考答案】B.79.已知集合={1,3,5,7,9},{0,3,6,9,12},A B =则N A B =ðA.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}【参考答案】A.80.集合={4,5,7,9},{3,4,7,8,9},A B =全集U AB =,则集合()U A B ð中的元素共有A.3个B.4个C.5个D.6个 【参考答案】A.81.设集合{|3},A x x =>1{|0},4x B x x -=<-则A B =A.∅B.(3,4)C.(2,1)-D.(4,)+∞ 【参考答案】B.82.已知集合{|2,},A x x x R =≤∈{4,},B x x Z =∈则A B = A.(0,2) B.[0,2] C.{0,2} D.{0,1,2} 【参考答案】D.83.若集合{1,2,3,4,5},A ={(,)|,,},B x y x A y A x y A =∈∈-∈则集合B 中所含元素的个数为A.3B.6C.8D.10 【参考答案】D.84.已知集合{A ={1,},,B m A B A ==则m =A.0B.03或C.1D.13或 【参考答案】B.85.已知集合2{|20},{|A x x x B x x =->=<<则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 【参考答案】B.86.已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则M N =A.{0,1,2}B.{1,0,1,2- C.{1,0,2,3}- D.{0,1,2,3} 【参考答案】A.87.已知集合2{|230},{|22},A x x x B x x =--≥=-≤<则A B =A.[2,1]--B.[1,2)-C.[1,1]-D.[1,2) 【参考答案】A.88.设集合{0,1,2}M =,2{|320},N x x x =-+≤则M N =A.{1}B.{2}C.{0,1}D.{1,2} 【参考答案】D.89.设集合2{|340},M x x x =--<{|05},N x x =≤≤则M N =A.(0,4]B.[0,4)C.[1,0)-D.(1,0]- 【参考答案】B.90.设集合{1,2,3,4,5},{2,4},{3,4,5},{3,4},U A B C ====则()()___.U A B C =ð 【参考答案】{2,5}91.若{|3},{|21},xA x R xB x R =∈<=∈>则A B =_______. 【参考答案】(0,3)92.设2{0,1,2,3},{|0},U A x U x mx ==∈+=若{1,2},U A =ð则实数_____.m = 【参考答案】3-93.已知全集{1,2,3,4},U =集合{1,2},{2,3},A B ==则()U AB =ð A.{1,3,4} B.{3,4}C.{3}D.{4} 【参考答案】D.94.设全集{|110},{1,2,3,5,8},{1,3,5,7,9}U n N n A B =∈≤≤==,则()__.U A B =ð【参考答案】{7,9}95.已知,{|0},{|1},U R A x x B x x ==>=≤-则()()U UAB B A =痧A.∅B.{|0}x x ≤C.{|1}x x >-D.{|01}x x x >≤-或 【参考答案】D.96.设,{|0},{|1},U R A x x B x x ==>=>则U A B =ðA.{|01}x x ≤<B.{|01}x x <≤C.{|0}x x <D.{|1}x x > 【参考答案】B.97.设2{|4},{|4},P x x Q x x =<=<则A.P Q ⊆B.Q P ⊆C.R P Q ⊆ðD.R Q P ⊆ð 【参考答案】B.98.设集合2{|14},{|230},A x x B x x x =<<=--≤则R A B =ðA.(1,4)B.(3,4)C.(1,3)D.(1,2)(3,4) 【参考答案】B.99.设集合2{|2},{|340},S x x T x x x =>-=+-≤则()R S T = ?A.(2,1]-B.(,4]-∞-C.(,1]-∞D.[1,)+∞ 【参考答案】C.100.设全集{|2},U x N x =∈≥集合2{|5},A x N x =∈≥则U A =ð A.∅ B.{2} C.{5} D.{2,5} 【参考答案】B.101.设整数4,n ≥集合{1,2,3,,}.X n =⋅⋅⋅令集合{(,,)|,,,S x y z x y z X =∈且三条件xy <,z <,y z x <<}z x y <<恰好一个成立.若()x,y,z 和(,,)z w x 都在S 中,则下列选项中正确的是A.(),(,,)y,z,w S x y w S ∈∉B.(),(,,)y,z,w S x y w S ∈∈C.(),(,,)y,z,w S x y w S ∉∈D.(),(,,)y,z,w S x y w S ∉∉ 【参考答案】B.102.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有,ab S ∈则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集,,T V Z =且,,,a b c T ∀∈有;abc T ∈,,,x y z V ∀∈ ,xyz T ∈则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B.,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D.,T V 中每一个关于乘法都是封闭的 【参考答案】A.103.已知{2,3,4,5,6,7},{3,4,5,7},{2,4,5,6}U M N ===,则 A.{4,6}M N = B.M N U = C.()U N M U =ð D.()U M N N =ð 【参考答案】B.104.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为__________. 【参考答案】12.105.已知集合{1,2,3},{2,,4},{2,3},A B m A B ===则____.m = 【参考答案】3106.设全集{1,2,3,4,5},{2,4},U U MN M N ===ð则N =A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4} 【参考答案】B.107.设集合2{1,0,1},{}},M N x x x =-==则M N =A.{1,0,1}-B.{0,1}C.{1}D.{0} 【参考答案】B.108.已知集合{2,3,6,8},{2,3},{2,6,8},U A B ===则()U A B =ð____________. 【参考答案】{6,8}109.已知集合{|2},{|13},A x x B x x A B =>=<<=则A.{|2}x x >B.{|1}x x > C.{|23}x x << D.{|13}x x << 【参考答案】C.110.已知集合{|(2)(1)0},{|10},M x x x N x x M N =+-<=+<=则A.(1,1)-B.(2,1)-C.(2,1)--D.(1,2) 【参考答案】C.111.已知全集{1,2,3,4,5,6,7,8},{1,3,5,7},{5,6,7},U M N ===则()U MN =ð A.{5,7} B.{2,4}C.{2,4,8}D.{1,3,5,6,7} 【参考答案】C.。
2011—2020年十年新课标全国卷高考数学分类汇编——1

2011—2020年十年新课标全国卷高考数学分类汇编——1.集合2011年至2020年的新课标全国卷数学试题共包含8套全国卷,包括全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷和新高考Ⅱ卷。
本资料根据全国卷的特点编写,共包含14个专题,包括集合、复数、逻辑、数学文化、新定义、平面向量、不等式、数列、三角函数与解三角形、解析几何、概率与统计、程序框图、坐标系与参数方程、不等式选讲。
