生命科学与技术研究进展

生命科学与技术研究进展
生命科学与技术研究进展

1. 什么是系统生物学?

系统生物学是一种典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。它是一种整合型大科学,要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。对于多细胞生物而言,系统生物学就是要实现从基因到细胞、到组织、到个体的各个层次的整合。

系统生物学包括四个方面:

一、系统结构。包括基因,蛋白间关系以及由此得到的基因蛋白网络和生物通路,以及这些相互之间关系所牵涉到的细胞内和细胞外结构的物理特性和机制。

二、系统动力学。可以通过代谢分析,敏感性分析,动力学分析工具比如分叉分析等,以及识别不同行为所内含的机制等分析方法和手段来理解在不同时间点不同条件下系统的行为。

三、系统的控制方法。掌握这些控制细胞处于各种状态的机制,用来模拟系统,能得到治疗疾病的药靶。

四、设计的方法。基于某些设计的原则和模拟方法,可以修正和构造具有所需特性的系统,而不需要盲目地反复实验。

2. 生物芯片技术对于系统生物学的意义?

生物芯片是多领域相揉合的产物,生物芯片技术涉及电子技术、成像光学、材料学、计算机技术、生物技术等。简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。生物芯片技术是系统生物学技术的基本内容。

系统生物学有两个关键技术基础,“组学”数据基础,以及检测和实验技术基础。在检测和实验技术这一方面,生物芯片占有举足轻重的地位。二十世纪末期,生物芯片开始进入大家的视野,它有着传统技术无可比拟的优势:高通量、微型化、自动化。系统生物学需要处理海量的组学数据,如果仅仅依靠传统手段,将举步维艰,借助于芯片技术,将事半功倍。

3. 以某离子通道为例,叙述蛋白结构和功能的测量方法和手段

以BK通道为例,结构测量:首先得到通道的序列,设计引物,通过体外PCR 快速高效的体外扩增该片段,然后连接到合适的载体上导入宿主细胞中进行表达,获得蛋白,通过HPLC进行蛋白分析和分离,将纯化后的蛋白配制成浓溶液,进行晶体生长实验,获得高质量的单晶体后,进行X射线衍射来解析该通道的结构,功能测量:通过量:通过切除部分序列,来测量通道的功能序列,定点突变来确定通道的关键氨基酸。通过特异性药物或毒素与通道的结合相互作用来检测通道的生理活性和功能。

4、有哪些方法可用来确定离子通道生理功能?

(1)电压钳技术

膜对某种离子通透性的变化是膜电位和时间的函数。用玻璃微电极插入细胞内,利用电子学技术施加一跨膜电压并把膜电位固定于某一数值,可以测定该膜电位条件下离子电流随时间变化的动态过程。利用药物使其他离子通道失效,即可测定被研究的某种离子通道的功能性参量

(2)单通道电流记录技术

用特制的玻璃微吸管吸附于细胞表面,使之形成10~100GΩ的密封,被孤立的小膜片面积为μm2量级,内中仅有少数离子通道。然后对该膜片实行电压钳位,可测量单个离子通道开放产生的pA(10-12安培)量级的电流,这种通道开放是一种随机过程。通过观测单个通道开放和关闭的电流变化,可直接得到各种离子通道开放的电流幅值分布、开放几率、开放寿命分布等功能参量,并分析它们与膜电位、离子浓度等之间的关系。

(3)通道药物学研究

结合对药物分子结构的了解,不但可以深入了解药物和毒素对人和动物生理功能作用的机制,还可以从分子水平得到通道功能亚单位的类型和构象等信息。

(4)通道蛋白分离、通道重建和基因重组技术

利用与通道特异结合的毒剂标记,可把通道蛋白质从膜上分离下来,经过纯化,可以测定各亚单位多肽的分子量。然后,把它们加入人工膜,可重新恢复通道功能。

5. 植物功能基因组学的研究策略

植物功能基因组研究就是指利用各种手段,将未知的基因序列加以功能的注释、赋予功能的含义,是实现从量到质转变的关键过程。基本策略是从研究单一基因或蛋白质上升到从系统角度研究所有基因或蛋白质。第一是模式生物组:研究基因功能最有效的方法是观察敲除基因或者是超表达后再细胞或整体水平上产生的表型变化,这需要选择一个有效的模式基因组,如拟南芥,水稻等。第二是研究基因的表达,方法主要有:表达序列标签,基因芯片和微点阵,基因表达系统分析法。除此之外,插入性诱变以及基因沉默技术,蛋白质组学,生物信息学,液相原位PCR技术也是研究基因组学的技术

6.植物功能基因组学研究新进展

功能基因组学的研究又被称为后基因组学研究,它是利用结构基因组学提供的信息和产物,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向对多个基因或蛋白质同时进行系统研究。

基因功能基因组学中利用T—DNA插入诱导产生突变进行基因功能分析,利用转座子系统诱导产生突变进行基因功能分析,基因表达系列分析技术,表达序列标签技术,利用同源序列研究分析基因功能,利用生物芯片进行基因功能分析。通过综合运用这些新技术对成千上万的基因表达进行分析和比较,力图从基因组整体水平上对基因的活动规律进行阐述

7. 简述基因工程的原理。

基因工程主要是DNA重组技术是指在体外把不同基因进行人工“剪切”、“组合”和“拼接”使基因得以重新组合,然后通过载体进行无性繁殖,要使新的基因在受体细胞的表达,产生人类所需要的物质,或组建新的生物类型。

