传感器实验指导书
传感器实验指导书

实验指导书实验一、箔式应变片的温度效应及补偿实验目的:1、认识环境温度变化对传感器输出的影响(零点漂移、灵敏度漂移);2、 掌握差动电桥电路对温漂的抑制;3、 了解差动电桥电路抗干扰能力。
实验原理:传感器输出不仅反映被测量,环境的其它物理量(温度、电磁、偏载等等)也会对传感器的输出产生影响,即产生干扰。
为了提高测量精度,需提高传感器抗干扰能力,即干扰补偿。
一种有效的补偿措施是差动传感器方法。
含干扰的传感器静态数学模型为:)(3210T f X a X a X a a Y n n +++++=若传感器采用差动方法则有:)()(2222155331T f T f X a X a X a Y -++++=式中,)(T f 为干扰量产生的输出,)(1T f 、)(2T f 为两差动转换元件产生的输出。
通常干扰为共模干扰,即)(1T f 、)(2T f 同号,这样差动传感器的干扰减小,若传感器转换元件完全对称,即)(1T f 、)(2T f 完全相等,则干扰输出为零。
由工艺原因,传感器结构不可能完全对称,即通过差动方法不能完全消除干扰,或是传感器不能采用差动结构,传感器的干扰通常还需采取其它补偿措施。
实验步骤:1、连接主机与模块电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“-”输入端对地用实验线短路。
输出端接电压表2V 档。
开启主机电源,用调零电位器调差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。
2、 观察贴于悬臂梁根部的应变片的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变片(可选上梁或下梁中的一个工作片),图中每两个节之间可理解为实验连接线,注意连接方式,勿使直流电源激励电源短路。
将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。
3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。
传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
传感器实验指导书

使用说明实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。
一、实验仪的传感器配置及布局是:四片金属箔式应变计:位于仪器顶部的实验工作台部分,左边是一副双孔称重传感器,四片金属箔式应变计贴在双孔称重传感器的上下两面,受力工作片分别用符号和表示。
可以分别进行单臂、半桥和全桥的交、直流信号激励实验。
请注意保护双孔悬臂梁上的金属箔式应变计引出线不受损伤。
电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。
电感式(差动变压器):由初级线圈Li和两个次级线圈L。
绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。
电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。
压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。
磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。
热电式(热电偶):位于仪器顶部的实验工作台部分,左边还有一副平行悬臂梁,上梁表面安装一支K分度标准热电偶,冷端温度为环境温度。
热敏式:平行悬臂梁的上梁表面还装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。
光电式传感器装于电机侧旁。
为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,加热温度通常高于环境温度30℃左右,达到热平衡的时间随环境温度高低而不同。
需说明的是置于上梁上表面的温度传感器所感受到的温度与在两片悬臂梁之间电加热器处所测得的温度是不同的。
霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm 。
MPX 压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50KP 。
精度1%。
(CSY10B )湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH 。
气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm ,灵敏度RO/R >5。
传感器实训指导书