通过掌握各种题型,可以把握全国卷命题的灵魂。
集合与简易逻辑是数学试题中的一个重要专题。
以下是一些选择题的例子:2020年新高考Ⅰ卷第一题:设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3} B.{x|2≤x≤3} C.{x|1≤x<4} D.{x|1<x<4}2020年全国卷Ⅰ理科第二题:设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.42020年全国卷Ⅰ文科第一题:已知集合A={x|x23x40},B={4,1,3,5},则B={x|1<x<4}。
2020年全国卷Ⅱ理科第一题:已知集合U={−2,−1.1,2,3},A={−1.1},B={1,2},则CUAA.{−2,3} B.{−2,2,3} C.{−2,−1.3} D.{−2,−1.2,3}2020年全国卷Ⅱ文科第一题:已知集合A={x||x|1,x∈Z},则A∩B={–2,2}。
2020年全国卷Ⅲ理科第一题:已知集合A{(x,y)|x,y N*,y x},B{(x,y)|x y8},则A∩B中元素的个数为3.2020年全国卷Ⅲ文科第一题:已知集合A1,2,3,5,7,11,B x|3x15,则A∩B中元素的个数为4.2019·全国卷Ⅰ,理1)已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M的正确表示为A。
全国高考数学 试题分类汇编1 集合 理

全国高考理科数学试题分类汇编1:集合一、选择题1 .( 普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则()=U A B ( )A.{}134,, B.{}34, C. {}3 D. {}4 【答案】D2 .( 普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A.()01,B.(]02,C.()1,2D.(]12, 【答案】D3 .( 普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]【答案】D4 .( 普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A.*,A N B N ==B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C.{|01},A x x B R =<<=D.,A Z B Q ==【答案】D5 .( 高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B.6 .( 普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9【答案】C7 .( 高考陕西卷(理))设全集为R , 函数()f x =M , 则C M R 为(A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D8 .( 普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A)3 (B)4 (C)5 (D)6【答案】B9 .( 高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅【答案】A10.( 高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则( )A.A∩B=∅B.A∪B=RC.B ⊆AD.A ⊆B【答案】B. 11.( 高考湖北卷(理))已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B.{}|24x x ≤≤C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或【答案】C12.( 普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0【答案】A13.( 普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( ) A . {}0 B.{}0,2 C.{}2,0- D.{}2,0,2-【答案】D14.( 普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A.(2,1]-B. ]4,(--∞C. ]1,(-∞D.),1[+∞【答案】C15.( 普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉ B.(),,y z w S ∈,(),,x y w S ∈C.(),,y z w S ∉,(),,x y w S ∈D.(),,y z w S ∉,(),,x y w S ∈(一)必做题(9~13题)【答案】B16.( 高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B17.( 上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( )(A)u Z N (B)u N N (C)()u u ∅ (D){0}u【答案】A二、填空题18.( 普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.【答案】8三、解答题19.( 普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}1,2,3,,m I n =,,m m m P I k I ⎫=∈⎬⎭. (1)求集合7P 中元素的个数;(2)若m P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.【答案】附:高考各科的答题技巧一、掌握好基础知识掌握基础知识没有捷径,俗话说“巧妇难为无米之炊”,没有基础知识,再多的答题技巧也没有用,有了基础知识,才能在上面“玩一些复杂的花样”,让自己分数提高一个层次,其实很简单,上课认真听讲,放学再温习一两遍足矣。
高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑一、选择题1.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——数学(浙江卷)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(C U A)∩B=( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}3.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件4.【来源】2019年高考真题——理科数学(天津卷)设x R ∈,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.【来源】2019年高考真题——理科数学(天津卷)设集合A={-1,1,2,3,5},B={2,3,4},{|13}C x x =∈≤<R ,则()A C B =A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4} 6.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面7.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A∩B= A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)8.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B= A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}9.