主要内容: (1) 从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段。(2) 将带有目的基因的DNA 片段连接到能够自我复制并具有选择标记的载体分子上, 形成重组DNA 分子。(3) 将重组DNA 分子引入到受体细胞。(4) 带有重组体的细胞扩增,获得大量的细胞繁殖体。(5) 从大量的细胞繁殖群体中,筛选出具有重组DNA 分子的细胞克隆。(6) 设法使目的基因实现功能蛋白的表达。

8.谈谈你对转基因生物安全的看法(参考啊)

转基因技术是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。

转基因技术有着重要的意义:(1)增加产量。(2)改良品质。(3)增强抗逆性。(4)生产转基因药品。将一种有治疗作用的基因植入某种食品,人们只需吃食物就能预防或治疗疾病。(5)转基因食品的安全性在某种程度上甚至超过传统食品,尤其在微生物毒素、农药残留和营养含量等方面表现优异。

同时,任何事物的发展都是具有双面性的。转基因技术也可能会给人类社会和环境的发展带来负面的影响。转基因技术对生态系统和人类健康的危害体现在下面几个方面:(1)基因漂移。(2)转基因植物产生的杀虫毒素可由根部渗入土壤,对土壤生物及微生物和环境产生不良影响。(3)转基因产品的毒性, 能引起人的过敏反应,影响人体抵御病毒的能力,造成不可预知的后果。(4)转入植物的标记基因(特别是抗生素基因) ,扩散到其他微生物中并使其产生新的抗药性。

由此看来,转基因技术尚存在一些弊端,如果不负责任、不顾后果、不加限制地使用转基因技术,最终必会伤害我们人类自己。

9. 简述资源生物技术的主要内容,试分析该技术在哪些生物产业领域有重要应用,请举例说明。

生物技术是利用生物体或者生物的组织细胞及组分的特征和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供产品和服务的综合性技术体系。

(1)农业:结合基因组学和转基因技术的发展我国获得了一些列优质、丰产、抗病、抗虫的新品种。

(2)医药:现代生物技术在预防、诊断和治疗影响人类健康的疾病方面发挥了重要的作用。生物药品是以微生物、寄生虫、动物毒素、生物组织为起始原料,采用生物学工艺或分离纯化技术制备,并以生物学技术,分析控制中间产物和成品质量制成的生物活化剂(抗原、单克隆抗体等)。

(3)工业:利用生化反应进行工业品的生产加工技术,以生物催化剂为核心把生命科学的发现转化为实际的产品,以满足社会的需要。

(4)环境:由于人类活动自身造成的各种污染对环境生态的破坏,已成为威胁人类健康、制约经济发展的严重问题,生物技术在治理环境污染,改善人类生活环境质量

(5)海洋:包括探索、开发和利用有价值的海洋生物,优良养殖品种的培育和病虫害防治,海洋生物天然产物的利用,海洋特殊功能的利用,海洋生态系统的利用。

10. 请列举一些能加速新药发现以及新药研究开发进程的思路和方法,并简要说明理由。

1.以计算机辅助药物设计,加速新药研究开发的进程,增加其自动化程度及新药筛选的精确性和灵敏度:计算机辅助药物设计以计算机作为操作界面和辅助手段, 利用计算化学、

分子图形学等技术,将理论思维形象化,使药物设计更加直观、便捷和有效。

2.通过对人类基因组进行研究, 并由此筛选出有潜在药用价值或与疾病相关的基因:利用cDNA文库技术,可以找到疾病组织中表达上调的基因,以此作为潜在的药物靶点。

3.利用细胞的信息传导机制来研究开发新药:现代新药研究与开发的关键首先是寻找、确定和制备药物筛选靶—分子药靶。

4.采用基于模型的药物研发模式,它是采用定量研究的方法,通过建模与模拟技术,进行药物研发的一种新的研发模式。好的 PM模型得出的分析结果,可有力支持药物的安全性、有效性信息,增加临床试验的经济性和效率,甚至可省略部分临床试验,即可得到上市批准的许可。

5.利用细胞凋亡的机制来筛选抗肿瘤、抗老化、抑制心脑血管病的药:

6. 利用炎症免疫反应的机制来筛选抗炎症的药

7.利用结构与功能的关系,并结合三级结构的模拟来达到新药研究开发与设计的目的

8.利用细胞内分子之间的相互作用或细胞外分子与膜上蛋白的相互作用机制来研究开发新药。

11. 试论述发展生物制造技术的重大意义。

生物制造技术是指将生命科学和材料科学的知识融入到制造技术中,在各种交叉技术的支持下,运用先进的制造模式和方法来生产具有一定生物功能的组织和器官。

意义:生物制造与人民的生命及健康有着密切的关系,它的研究以各类人工器官或组织的制造作为其最终目标,当前目标是提供具有一定生理、生化功能的功能体或仿生产品,并且能够初步用于医学临床。

12. 近年来G蛋白偶联受体的晶体解析获得了巨大的进展,当G蛋白

偶联受体的晶体结构被解析后,如果你是该领域的研究者,你将利用

这些结构信息开展什么样的工作?你所想解决的科学问题和具体的

研究思路和目标将是什么?