扬州高等职业技术学校实训指导书2011—2012学年第二学期课程名称传感器课程类别实训专业模具授课班级10205授课教师胡冯仪《传感器》实训指导书实验一、YL-CG2003型传感器实验台仪器的使用一、电源部分1.总电源空气式带漏电保护开关切换整个实验台的单相220V电源,额定电流最大为3A,安全可靠。
2.指示灯—电源插入电网后即亮,表示实验台已接入电源。
3.AC220输出双路多功能插座可输出220V单相电源,功率不大于300W二、温度控制部分1.温度控制仪面板说明(1)将K型热电偶接入主控箱面板温度中的Ei(+、-)标准值插孔中,合上热源开关。
仪表将首先按A、B、C程序自检2.通过切换开关可控制直流电压表输入端。
当为内接输入位置可测量指示2V-15V直流稳压输出电压。
外接输入分两档0-2V或0-20V。
A、所有数码管及所有指示灯全部点亮,用来检测发光系统是否正常,此时如发现有不能点亮的发光文件,请停止使用该仪表送修。
B、PV窗口显示“TYPE”,SV窗口显示仪表目前所应配输入类型。
C、显示仪表的控制范围,SV窗口显示下限测量控制值,PV窗口显示上限控制值。
(2)仪表进行完以上三步自检后,即投入正常测控状态,上排PV窗口显示测量值,下排SV 窗口设定值。
(3)要想修改设定值,请在正常显示方式下,按一下SET键,PV窗口显示,“SP”,SV窗口显示已设置的值,此时按▲键向上调节设定值,按键▼向下调节设定值。
2.温控仪电源开关—控制整个温控部分电源开或关。
(1)指示灯一亮表示电源部分总电源开关已打开,实验仪在工作。
(2)温控传感器输入插口一通过JK插头与9号温度实验模块E型热电偶连接用。
(3)加热源电源输出端—可提供20V交流5A功率电源。
与9号实验模块电源输入端进行加热温控。
控制温度精度±1℃。
三、数显单元和2V~15V直流电源部分1.直流电压显示为132数字电压表读数V。
2.通过切换开关可控制直流电压表输入端。
传感器实验指导书

一、人体动脉血压的测量一、实验目的通过实践学习,掌握间接测量人体动脉血压的原理和方法,了解血压测量的意义,要求能较准确地测出人体肱动脉的收缩压与舒张压的正常值,了解人体的正常血压及脉压标准。
二、实验原理血压是指血管内血液对于单位面积血管壁的侧压力,也即压强。
血压的单位通常用kPa或mmHg来表示。
人体动脉血压通常是用汞柱血压计和听诊进行测量的(也可用弹簧血压计或电子血压计进行测量),汞柱血压计的结构原理如附图1-2-3所示;测量部位通常为右上臂肱(GONG)动脉。
血液在血管内流动时一般没有声音,但如果血液通过狭窄处形成涡流时,便会使血管壁振动而发出声音。
当将空气打入缠于上臂的袖带内使其压力超过收缩压时,则完全阻断了肱动脉内的血流,此时在被压迫的肱动脉远端听不到声音,也触不到桡动脉的搏动。
如徐徐放气,降低袖带内压,当其压力刚低于收缩压而高于舒张压时,血液便断续地冲过受压血管,形成涡流使血管壁振动而发出声音,此时即可在被压的肱动脉远端听到,也可触到桡(RAO)动脉脉搏。
如继续放气,当外加压力等于舒张压时,则血管内血流由断续变成连续,声音便会突然由强变弱或消失。
因此当听到第一声音时的最大外加压力相当于收缩压;而当声音突然由强变弱或消失前最后声响时的外加压力则相当于舒张压。
此法即Korotkoff听诊法。
三、实验对象人体四、实验器材血压套件(水银柱血压计、压力表、听诊器、充气球、气管和联接用三通),电子血压计,胶布。
五、实验步骤与方法1.熟悉血压计构造血压计由检压计、袖带和气囊三部分组成。
检压计是一个标有0~260 mm(或0~300 mm)刻度的玻璃管。
上端通大气,下端和水银储槽相通。
袖带是一个外包布套的长方形橡皮囊,通过橡皮管分别与检压计水银储槽和橡皮球相通。
打气球是一个带有螺丝帽的橄榄球状橡皮囊,螺丝帽的拧紧和放松分别用于充气或放气。
2.测量过程1)受试者脱去右臂衣袖,取坐位,全身放松,右肘关节轻度弯曲,置于实验桌上,使上臂中心部与心脏位置同高,准备测量。
传感器实验指导书

传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。
三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。
11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。
图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。
传感器实验指导书

前言CSY系列传感器与检测技术实验台主要用于各大、中专院校及职业院校开设的“传感器原理与技术”“自动化检测技术”“非电量电测技术”“工业自动化仪表与控制”“机械量电测”等课程的实验教学。