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知集合}242{60{}M x x N x x x =-<<=--<,,则M∩N=A .}{43x x -<<B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<10.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知集合A={x|x -1≥0},B={0,1,2},则A∩B= A .{0}B .{1}C.{1,2}D .{0,1,2}11.【来源】2018年高考真题——理科数学(北京卷)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a<0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 12.【来源】2018年高考真题——理科数学(北京卷)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件13.【来源】2018年高考真题——理科数学(北京卷)(1)已知集合A={x||x|<2},B={–2,0,1,2},则A∩B = (A ){0,1}(B ){–1,0,1}(C ){–2,0,1,2}(D ){–1,0,1,2}14.【来源】2018年高考真题——理科数学(天津卷)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件15.【来源】2018年高考真题——理科数学(天津卷)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B(A) {01}x x <≤ (B) {01}x x << (C){12}x x ≤<(D){02}x x <<16.【来源】2018年高考真题——理科数学(全国卷II )已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .417.【来源】2018年高考真题——理科数学(全国卷Ⅰ)已知集合A={x|x 2-x -2>0},则C R A= A.{ x|-1<x <2} B. { x|-1≤x≤2}C. { x| x <-1}∪{ x|x >2}D. { x| x≤-1}∪{ x|x≥2} 18.【来源】2016年高考真题——理科数学(天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q<0”是“对任意的正整数n ,a 2n−1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 19.【来源】2016年高考真题——理科数学(天津卷)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1}(B ){4}(C ){1,3}(D ){1,4}20.【来源】2017年高考真题——理科数学(北京卷)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件21.【来源】2017年高考真题——理科数学(北京卷)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}22.【来源】2017年高考真题——数学(浙江卷)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件23.【来源】2017年高考真题——数学(浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=A. (-1,2) B. (0,1) C. (-1,0) D.(1,2)二、填空题24.【来源】2019年高考真题——数学(江苏卷)已知集合A={-1,0,1,6},{}|0,B x x x R =>∈,则A∩B=_____. 25.【来源】2018年高考真题——理科数学(北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.26.【来源】2018年高考真题——数学(江苏卷)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .27.【来源】2018年高考真题——数学(江苏卷)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B = ▲ . 28.【来源】2017年高考真题——理科数学(北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c”是假命题的一组整数a ,b ,c 的值依次为______________________________. 29.【来源】2017年高考真题——数学(江苏卷)已知集合A={1,2},B={a ,a 2+3},若A∩B={1},则实数a 的值为________ 三、解答题(本题共1道小题,第1题0分,共0分) 30.【来源】2018年高考真题——理科数学(北京卷)(本小题14分)设n 为正整数,集合A=12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n=3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.试卷答案1.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 2. A【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 3. C【分析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C. 4. B化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B. 5.因为{1,2}A C =, 所以(){1,2,3,4}A C B =.6. B根据面面平行的判定定理易得答案.选B. 7. A{2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=⋂B A .8. A}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .9. C由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C .10. C详解:由集合A 得 ,所以故答案选C. 11. D分析:求出 及 所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则 ,此命题的逆否命题为:若 ,则有,故选D.12. C分析:先对模平方,将 等价转化为0,再根据向量垂直时数量积为零得充要关系. 详解:,因为a ,b 均为单位向量,所以a ⊥b ,即“”是“a⊥b”的充分必要条件.选C.A分析:先解含绝对值不等式得集合A ,再根据数轴求集合交集. 详解:因此A∩B= ,选A.14. A分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式,由. 据此可知是的充分而不必要条件.本题选择A 选项. 15. B分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项. 16. A 详解: ,当 时, ; 当 时, ; 当时,;所以共有9个,选A. 17. B 解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.18. C试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. 