(1)结构:G蛋白偶联受体是与G蛋白有信号连接的受体的统称。G蛋白为乌苷三磷酸(GTP)结合蛋白的简称,是GTP结合蛋白,在细胞内信号传导途径中起重要作用的,由α,β,γ三个不同亚基组成。

(2)工作:根据结构信息我们可以研究G蛋白偶联受体在生理过程中的作用

G蛋白偶联受体传递信号的机理包括几个主要步骤:首先来自细胞膜外侧的配体与受体相结合,引起后者的构象变化,这个过程也称为受体的激活。发生了构象变化的受体随即会激活附着在其细胞膜内侧端的G蛋白,表现为G蛋白上原先结合的GDP被替换为GTP。激活后的G蛋白会进一步引发一系列的下游效应。

(3)解决的问题:根据相关文献及研究报告,我们了解到某种病的病发与G蛋白偶联受体相关,借以进行相关药物的开发,从而达到治疗的目的。

(4)研究思路:G蛋白偶联受体是人体内最大的膜表面受体,其结构和在细胞中的作用决定了它是极具吸引力的新药开发的有效靶点,根据它的结构以及病发过程中传递信号机理,反推药物的性质以及结构,从而研发出具有特异性的药物。作用于G蛋白偶联受体的药物通过调节有关GPCR介导的信号传导可以对于疼痛、高血压、胃溃肠、鼻炎、哮喘、

抑郁症、精神分裂症、失眠、高血压、虚弱、焦躁、紧张、肾功能衰竭、心血管疾病和炎症等各类疾病具有良好地治疗作用。

(5)目标:研发出药物并治愈疾病

13.基因组学、蛋白质组学等为生物科学提供了有效的工具和海量的信息,如果在你的研究工作中,涉及到一种新的蛋白质,你将从哪些角度和层面利用基因组学、蛋白质组学的工具和信息,想要解决的科学问题和研究思路是什么?

1)首先,对于一个新的蛋白质我们要进行分离纯化,确定其分子量的大小及其序列信息,可以运用质谱仪进行测定。

2)查找蛋白质组学相关数据库,如BLAST。一方面找有没有相关工作提供一些可供分析的信息;另一方面比对序列信息,看看在不同物种间是否该蛋白具有某些保守区段,并且在别的物种中是否有一些功能已被确定。

3)至于蛋白质的结构,我们可以借助SWISS-MODEL、PSI-BLAST等数据库进行三维结构的预测。

4)由蛋白质数据库搜索同源信息,反推核酸序列,设计引物,进行目标基因的扩增。5)拿到基因序列后,可进行亚细胞定位,融合表达GUS研究一下在不同组织和生长发育阶段的表达情况,同时可以连个GFP基因在表达该蛋白的细胞内看看具体表达位置。进行体外表达研究蛋白质活性,超表达或基因敲除研究蛋白质的功能,利用酵母双杂交研究与其他蛋白质的相互作用等。

14. 生物能源主要有哪些品种?其发展状况如何?

生物能源是指利用生物可再生原料及太阳能生产的能源,包括生物质能、生物液体燃料及利用生物质生产的能源,如燃料酒精、生物柴油、生物质气化及液化燃料、生物制氢等。目前生物能源的主要形式有燃料乙醇、生物柴油、生物制氢和沼气等。

1.燃料乙醇的发展现状和前景燃料乙醇是指按照一定的比例加入汽油或柴油中的无水乙醇,它可以提高汽油的辛烷值,使其完全燃烧,同时又减少汽车废气中的焦油,二氧化碳,氧化氮等的排放。所用的原料主要有淀粉类,像木薯、甘薯、玉米、高粱等;糖质原料像甘蔗;纤维素原料像农作物秸秆、木材及植物,是最大的原料来源。从长远看,纤维植物转化为乙醇才是降低成本、解决原料有限的问题的有效途径。

2.生物柴油的发展及前景生物柴油是指油料作物,工程微藻等水生植物、动物油脂或餐饮垃圾油等为原料,通过生物或化学手段将其转化成为可替代石化柴油的高脂酸甲烷。目前植物油是生产生物柴油的主要原料。

3.生物制氢生物制氢是指以碳水化合物为氢的供体,利用细菌来制备氢气。生物制氢的原料丰富,像精制糖废水、豆制品及废水、乳制品、淀粉、麦麸、植物秸秆等,其中以葡

萄糖、纤维素为原料研究较多。。它是未来能源制备技术的发展方向之一,虽然现在产氢效率低,但各国正积极努力发展。

综上所述,生物能源的发展有着广阔的前景,是解决能源危机和环境污染的最为有效的途径,也是可持续发展的必然选择。

15. 试以油脂为例,说说它的生物炼制技术进展。

生物柴油在能源性质方面可以完全替代化石柴油,当前利用动植物油脂生产生物柴油,原料成本偏高,而且稳定、充足的油脂原料供应体系尚未形成。我国是油脂资源短缺国家,近年来植物油进口量逐年增加。同时,我国耕地资源匮乏,粮食供应形势不容乐观,扩大油料作物种植的潜力非常有限。但是,我国因林地丰富,农林废弃生物质资源量巨大,应加快微生物油脂发酵技术创新和产业化进程;同时,利用植物遗传育种技术提高油料作物产量。

生物柴油制备方法包括生物法和化学法。生物法中的脂肪酶具有原料适用性广、安全、无污染、能耗低等优点,但存在酶成本相对较高、易失活、反应时间长等问题。因此获得半衰期长、重复使用次数多、后处理工艺简单的酶是生物法的关键问题。目前在脂肪酶的固定化、高效脂肪酶基因工程菌的构建以及发酵工艺优化等方面做了许多工作。