CSY系列传感器与检测技术实验台上采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础,希望通过实验帮助广大学生加强对书本知识的理解,并在实验的进行过程中,通过信号的拾取,转换,分析,掌握应具有的基本的操作技能与动手能力。
CSY2000与3000系列传感器与检测技术实验台是本公司多年生产传感技术教学实验装置的基础上,为适应不同类别、不同层次的专业需要而设计的新产品。
其优点在于:1、适应不同专业的需要,不同专业可以有不同的菜单,本公司还可以为用户的特殊要求制作模板。
2、能适应不断发展的形势,作为信息拾取的工具,传感器发展很快,可以不断补充新型的传感器模板。
3、可以利用实验台的信号源、实验电路、传感器用于学生课程设计、毕业设计和自制装置。
为了让老师、学生尽快熟悉掌握实验台的使用方法,本手册列举了一些实验示范例子,老师、学生通过实验示范例子举一反三可以自己组织开发很多实验顶目。
本手册由于编写时间、水平所限,难免有疏漏错误之处,热切期望老师与学生们提出宝贵的意见,予以完善,谢谢。
目录CSY-2000型传感器与检测技术实验台说明书 (5)CSY-3000型传感器与检测技术实验台说明书 (8)示范实验目录2000系列基本实验举例实验一应变片单臂电桥性能实验 (11)实验二应变片半桥性能实验 (17)实验三应变片全桥性能实验 (18)实验四应变片单臂、半桥、全桥性能比较实验 (20)实验五应变片直流全桥的应用—电子秤实验 (21)实验六应变片温度影响实验 (22)实验七移相器、相敏检波器实验 (23)实验八应变片交流全桥(应变仪)的应用—振动测量实验 (27)实验九压阻式压力传感器测量压力特性实验 (30)*实验十压阻式压力传感器应用—压力计实验 (32)实验十一差动变压器的性能实验 (32)实验十二激励频率对差动变压器特性影响实验 (37)实验十三差动变压器零点残余电压补偿实验 (38)实验十四差动变压器测位移特性实验 (39)实验十五差动变压器的应用—振动测量实验 (41)实验十六电容式传感器测位移特性实验 (43)实验十七线性霍尔传感器测位移特性实验 (45)实验十八线性霍尔传感器交流激励时位移特性实验 (48)实验十九开关式霍尔传感器测转速实验 (50)实验二十磁电式转速传感器测转速实验 (51)实验二十一压电式传感器测振动实验 (53)实验二十二电涡流传感器测量位移特性实验 (57)实验二十三被测体材质对电涡流传感器特性影响实验 (60)实验二十四被测体面积大小对电涡流传感器特性影响实验 (61)实验二十五电涡流传感器测量振动实验 (62)实验二十六光纤位移传感器测位移特性实验 (63)实验二十七光电传感器测量转速实验 (66)实验二十八光电传感器控制电机转速实验 (67)实验二十九温度源的温度调节控制实验 (75)实验三十 Pt100铂电阻测温特性实验 (79)实验三十一Cu50铜电阻测温特性实验 (85)实验三十二 K热电偶测温特性实验 (86)实验三十三 K热电偶冷端温度补偿实验 (92)实验三十四 E热电偶测温特性实验 (95)实验三十五集成温度传感器(AD590)的温度特性实验 (96)实验三十六气敏传感器实验 (99)实验三十七湿度传感器实验 (100)实验三十八数据采集系统实验—静态举例 (102)实验三十九数据采集系统实验—动态举例 (104)3000系列实验(包含2000系列基本实验外,还包含以下实验。
传感器实验指导书

实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。
(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。
3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW2使数显表显示为零。
4、在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表(1-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一数字式电子秤实验模块-物体质量测量一.实验目的1.学习LabVIEW软件的使用;2.认识应变式力传感器的工作原理;3.掌握使用应变式传感器进行物体称重的方法;4.掌握标定称重实验台和修正测量误差的方法;二.实验原理数字式电子秤实验模块由应变式力传感器、信号调理电路板、底座、支架、托盘和外围封装设备构成。
其中,应变式力传感器由4片应变片塑封在桥臂的中间两侧,信号调理电路板为全桥电路。
当物体加到托盘后,4个应变片会受压发生形变,该形变量转换为电压量的变化,最后通过电桥电路及运算放大电路进行信号处理和输出。
如下图所示为数字式电子秤实验模块结构示意图。
数字式电子秤实验模块结构示意图数字式电子秤实验模块中的力传感器是电阻应变片。
电阻应变片是利用物体线性长度发生形变导致阻值发生改变的原理而制成的,其电阻丝一般用康铜材料,它具有高稳定性及良好的温度、蠕变补偿性能。