19.D试题分析:{1,4,7,10},A B {1,4}.B ==选D. 20. A若0λ∃<,使m n λ=,即两向量反向,夹角是180°,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 21. A{}21A B x x =-<<-,故选A.22.C试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d>0”是“S 4 +S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件. 23.A试题分析:利用数轴,取P 、Q 所有元素,得P ∪Q=(-1,2)【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24. {1,6} 【分析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}AB =.【点睛】本题主要考查交集的运算,属于基础题. 25.y=sinx (答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数. 又如,令f (x )=sinx ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.26.27分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 详解:设 ,则由得 所以只需研究是否有满足条件的解, 此时 , ,m 为等差数列项数,且. 由得满足条件的n 最小值为27.27.{1,8} 分析:根据交集定义求结果. 详解:由题设和交集的定义可知:.28.1,2,3---(答案不唯一) 123,1(2)3->->--+-=-29.1由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为130.解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M(α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x 2,x3,x4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x 2,…,x n)|( x1,x 2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x 2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x 2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。
2012-2022十年高考真题分类汇编 专题01 集合概念与运算(解析版)

专题01 集合概念与运算十年大数据*全景展示年份题号考点考查内容考点1 集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .5【答案】B 【解析】由题意,{5,7,11}A B =,故A B 中元素的个数为3,故选B2.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .6【答案】C 【解析】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故AB 中元素的个数为4.故选C .3.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .0【答案】B 【解析】由题意可得,圆221x y += 与直线y x = 相交于两点()1,1,()1,1--,则A B 中有两个元素,故选B .4.【2018新课标2,理1】已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4【答案】A 【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =−1,0,1,当x =−1时,y =−1,0,1;当x =0时,y =−1,0,1;当x =−1时,y =−1,0,1;所以共有9个,选A .5.【2013山东,理1】已知集合A ={0,1,2},则集合B =中元素的个数是 A .1B .3C .5D .9【答案】C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个,故选C .6.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a = A .4 B .2 C .0D .0或4【答案】A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =,故选A .7.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2【答案】C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素,故选C . 8.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .1{}|,x y x A y A -∈∈【答案】C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.9.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则 A .i ∈S B .2i ∈S C .3i ∈S D .2i∈S 【答案】B 【解析】∵2i =-1∈S ,故选B .10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.【答案】3-【解析】不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.考点2 集合间关系【试题分类与归纳】1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则 A .AB B .B AC .A B =D .A B =∅【答案】B 【解析】A=(-1,2),故B ⊂≠A ,故选B .2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B【答案】B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =B B .A B =∅∩C .AB D .B A【答案】D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D . 4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( ) A .N M ⊆ B .MN M = C .M N N = D .{2}M N =【答案】D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则( ) A .P Q ⊆ B .Q P ⊆ C .R C P Q ⊆ D .R Q C P ⊆【答案】D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D . 6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P =,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1][1,+∞)【答案】C 【解析】因为PM P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则( ) A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 【解析】A=(-,0)∪(2,+),∴A ∪B=R ,故选B .8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D【答案】B 【解析】∵正方形一定是矩形,∴C 是B 的子集,故选B .9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,{}2|320,A x x x x =-+=∈R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D .