16、与传统制剂技术相比,简述肿瘤纳米药物制剂技术的优势,并举例说明

目前对肿瘤的治疗,主要由外科手术治疗、放射治疗及化学药物治疗。而传统的化疗存在许多问题:1.药物选择性差,在杀伤癌细胞的同时,对正常细胞和组织也有一定损害;2.抗癌药物注射后,经过肝和血液循环才能达到靶部位,相当数量的药物会与血浆蛋白结合而失活,药效明显降低;3.肿瘤组织间隙存在较大渗透压梯度,阻碍药物分子从血管向肿瘤深部转运;4.多药耐药,多次使用化疗药物会导致耐药产生,成为化疗失败的主要原因。

纳米药物制剂技术用于肿瘤治疗主要指纳米载药系统,它有以下优势:1.通过聚乙二醇PEG等修饰,避免其被网状系统清除,达到长循环的目的;2.通过控制粒径等,增强EPR效应,促进药物在肿瘤组织中蓄积;3.对纳米载体表面进行修饰,通过配体-受体、抗原-抗体介导,实现肿瘤细胞的主动靶向,并促进纳米药物向细胞内转运;4.通过对纳米载体表面进行修饰,抑制肿瘤细胞的多药耐药性机制,或者引入促进药物从溶酶体逃逸的机制,提高药物在细胞内的有效浓度;5.应用纳米载药系统,增强药物特别是蛋白类药物的稳定性,可以提高某些药物溶出度及透过生理屏障的能力,比如核酸类药物经过载药可以增强其穿过细胞膜的能力;6.通过纳米载药系统给药,还可以实现药物的共输送,达到多靶点治疗的目的17、与传统医学诊断技术相比,简述肿瘤纳米诊断技术的优势,并举例说明

恶性肿瘤是人类的一大杀手,如何对其有效的诊治一直是医学界努力攻克的难题。目前确诊恶性肿瘤最有效的手段是病理诊断,但准确性往往受限于操作医生的工作经验。长度仅为1~100 nm 的纳米装置能够自由进出人体细胞,与以往的诊断和治疗手段相比具有体积小,生物相容性好和器官靶向能力强等优势,为肿瘤的诊断提供了新的功能平台。

(1)敏感性与特异性更强。利用纳米粒子的吸附、信号放大、催化以及特殊的荧光信号与增强光谱信号性能,可以显著增强传统方法检测的灵敏度与特异性。例如,纳米碳管能显著增强PCR反应效率。

(2)分子影像技术方面,以超顺磁氧化铁和细小超顺磁性氧化铁为代表的核磁共振造影剂,通过明显改变质子从激发态到基态的衰减时间,来提高MRI成像对病变的检出。

(3)在量子点基础上的诊断技术方面,由于荧光量子点的尺度量子效应,它们表现具有独特的光致发光性能,目前荧光量子点已用于免疫分析、基因分析、活体及细胞荧光成像等领域,可能为某些肿瘤的早期诊断提供一种新型分子诊断手段。

18、与传统生物材料相比,简述纳米生物医用材料的优势,并举例说明

和生物医用材料相对应,纳米生物医用材料主要包括纳米生物医用无机材料、纳米生物医用高分子材料、纳米生物医用金属材料、纳米生物医用复合材料等. 由于纳米材料相对于宏观材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应,使得具有纳米尺度的生物医用材料具有许多新奇的优良特性。

纳米陶瓷的问世,使陶瓷材料的强度、硬度、韧性和超塑性都大为提高。纳米生物陶瓷材料晶粒尺寸的减小,改变了材料的表面粗糙度,从而增强了成骨细胞的成骨功能及代谢活动,与相应的常规陶瓷比较,纳米氧化铝更能增强成骨细胞的功能及代谢活动,即具有更加良好的细胞相容性。这样,它们与活细胞有良好的相互结合性能,可以成为矫形科和牙科手术的良好材料.

采用电纺相分离技术制备模拟人体细胞外基质-胶原纤维环境下的微结构比传统多孔支架具有更良好传递营养和代谢产物的能力,更好地诱导细胞和组织生长;采用电纺技术和基团技术结合,获得可控释DNA的纳米纤维支架,为调控组织生长过程中生物信号提供了可能。