测量电路普遍采用如下图所示的惠斯通电桥。
电阻应变片惠斯通电桥测量电路称重原理:使用标准砝码对称重模块进行标定,得到物体质量与输出电压之间的线性关系式。
然后利用该线性关系式进行未知质量的物体的测量。
三.需要的仪器和设备●计算机1台●LabVIEW实验脚本:数字式电子秤实验模块-物体质量测量.vi 1套●TS-DEW-1A应变式数字电子称模块 1套●砝码 1套●TS-INQ-8U USB多通道数据采集模块 1套●TS-TAB-B基础实验平台 1套四.实验步骤1.关闭面板总电源开关,将电子秤模块的电源线连接到基础实验平台的多路电源输出航空插头;2.将电子秤模块的信号线连接到USB多通道数据采集模块的通道1上;3.开启总电源,开启采集卡电源,如下图所示,在“数字式电子秤-物体质量测量程序VI”文件夹中打开“数字式电子秤实验模块-物体质量测量.vi”程序,建立实验环境。
4.通道选择“1”,采样频率选择“10KHz”,点击程序运行按钮启动测量程序。
5.在正式进行物体质量测量的过程中,应该先完成传感器的标定工作。
操作步骤为:首先,不在托盘上放置砝码,此时称重的质量为0,把“0”填入“质量(X1)”空格内,点击“标定1”按钮读取当前状况下的电压值;在托盘上放置500g的砝码,并在“质量(X2)”空格内填入“500”,然后点击“标定2”按钮读取当前状况下的电压值;点击“标定结果”完成称重传感器的标定。
数字式电子秤实验模块-物体质量测量程序界面6.标定完成后,即可对未知质量的物体进行测量,在测量过程中请勿超出传感器的量程(实验所用传感器量程为5Kg),以免损坏传感器。
7.在物体质量的测量过程中,记录实验数据,填入下表1中。
表1输出电压(mV)物体质量(g)8.如下图所示,根据实验数据在直角坐标系中绘制输出电压与物体质量之间的关系曲线,分析其线性度。
电压-质量关系曲线五.实验报告要求1.简述实验目的和原理;2.简述两点标定法标定称重传感器;3.详细描述压力传感器称重实验LabVIEW程序的设计思路;六.注意事项1.应变式力传感器可承受的最大质量为5Kg,实验时请勿超过此量程;2.不要冲击传感器或在其上施加过大的力,以免因过载而导致传感器损坏。
实验二超声波位移测量和红外位移测量实验一. 实验目的1.学习LabVIEW软件的使用。
2.认识超声波传感器和红外传感器的工作原理。
3.学习使用超声波传感器进行位移测量的方法。
4. 掌握使用红外传感器进行位移测量的方法。
二. 实验原理1.超声波传感器测量原理:超声波测距传感器包括有发射超声波和接收超声波的两部分装置,习惯上称为超声波换能器或超声波探头。
常用的超声波传感器有两种,即压电式超声波传感器和磁致式超声波传感器。
本实验采用的是压电式超声波传感器, 主要由超声波发射器(或称发射探头)和超声波接收器(或称接收探头)两部分组成,它们都是利用压电材料(如石英、压电陶瓷等)的压电效应进行工作的。
利用逆压电效应将高频电振动转换成高频机械振动,产生超声波,以此作为超声波的发射器。
而利用正压电效应将接收的超声振动波转换成电信号,以此作为超声波的接收器。
超声波发射探头向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物会立即返回来,超声波接收探头收到反射波立即停止计时。
设超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离S,即:S=340t/2。
需要说明的是,超声波传感器发射的波束比较窄(<10°),反射后仍然很窄,如果被测物体被旋转放置,有可能反射波束会偏离出接收探头的位置,导致探头接收不到反射波信号,无法进行测距。
实验所使用超声波传感器的发射波频率是40KHz,它由单片机控制发射探头发射一组超声波脉冲后,输出电平由低电平转为高电平;等到接收探头接收到足够强度的反射超声波信号时,输出信号由高电平转为低电平。
所以在实验的过程中,可以观察到随着反射板到探头的距离变化,传感器输出波形的“脉冲”宽度也会对应的发生变化,测试距离越远,脉冲的宽度越宽。
另外,空气中的声音传播速度不是一个固定的值,在不同的温度下这个数据会有一些变化。
通常我们说的340m/s是一个近似数据,传播速度的修正公式为S=331.4×(1+t/273)^0.5,t为空气温度。
作为常温下的测试,可以认为声速为346 m/s(按25℃计算)。
超声波传感器距离测量原理示意图2.红外传感器测量原理:红外传感器是基于三角测量原理设计的。
如下图左图所示,红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束反射回来,反射的红外光线被CCD检测器接收以后,得到一个偏移值L。
利用三角关系,以知发射角度α,偏移距L,中心距X,以及滤镜的焦距f以后,传感器到物体的距离D就可以通过几何关系计算出来了。
三角测量原理红外传感器电压与检测距离间关系当距离D足够小的时候,L值会相当大,超过CCD的探测范围。