考点3 集合间的基本运算【试题分类与归纳】1.【2011课标,文1】 已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有 (A )2个 (B)4个 (C)6个 (D)8个【答案】B 【解析】∵P=M ∩N={1,3}, ∴P 的子集共有22=4,故选B .2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N= A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 【答案】A 【解析】M=(-1,3),∴M ∩N={0,1,2},故选A .3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N= ( ) (A ){-2,-1,0,1} (B ){-3,-2,-1,0}(C ){-2,-1,0} (D ){-3,-2,-1 }【答案】C 【解析】因为集合M={}|31x x -<<,所以M∩N={0,-1,-2},故选C .4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A ){1,4}(B ){2,3}(C ){9,16}(D ){1,2}【答案】A ;【解析】依题意,{}1,4,9,16B =,故{}1,4A B =.5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=∞∞A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A 【解析】∵A=(,1][3,)-∞-⋃+∞,∴A B ⋂=[-2,-1],故选A .6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A .{1} B .{2} C .{0,1} D .{1,2}【答案】D 【解析】∵{}{}2=32012N x x x x x -+≤=≤≤,∴MN ={}1,2,故选D .7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N =( )A. )1,2(- B .)1,1(- C .)3,1( D .)3,2(- 【答案】B 【解析】MB =(-1,1),故选B .8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅ B .{}2 C .{0} D .{2}- 【答案】B 【解析】∵{}1,2B =-,∴AB ={}2.9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则AB =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A 【解析】由题意知,)1,2(-=B ,∴}0,1{-=⋂B A ,故选A .10.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D . 11.【2015新课标2,文1】已知集合,,则( )A .B .C .D . 【答案】A 【解析】由题知,)3,1(-=⋃B A ,故选A .12.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂= (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D 【解析】由题知A =(1,3),B=),23(+∞,所以B A ⋂=3(,3)2,故选D . 13.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】由题知B ={0,1},所以AB ={0,1,2,3},故选C .{}|12A x x =-<<{}|03B x x =<<A B =()1,3-()1,0-()0,2()2,314.【2016新课标3,理1】设集合,则T S ⋂=(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2][3,+)【答案】D 【解析】由题知,),3[]2,(+∞⋃-∞=S ,∴T S ⋂=(0,2][3,+),故选D . 15.【2016新课标2,文1】已知集合,则( )(A ) (B ) (C )(D )【答案】D 【解析】由题知,)3,3(-=B ,∴}2,1{=⋂B A ,故选D . 16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B 【解析】由题知,}5,3{=⋂B A ,故选B .17.【2016新课标3,文1】设集合,则=(A ) (B ) (C ) (D ) 【答案】C 【解析】由题知,}10,6,2,0{=B C A ,故选C . 18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A 【解析】由题知,)0,(-∞=B ,∴{|0}AB x x =<,故选A .19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C 【解析】由{}1AB =得1B ∈,所以3m =,{}1,3B =,故选C .21.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =( )A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,{}{}|(2)(3)0,|0S x x x T x x =--≥=>∞∞∞∞∞{123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},{0,2,4,6,8,10},{4,8}A B ==A B {48},{026},,{02610},,,{0246810},,,,,【答案】A 【解析】由题意{1,2,3,4}A B =,故选A .22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B 【解析】由题意可得,{}2,4AB =,故选B .23.【2018新课标1,理1】已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2}【答案】B 【解析】由题知,A ={x|x <−1或x >2},∴C R A ={x|−1≤x ≤2},故选B . 24.【2018新课标3,理1】已知集合A ={x|x −1≥0},B ={0 , 1 , 2},则A ∩B = A .{0} B .{1} C .{1 , 2} D .{0 , 1 , 2}【答案】C 【解析】由题意知,A={|x x ≥1},所以A ∩B ={1,2},故选C . 25.【2018新课标1,文1】已知集合,,则( )A .B .C .D .【答案】A 【解析】根据集合交集中元素的特征,可以求得,故选A .26.【2018新课标2,文1】已知集合,,则A .B .C .D .【答案】C 【解析】,故选C27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A=( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 29.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A 【解析】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】由题知,(1,2)AB =-,故选C .31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 32.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】{1,3}UA =-,{1}UA B =-.