现代生物技术研究进展

现代生物技术研究进展 luojuan 摘要:生物技术是21世纪最具有发展前景和活力的学科,世界各国都将生物技术视为一项高新技术,生物技术在相关领域中的应用也成为应用技术研究中的热点。生物技术又叫生物工程,是综合运用生物学、细胞生物学、微生物学、生物化学等基础科学和生化工程等原理和技术而形成的一门综合性的科学技术。 关键词:现代生物技术细胞工程酶工程发酵工程基因工程蛋白质工程研究进展 一、现代生物技术概述[1] 生物技术包括传统生物技术和现代生物技术。传统生物技术主要是自然发酵技术和自然杂交育种技术。现代生物技术是指以现代生物学研究成果为基础,以基因工程为核心的新兴学科。现代生物技术主要包括:细胞工程、酶工程、发酵工程、基因工程、蛋白质工程。 二、细胞工程研究进展[2] 细胞工程的概念及其基本操作细胞工程属于广义的遗传工程,是将一种生物细胞中携带的全套遗传信息的基因或染色体整个导入另一种生物细胞,从而改变细胞的遗传性,创造新的生物类型。它包括细胞融合、细胞重组、染色体工程、细胞器移植、原生质体诱变及细胞和组织培养技术。 近年来,在该领域的研究最引人注目的是细胞融合技术和细胞杂交,并取得一些突破性研究进展。应用细胞融合技术可以培育新型生物物种。可实现种间育种。 1975年英国科学家研制成功了淋巴细胞杂交瘤技术,由此技术获得的单克隆抗体很快应用于临床实践,被称为20世纪80年代的“生物导弹”。目前单克隆抗体技术已用于治疗诊断癌症、艾滋病等多种疑难疾病,及快熟诊断人类、动物和农作物病害等方面,成为细胞工程在医学上最重要的成就之一。 日本秋田生物技术公司和遗传资源开发利用中心联合采用细胞工程的原生质体突变,将“秋田小町”稻育成“新秋田小町”新品种。该稻试种过程中,产量大大提高,取得了明显的经济效益。我国科学家利用细胞工程的原生质体育种在世界上首创了食用菌属间原生质体杂交。这种属间杂交新品种,既有香菇的独特香味和优良品质,又有平菇的高产量、生长周期短、易栽培、抗逆性强等特性。 随着细胞工程技术的不断发展,植物细胞和组织培养这一细胞工程技术也无例外地得到发展,目前已在许多植物上,特别是在农林生产实践中得到了广泛应用。尤其在林木优良品种和无性系的快速繁殖方面进展较快。 细胞工程已成为当代社会经济重要支柱性技术之一。 三、酶工程的研究进展[3] 酶工程就是在一定的生物反应装置中,利用酶的催化功能,将相应的原料转化成有用物质的一门技术。 化学酶工程又称初级酶工程,主要由酶学与化学工程技术相互结合而形成。在开发自然酶制剂方面,大规模生产和应用的商品酶只有数十种,如水解酶、凝乳酶、果胶酶等。在食品工业中的应用主要是淀粉加工,其次是乳品加工、果汁加工、食品烘烤及啤酒发酵;在轻化工业中的应用主要包括洗涤剂制造、毛皮工业、明胶制造、胶原纤维制造、牙膏和化妆品的生产、造纸、废水废物处理和饲料加工等;在能源开发上的应用主要是利用微生物或酶工程技术从生物体中生产燃料,也可利用微生物作为石油勘探、二

生命科学研究进展

生命科学研究进展 尹强 (江西农业大学理学院,江西南昌,330045) 现代生物技术已进入商品生产的激烈竞争阶段。据在京举行的关于“分子生物学进展”方面的学术报告会透露,美国科学院的院报中,每月的生物论文10倍于数理化天地论文的发表数量。这个数字显示了在当代人们对生命科学发展的重视程度。同样,在商品生产领域也表现出了同样的趋势。如在运用现代生物技术的遗传工程方面,美国每年在该领域投入的研究经费高达100多亿美元,有200多家大生物技术公司从事有关方面产品商品开发,已生产出了多种生物制品。在市场上出售的有人生长激素、胰岛素、调节血压的人肾素,还有乙型肝炎疫苗;可使肿瘤枯萎的生物技术药物已进入临床试验。美国利用遗传工程正在研制生物制品的还有多种,如具有抗癌作用的肿瘤坏死素、能溶解血栓的组织纤维蛋白溶酶活化剂及多种免疫系统调节制剂.科学工作者还正在研制艾滋病疫苗。在现阶段的动物试验中,这种疫苗已使老鼠体内产生了艾滋病抗体,并开始在人体上进行试验。 日本在生物技术方面的研发也不甘落后,该国的科学家把生物技术看成是使日本的技术在2l世纪处于世界领先地位的跳板。日本引进美国的生物技术,派出大量人员去美国学习,同时鼓励本国的科研。日本已研制出促进红细胞形成的血细胞生成素,可用于治疗肾脏疾病。 西欧各国在生物技术方面起步较慢,但在现代制药工业中生物技术却异军突起。他们在单克隆抗体和特异蛋白分子的生产方面处于世界领先地位。一些老企业也利用生物技术生产各种高效酶制剂,用于食品加工和废物处理。还有,他们在细胞融合领域也取得了重要进展,如番茄马铃薯的育成。在开发这类细胞融合技术产品时,除在产品实践方面有所突破外,还在育种理论上有新发现。如他们在研究报告中指出,利用细胞融合技术最有前途的是近亲植物细胞融合,它对提高品种质量效果明显。 俄罗斯生物技术研究也日趋活跃,他们在前苏联时期的研究基础上,先将遗传工程的重点放在农业方面,力图培育出“早熟、高产、营养丰富、能在贫瘠土地上生长的农作物。俄罗斯科学家还存分子生物学和医学生物技术方面进行了卓有成效的研究,在研究离子载体如何穿过细胞膜方面有突破性进展,了解这一点将使人们揭开细胞维持恒定状态的奥秘。 我国在现代生物技术开发方面虽然起步较晚,但发展迅速,在某些项目上已跻身于世界先进行列,引起了国际同行的关注。如存生物医学工程领域的人工器官,新华医院和上海第一结核病防治院共同研制的聚丙烯中空纤维人工肺已在全国推广应用,仅新华医院一家就用了300多例。过去不用人工肺死亡率达50%,现在应用新的人工肺,深低温手术无一例死亡,达到了国际先进水平。上海胸外医院、新华医院、人体代用材料研究所研制的人造血管、膨体心脏修补片已达到国际20世纪80年代水平。特别应提到的是,我周在转基因抗病虫害作物、生物大分子的合成及克隆生物领域取得的成果亦是颇多。我国还参与了人类基因组测序工作,说明我国在该领域占有一席之地。我们还必须进一步加强该领域的研究工作,以缩小与发达国家在生物技术研究开发方面的差距。 1 我国研制成功第二代人造血 查新报告显示,我国第一代人造血在临床应用中,已成功地抢救了400多名伤病员。研究第二代人造血的科研人员,在历时4年的探索中对氟碳人造血的合成、乳化、毒理以及药效等方面做了不少改进,储存期从半年延长到1.5年;它在血管中的半衰期也从原来的10 h延长到19.8h。这将更有利于患者恢复健康。人造血是国际生命科学界,特别是医学界关注的热门课题。第二代人造血是我国上海有机化学研究所、上海劳动卫生职业病防治研究所的科学工作者研制的。对第