这时,虽然物体很近,但是传感器反而看不到了。
当距离D很大时,L值就会很小。
这时CCD检测器能否分辨得出这个很小的L值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。
要检测的物体越远,CCD的分辨率要求就越高。
输出电压与检测距离之间的关系如上图右图所示。
从图中可以看出,传感器与被探测物体之间的距离小于10cm的时候,输出电压急剧下降,这就要求测量时传感器与被探测物体之间距离应尽可能大于10cm。
此外,红外传感器的输出是非线性的。
如果采用线性拟合的方法进行数据标定,误差很大。
这里可以采用多项式拟合的方法。
假设有一个高阶的多项式函数y=a n x n+a(n-1)x(n-1)+…+ax+a0其中y代表距离,x代表红外传感器输出电压。
如果该函数能够逼近实际的待拟合的数据,那么就采用该多项式作为传感器的输出函数。
实际上,对于红外传感器来说,采用多项式函数拟合与采用线性最小二乘法拟合相比较,前者的误差大大减小。
三.实验仪器和设备1.计算机1台bVIEW软件 1套3.超声波红外位移测量实验模块 1个4.多通道数据采集模块 1套5.多路电源模块 1套四.实验步骤1.关闭多路电源模块的开关,关闭多通道数据采集模块的开关,以免带电插入传感器信号线和直流电源线。
将多路电源模块电源线接入交流电源220V。
2.将超声波位移测量对象的电源线(φ16五芯航插)连接至多路电源接口;将多通道数据采集模块电源线(φ16五芯航插)连接至多路电源接口。
3.将超声波传感器的信号输出线连接至数据采集模块的第1通道上。
4.开启总电源,开启多路电源模块开关,开启数据采集模块开关,开关开启后禁止带电插拔电源线和信号线。
5.打开路径“TS-ULS-02超声波红外位移测量实验模块\实验程序”,运行LabVIEW程序“超声波传感器—位移测量实验.vi”。
6.移动滑块来改变挡板到超声波之间的距离,观察采集到的数据信号波形。
结合超声波传感器的原理,解释波形变化的原因和规律。
7.读懂LabVIEW程序,如何采集超声波信号,如何并进行信号处理。
8.比较实验测得值与模块表面刻度尺读数之间偏差,多次移动滑块测量该偏差是否恒定。
9.如果偏差恒定,尝试在软件中对超声波测量的距离进行补偿,使测量更准。
超声波传感器—-位移测量实验LabVIEW程序界面10.单击“STOP”按钮停止程序运行。
首先关闭多通道数据采集模块开关,关闭多路输出电源模块开关,然后再拔超声波传感器的信号输出线,连接上红外传感器的信号输出线,打开多路输出电源模块电源开关、打开多通道数据采集模块开关11.打开路径“TS-ULS-02超声波红外位移测量实验模块\实验程序”,打开文件“红外位移测量模块_main.vi”。
程序界面下图所示。
红外位移测量模块主程序界面12.设置输入控件参数(1)通道选择设置为1(2)采样频率设置为1。
(3)采样长度设置为1024。
(4)多项式拟合阶数设置为4。
13. 单击运行按钮,程序开始运行。
14. 记录采样数据点。
(1)将挡板移动到距离红外传感器探头至少10cm外的位置。
(2)将刻度尺上面显示的数据输入到“刻度尺读数”控件里。
输入完成后,单击数据录入按钮,将刻度尺读数和传感器电压值记录到原始数据表格里。
注意,测量距离要按照逐渐递增或逐渐递减的顺序。
(3)继续向后移动挡板5cm,重复上一步的操作。
如此重复9次,记录10组数据。
15. 单击拟合按钮,进行多项式拟合。
观察拟合曲线的形状,如下图所示。
多项式曲线拟合后程序界面16. 滑动挡板,读取挡板与传感器探头距离,并与红外传感器的测量数据进行比较。
17. 单击STOP按钮,退出程序。
五. 实验报告要求1.简述超声波传感器和红外传感器的原理;2.依据超声波传感器的实验记录作数据分析;3.记录红外传感器多项式拟合曲线和红外传感器的测量误差。
六. 注意事项超声波传感器的有效测量距离是2cm~300cm。
实际距离若过小或过大可能导致测量误差增大,在测量过程中请保持在此距离以内。
避免信号线带电插拔,造成仪器或设备受损。
实验三电涡流传感器静态特性测距及误差分析实验一、实验目的1.了解和掌握电涡流传感器的特点;2.利用电涡流传感器进行传感器静态特性的测量;3.利用机械结构、传感器、数据采集卡、虚拟仪器平台构建测试系统。
二、实验原理1.电涡流位移传感器原理电涡流位移传感器是以高频电涡流效应为原理的非接触式位移传感器。
前置器内产生的高频振荡电流通过同轴电缆流入探头线圈中,线圈将产生一个高频电磁场。
当被测金属体靠近该线圈时,由于高频电磁场的作用,在金属表面上就产生感应电流,既电涡流。
该电流产生一个交变磁场,方向与线圈磁场方向相反,这两个磁场相互叠加就改变了原线圈的阻抗。
这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。