故选A .33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A CB =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】由题知,{}1,2AC =,所以{}{}{}{}1,22,3,41,2,3,4A C B ==,故选D .34.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I∅,则=N M A .MB .NC .ID .∅【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A BA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x << 【答案】B 【解析】因为{1}B x x =≥,所以{|1}RB x x =<,因为{02}A x x =<<,所以()=R AB {|01}x x <<,故选B .36.【2017山东,理1】设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B =( )A .(1,2)B .(1,2]C .(2,1)-D .[2,1)- 【答案】D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D .37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤ 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,,,选B .38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A 【解析】由题意可知{|12}PQ x x =-<<,选A .39.【2016年山东,理1】设集合 则=A .B .C .D .【答案】C 【解析】集合A 表示函数2xy =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =A .{1}B .{4}C .{1,3}D .{1,4}【答案】D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =,故选D .41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =A .[0,1)B .(0,2]C .(1,2)D .[1,2] 【答案】C 【解析】{|02}RP x x ,故(){|1<<2}RP Q =x x ,故选C .42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 【答案】A 【解析】{|12}A x x ,{|13}B x x ,∴{|13}A B x x .43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则AB 等于( )A .{}1-B .{}1C .{}1,1-D .∅ 【答案】C 【解析】由已知得,故,故选C .44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则MN =A .{}1,4B .{}1,4--C .{}0D .∅ 【答案】D 【解析】 由(4)(1)0x x 得4x 或1x ,得{1,4}M .由(4)(1)0x x 得4x 或1x ,得{1,4}N .显然=∅MN .45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】,,所以,故选A .2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞{},1,,1A i i =--AB ={}1,1-{}{}20,1x x x M ==={}{}lg 001x x x x N =≤=<≤[]0,1MN =46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合 {}1,3,4,6,7B =,则集合U A B =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8【答案】A 【解析】{2,5,8}U B =,所以{2,5}U A B =,故选A .47.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA .[0,2]B .(1,3)C .[1,3)D .(1,4)【答案】B 【解析】∵{}1,2B =-,∴A B ⋂={}2,故选B .48.【2014浙江,理1】设全集,集合,则 A . B . C . D .【答案】B 【解析】由题意知{|2}U x N x =∈≥,{|Ax N x =∈,所以{|2x N x ∈<≤,选B .49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB = A .{|0}x x ≥ B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<,故选D .50.【2013山东,】已知集合均为全集的子集,且,,则 A .{3} B .{4}C .{3,4}D . 【答案】A 【解析】由题意{}1,2,3A B =,且,所以A 中必有3,没有4,{}3,4U C B =,故{}3.51.【2013陕西,理1】设全集为R ,函数的定义域为M ,则为A .[-1,1]B .(-1,1)C .D .【答案】D 【解析】的定义域为M =[-1,1],故R M =,选D .52.【2013湖北,理1】已知全集为,集合,,则( )A .B .{}|24x x ≤≤C .D .{}2|≥∈=x N x U {}5|2≥∈=x N x A =A C U ∅}2{}5{}5,2{=A C U B A 、}4,3,2,1{=U (){4}U A B ={1,2}B =U AB =∅{1,2}B=U A B =()f x =C M R ,1][1,)(∞-⋃+∞-,1)(1,)(∞-⋃+∞-()f x (,1)(1,)-∞-⋃+∞R 112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或【答案】C 【解析】,,.53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂【答案】D 【解析】因为{1,2,3,4}M N =,所以()()n n C M C N ⋂=()U C M N ={5,6}.54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I ∅,则=N MA .MB .NC .ID .∅ 【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B =,则实数a 的值为_. 【答案】1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( ) A .{4,1}- B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选D .57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选B . 58.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选D .59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B = ( )A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--[)0,A =+∞[]2,4B =[)()0,24,R A C B ∴=+∞【答案】A 【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-.故选A .60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<< 则PQ = ( ) A .