生命科学与生物技术

生命科学与生物技术 姓名:谢新发班级:大06数学1班学号:43号 摘要: 当今世界,科学技术发展突飞猛进,新兴学科、交叉学科不断涌现,科技进步对经济社会的影响及作用显得日益广泛、深刻。伴随着信息科技革命的浪潮,生命科学和生物技术的未来也展现出其不可限量的前景。越来越多的人们已经认识到,一个生命科学的新纪元即将开始,并将对科技发展、社会进步和经济增长产生极其重要而深远的影响。生命科学和生物技术将会极大地应用于国家的农业、工业和安全。应当说,生命科学和生物技术及其产业的发展为我国提供了一次科技创新和社会生产力实现跨越式发展的重大战略机遇。 关键词:生命科学生物技术现状前景对策 一、当代生命科学与生物技术发展的现状和前景 无论是科技界还是产业界,都基本认同这样一个重要判断:在新的世纪里,生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。日益成熟的转基因技术、克隆技术以及正在加速发展的基因组学技术和蛋白质组技术、生物信息技术、生物芯片技术、干细胞组织工程认知与神经科学等关键技术,正在推动生物技术产业成为新世纪最重要的产业之一,深刻地改变人类的医疗卫生、农业、人口和食品及生物安全状况。尽管世界各国对高科技领域范围的界定不完全相同,但几乎无一例外地将生命科学和生物技术放在重要位置。 进入21世纪后,生物技术产业显示出其强劲的发展势头,成为当今高技术产业发展最快的领域之一。2002年美国在生物技术领域投入研究开发资金已高达157亿美元。日本政府2002年已明确提出生物技术立国战略,强调把“科研重点转向生命科学和生物技术”。欧盟已成立生物技术委员会。在软件领域成就斐然的印度,早在1995就提出“人类基因组——印度起点”研究计划,明确提出通过发展生物产业实现经济结构的多元化。这些都表明,世界上许多国家已把发展生命科学、生物技术及其产业作为赢得未来竞争的战略选择。 目前,生命科学的研究热点仍然集中在基因组科学、蛋白质科学、认知与神经科学等领域。继2000年人类基因组计划完成之后,水稻、疟原虫、蚊子和老鼠的全部DNA序列测定也在2002年完成,这些研究成果都直接与粮食生产和人类健康有关。老鼠和河豚鱼基因序列的测定,将可能为人类提供关于脊椎动物进化的重要线索。特别是科学家们已经把目光投入到功能基因组学(Functional Genomics)和蛋白质组学(Proteomics)这两个极富挑战性的领域,这将带来更多与人类自身发展密切相关联的重大研究成果。 生物技术方面的进展则更为迅速,基因工程、转基因技术、纳米生物技术等等,将大大加快基因工程药物和疫苗的研制,以及推进对重大疾病新疗法的研究进程。总体来看,生物技术目前仍主要应用于医药和农业,但在食品、环保、能源等行业也有广阔的应用前景。据统计,全球生物药品市场规模2000年为300亿美元,预计2010年将达到9000亿美元。在转基因技术方面,尽管人们对基因改造生物的讨论和疑虑仍然存在,但2007年全球23个国家种植了1.143亿公顷转基因农作物,比2006年增长12%。随着人类基因组图谱的破译,将有力地促进生物药物的研究与开发。到2020年,利用生物技术研制的新药可能将达到3000种左右。这将对提高人类的医疗水平和健康水平产生极为重要的影响。 值得强调的是,当代科学技术发展正在呈现出前所未有的技术融合趋势。特别是生物技术与其他高技术的融合,形成了生物芯片、生物光电、生物传感器等高技术领域,产生了生物技术群。比如,生物芯片技术的开发和运用,将在生物学和医学基础研究、食品、农业、环保等领域中开辟一条全新的道路,改变生命科学的研究方式,革新医学诊断和治疗。科技发展的这一突出现象以及由此带来的产业深层次变革,已经引起许多国家的高度关注。

生命科学与金融学

生命科学与金融学 生命科学是研究包括人在内的各种生物,其生命特征的规律性,如生物类群、结构功能、生长发育、遗传变异、起源进化,以及生物和环境相互作用的基础科学。生命科学作为一门基础科学,传统上是农业和医学的基础,涉及种植、畜牧、养殖、医药、体育与卫生等。随着生命科学理论体系的完善和科研方法和技术的不断进步,其应用领域正在不断的扩大。现在生命科学的影响已经扩大到食品、化工、环保、冶金等方面,若考虑仿生学因素,其影响还涉及机械、电子、信息技术诸领域。 从生物科学到生物技术和生物工程是人们从认识生命活动和探索生命的规律性到改造及提高人们的环境适应能力的飞跃。而随着生命科技渗透到人口、环境、健康、资源和海洋开发等重大问题的解决途径中,生命科技产业化的步伐大大加快,生物产业已成为关系到中国民生的重要产业,以生命科学产业化为基础的生物经济将引领中国社会又好又快的可持续的发展 所示为生命科学的实践化过程 生物经济这一概念是由stan davis 和Christophermeyer于2000年提出的。生命科技的研发应用是生物经济的基础,生物经济是建立在生物经济产品和产业上的。与具有垄断性质的信息技术和信息经济不同,生物技术和生物经济具有较强的资源依赖性、技术通用性和产品多样性,而市场垄断性则较弱。这为拥有丰富的生物资源的发展中国家在未来的生物经济时代中实现跨越式发展提供了契机。 与互联网局限在人们信息层次上的交流不同,生命科学的革命性在于它将改变人们生存和健康的各方面。生物产业所带来的商机远远大于信息技术,生物科技产业具有的研发领域广、研发投入高、附加值高、公害低、土地和劳动力的需求少,也已成为人类社会经济发展的新动力。 我国的生物经济 我国是世界上生物资源最为实饶的国家之一,我国有十三亿人口的食物和健康需求。我国发展生物经济是应对国际竞争和解决未来人口、资源、能源等问题的关键。生物技术不反自身发展迅速,而且带动的大批高新技术产业的成长。经过20多年努力,我国已初步建立了完整的生物技术研发体系,我国生物经济初见端倪。我国目前拥有200多个生物技术实验室(重点项目),技术和研发产品人员约两万人。我国涉及现代生物技术的企业约500余家,从业人员超过五万人,我国建立了生物基地。 通过学习生命科学与技术,发现自己所学专业金融学是可以与生命科学一起服务于社会主义现代化建设,通过自己的专业知识,为生命科学在实际生产中筹资,开拓市场,造福社会做出贡献。

生命科学研究进展论文

RNA干涉及其应用 摘要 RNA干涉(RNAi)是将双链导入细胞引起特异基因mRNA降解的一种细胞反应过程.它是转录后基因沉默的一种。RNAi发生过程主要分为3个阶段:起始阶段,扩增阶段,效应阶段。RNAi在生物界中广泛存在.综述RNAi现象的发现、发生机制及其应用,并展望未来的研究. 关键词 RNA干涉 RNA干涉应用 RNA interference and its application Abstract Introduction of double-stranded RNA into cells can induce specific mRNA degradation. This process is called RNA interference(RNAi). It is a kind of post-transcriptional gene silencing. RNAi patlway can be divided into three step: initiation step, amplification step and effector step . RNAi exists in a wide variety of organisms. The discovery , mechanism and application were reviewed in the paper . In addition, the out look of RNAi was introduced . Key words RNA interference application RNA 干涉(RNA interference ,简称RNAi) 是将双链RNA(dsRNA) 导入细胞引起特异基因mRNA 降解的一种细胞反应过程.它是转录后基因沉默(PTGS)的种.1998 年, Fire 等人[1]在利用反义核酸技术来抑制线虫基因表达时意外地发现,由正义和反义RNA 退火形成dsRNA 引起的基因表达抑制要比单独应用正义或反义RNA 强10 倍以上. dsRNA 引起的基因表达抑制不是正义或反义RNA 引起的基因表达抑

生命科学与技术研究进展

1. 什么是系统生物学? 系统生物学是一种典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。它是一种整合型大科学,要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。对于多细胞生物而言,系统生物学就是要实现从基因到细胞、到组织、到个体的各个层次的整合。 系统生物学包括四个方面: 一、系统结构。包括基因,蛋白间关系以及由此得到的基因蛋白网络和生物通路,以及这些相互之间关系所牵涉到的细胞内和细胞外结构的物理特性和机制。 二、系统动力学。可以通过代谢分析,敏感性分析,动力学分析工具比如分叉分析等,以及识别不同行为所内含的机制等分析方法和手段来理解在不同时间点不同条件下系统的行为。 三、系统的控制方法。掌握这些控制细胞处于各种状态的机制,用来模拟系统,能得到治疗疾病的药靶。 四、设计的方法。基于某些设计的原则和模拟方法,可以修正和构造具有所需特性的系统,而不需要盲目地反复实验。 2. 生物芯片技术对于系统生物学的意义? 生物芯片是多领域相揉合的产物,生物芯片技术涉及电子技术、成像光学、材料学、计算机技术、生物技术等。简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。生物芯片技术是系统生物学技术的基本内容。 系统生物学有两个关键技术基础,“组学”数据基础,以及检测和实验技术基础。在检测和实验技术这一方面,生物芯片占有举足轻重的地位。二十世纪末期,生物芯片开始进入大家的视野,它有着传统技术无可比拟的优势:高通量、微型化、自动化。系统生物学需要处理海量的组学数据,如果仅仅依靠传统手段,将举步维艰,借助于芯片技术,将事半功倍。 3. 以某离子通道为例,叙述蛋白结构和功能的测量方法和手段 以BK通道为例,结构测量:首先得到通道的序列,设计引物,通过体外PCR 快速高效的体外扩增该片段,然后连接到合适的载体上导入宿主细胞中进行表达,获得蛋白,通过HPLC进行蛋白分析和分离,将纯化后的蛋白配制成浓溶液,进行晶体生长实验,获得高质量的单晶体后,进行X射线衍射来解析该通道的结构,功能测量:通过量:通过切除部分序列,来测量通道的功能序列,定点突变来确定通道的关键氨基酸。通过特异性药物或毒素与通道的结合相互作用来检测通道的生理活性和功能。 4、有哪些方法可用来确定离子通道生理功能? (1)电压钳技术 膜对某种离子通透性的变化是膜电位和时间的函数。用玻璃微电极插入细胞内,利用电子学技术施加一跨膜电压并把膜电位固定于某一数值,可以测定该膜电位条件下离子电流随时间变化的动态过程。利用药物使其他离子通道失效,即可测定被研究的某种离子通道的功能性参量