{|12}x x <≤ B .{|23}x x << C .{|23}x x <≤ D .{|14}x x <<【答案】B 【解析】由已知易得{}23P Q x x =<<,故选B .61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则AB = A .{1,0,1}- B .{0,1}C .{1,1,2}-D .{1,2} 【答案】D 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选D .62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A BA .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x << 【答案】C 【详解】[]()[)1,32,41,4A B ==,故选C .63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C 【解析】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-,故选C .64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则AB = . 【答案】{}2,4【解析】由交集定义可知{}2,4A B =,故答案为:{}2,4.65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则AB = . 【答案】{}0,2【解析】由题知,{}0,2A B =.考点4 与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10【答案】D .【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D .2.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有9个元素(即9个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.3.【2013广东,理8】设整数,集合,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若和都在中,则下列选项正确的是A .,B .,C .,D ., 【答案】B 【解析】特殊值法,不妨令,,则,,故选B .如果利用直接法:因为,,所以…①,…②,…③三个式子中恰有一个成立;…④,…⑤,…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时,于是,;第二种:①⑥成立,此时,于是,;第三种:②④成立,此时,于是,;第四种:③④成立,此时,于是,.综合上述四种情况,可得,.4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是( )22{(,)1,,}A x y x y x y =+≤∈Z A {(,)||2,||2,,}B x y x y x y =≤≤∈Z ABCD 12121122{(,)(,),(,)}AB x x y y x y A x y B ⊕=++∈∈1111DC B A 45477=-⨯4n ≥{}1,2,3,,X n =(),,x y z (),,z w x S (),,y z w S ∈(),,x y w S ∉(),,y z w S ∈(),,x y w S ∈(),,y z w S ∉(),,x y w S ∈(),,y z w S ∉(),,x y w S ∉2,3,4x y z ===1w =()(),,3,4,1y z w S =∈()(),,2,3,1x y w S =∈(),,x y z S ∈(),,z w x S ∈x y z <<y z x <<z x y <<z w x <<w x z <<x z w <<w x y z <<<(),,y z w S ∈(),,x y w S ∈x y z w <<<(),,y z w S ∈(),,x y w S ∈y z w x <<<(),,y z w S ∈(),,x y w S ∈z w x y <<<(),,y z w S ∈(),,x y w S ∈(),,y z w S ∈(),,x y w S ∈A .1B .2C .3D .4【答案】C 【解析】①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a ,b 属于同一类,不妨设a ,b ∈[k]={5n k +丨n ∈Z},则a =5n+k ,b =5m+k ,n ,m 为整数,a b -=5(n -m)+0∈[0]正确,故①③④正确,答案应选C .5.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,k i i i a a a },定义X 的“特征数列”为12100,,,x x x ,其中 121k i i i x x x ====,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1) 子集{135,,a a a }的“特征数列”的前三项和等于 ;(2) 若E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99; E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.【解析】 (1) 子集{135,,a a a }的特征数列为:1,0,1,0,1,0,0,0……0.所以前3项和等于1+0+1=2.(2)∵E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;∴P 的“特征数列”:1,0,1,0 … 1,0. 所以P = },,{99531a a a a .∵E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,,可知:j =1时,123q q q ++=1,∵11q =,∴2q =3q =0;同理4q =1=7a =…=32n q -.Q 的“特征数列”:1,0,0,1,0,0 …1,0,0,1.所以Q = },,,{10097741a a a a a .∴ {=⋂Q P },,971371a a a a ,∵97=1+(17-1)×6,∴共有17个相同的元素.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=,1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅, 11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-).令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件.故B 是一个满足条件且元素个数最多的集合.。
集合-三年( 2019-2021年)高考真题数学分类汇编

集合-三年( 2019-2021年)高考真题数学分类汇编一、单选题(共30题;共150分)1.(5分)(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B【解析】【解答】解:由题设可得C U B={1,5,6},故A∩(C U B)={1,6}.故答案为:B【分析】根据交集、补集的定义求解即可.2.(5分)(2021·北京)已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.(−1,2)B.(−1,2]C.[0,1)D.[0,1]【答案】B【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.3.(5分)(2021·浙江)设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A.{x|x>−1}B.{x|x≥1}C.{x|−1<x<1}D.{x|1≤x<2}【答案】D【解析】【解答】因为A={x|x≥1},B={x|−1<x<2},所以A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。
4.(5分)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则C u(MUN)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}【答案】A【解析】【解答】因为U={1,2,3,4,5},集合M={1,2},N={3,4} 则MUN ={1,2,3,4},于是C u(MUN)= {5} 。
故答案为:A【分析】先求 MUN ,再求 C u (MUN ) 。
5.(5分)(2021·全国甲卷)设集合 M ={1,3,5,7,9},N ={x ∣2x >7} ,则 M ∩N =( ) A .{7,9} B .{5,7,9} C .{3,5,7,9}D .{1,3,5,7,9}【答案】B【解析】【解答】解:由2x>7,得x >72,故N ={x|x >72},则根据交集的定义易得M∩N={5,7,9}. 故答案为:B【分析】根据交集的定义求解即可.6.(5分)(2021·全国甲卷)设集合M={x|0<x <4},N={x| 13≤x≤5},则M∩N=( )A .{x|0<x≤ 13 }B .{x| 13 ≤x <4}C .{x|4≤x <5}D .{x|0<x≤5}【答案】B【解析】【解答】解:M∩N 即求集合M,N 的公共元素,所以M∩N={x|13≤x ﹤4},故答案为:B【分析】根据交集的定义求解即可.7.(5分)(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z },T={t|t=4n+1,n∈Z },则S∩T=( ) A .∅B .SC .TD .Z【答案】C【解析】【解答】当n=2k (k ∈Z) 时,S={s|s=4k+1, k ∈z },当n=2k+1 (k ∈Z) 时,S={s|s=4k+3, k ∈z } 所以T ⊂S,所以S ∩T =T , 故答案为:C.【分析】分n 的奇偶讨论集合S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编1:集合
一、选择题
1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则()=U A B ð( )
A.{}134,
, B.{}34, C. {}3 D. {}4 【答案】D
2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合
{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则
A.()01,
B.(]02,
C.()1,2
D.(]12, 【答案】D
3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=
(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]
【答案】D
4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )
A.*,A N B N ==
B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或
C.{|01},A x x B R =<<=
D.,A Z B Q ==
【答案】D
5 .(2013年高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )
(A) (,2)-∞
(B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B.
6 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是
(A) 1 (B) 3 (C)5 (D)9
【答案】C
7 .(2013年高考陕西卷(理))设全集为R , 函数()f x =M , 则C M R 为
(A) [-1,1] (B) (-1,1)
(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-
【答案】D
8 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为
(A)3 (B)4 (C)5 (D)6
【答案】B
9 .(2013年高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )
(A){2}- (B){2} (C){2,2}- (D)∅
【答案】A
10.(2013年高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则 ( ) A.A∩B=∅ B.A∪B=R C.B ⊆A
D.A ⊆B
【答案】B. 11.(2013年高考湖北卷(理))已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭
,{}2|680B x x x =-+≤,则
R A C B =( )
A.{}|0x x ≤
B.{}|24x x ≤≤
C. {}|024x x x ≤<>或
D.{}|024x x x <≤≥或
【答案】C
12.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M
(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0
【答案】A
13.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M
N =( ) A . {}0 B.{}0,2 C.{}2,0- D.{}2,0,2-
【答案】D
14.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(
A.(2,1]-
B. ]4,(--∞
C. ]1,(-∞
D.),1[+∞
【答案】C
15.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =.令集合
(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )
A . (),,y z w S ∈,(),,x y w S ∉ B.(),,y z w S ∈,(),,x y w S ∈
C.(),,y z w S ∉,(),,x y w S ∈
D.(),,y z w S ∉,(),,x y w S ∈
(一)必做题(9~13题)
【答案】B
16.(2013年高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )
A.{0}
B.{-1,0}
C.{0,1}
D.{-1,0,1}
【答案】B
17.(2013年上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( )
(A)u Z N ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð
【答案】A
二、填空题
18.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.
【答案】8
三、解答题
19.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}
1,2,3,,m I n =,,m m m P I k I ⎫=∈∈⎬⎭
. (1)求集合7P 中元素的个数;
(2)若m P 的子集A 中任意两个元素之和不是..
整数的平方,则称A 为“稀疏集”.求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.
【答案】。