现代生命科学前沿专期末考试题

现代生命科学前沿专期末考试题 考试时间 1月13日14:00~16:00,地点:学院一、二教(如果坐不下再开微格教室),形式:闭卷,拉单桌,不允许携带任何资料。 1.论述当代生命科学五个方面的最新进展(30分) a 神经生物学研究进展:20XX年诺贝尔生理学或医学奖授予了发现构成大脑定位系 统细胞的三位科学家.他们发现在实验动物经过某些特定位置时,位于海马附近内嗅皮质的另一些神经细胞被激活,这些脑区构成一个六边形网络,每个网格细胞在特定的空间图式中起作用.这些网格细胞共同构成一个坐标系,便于实验动物在三维空间的活动.这些研究解决了哲学家和科学家几个世纪来一直争论不休的一个问题,即大脑如何对我们周围空间产生地图,以及如何通过这个系统在复杂的环境中导航的. b.细胞生物学研究进展:20XX年,日本山中伸弥研究小组通过将逆转录病毒介导的Oct4, Sox2, Klf4及c-Myc四个基因转入鼠成纤维母细胞,将成体细胞重编程为具有多分化潜能的干细胞,并将该类干细胞命名为iPS细胞.20XX年, 美国Thomson 实验室,俞君英博士报道了Oct4, Sox2,Nanog及Lin28 四个基因的转染可将人成纤维母细胞重编程为iPS细胞。20XX年4 月, Hanna等将镰刀型红细胞贫血模型小鼠的皮肤成纤维细胞诱导为iPS细胞, 改善了小鼠的贫血症状。20XX年9月, 美国哈佛大学采用iPS技术, 将人类胰腺细胞逆向分化为能分泌胰岛素的B细胞, 成功治愈了糖尿病小鼠。利用这些方法,可以避开伦理学的限制获得具有多能性的细胞,这为发育生物学和医学研究提供了更多可能的应用. c.分子生物学研究进展:以半乳凝素-3为例,研究表明癌症患者血液中半乳凝素-3水平大幅升高.半乳凝素-3参与肿瘤细胞的增殖、粘附、侵袭、克隆存活以及肿瘤血 管生成等过程.而一些半乳凝素-3抑制剂如乳糖基胺,乳糖基亮氨酸,酸碱修饰的柠檬

公元年公元年生命科学发展大事记

生命科学发展大事记 公元1600年~公元1839年 公元1609年 ●意大利物理学家、天文学家G.伽利略制造一台复合显微镜,并用于观察昆虫的复眼。公元1628年 ●英国医生、解剖学家W.哈维所著的《动物心血运动的研究》一书出版,建立血液循环 理论,奠定了近代医学和生理学的基础。 公元1660年 ●意大利解剖学家M.马尔皮基观察到蛙肺里连接动脉和静脉的毛细血管,证实了哈维的 血液循环理论。 公元1665年 ●英国物理学家R.Hooke(R.胡克)在显微镜下观察软木切片,发现蜂窝状小室,称之为 “Cell”,并发表著作《显微摄影》描述之。 公元1668年 ●意大利医生F.雷迪通过蝇卵生蛆的对比实验,为反对自然发生说提供了第一个证据。公元1675年 ●荷兰人A.van 列文虎克发明了显微镜。 公元1675年 ● A.van 列文虎克用自制的、当时分辨率最高的显微镜进行了广泛观察,发现了由种种 活着的“小动物”组成的微生物世界,同时也发现了人的精子。 公元1682年 ●英国植物学家N.格鲁编著的《植物解学》出版,其中也包括植物生理学的研究成果。公元1686年 ●英国博物学家J.雷所著《植物史》第一卷出版,以后继续出版第二、三卷,其中讨论了 种的定义。 公元1727年 ●中国医学家俞茂鲲在《痘科金镜赋集解》中记载,人痘接种术起于明朝隆庆年间(1567~

1572);《医宗金鉴》(1742)介绍了痘衣、痘浆、水苗、旱苗四种方法。据俞正燮(1775~1840)在《癸巳存稿》中记载,1688年(清康熙二十七年)俄国已派医生来学“人痘法”。公元1735年 ●瑞典植物学家Linne C.V.(C.von林奈)所著的巨著《自然系统》第一版出版,首创物 种二名法,把自然界的植物、动物、矿物、分成纲、目、属、种,实现了植物与动物分类范畴的统一,在全世界得到普遍承认与推广。 公元1761年 ●科尔鲁特以早熟的普通烟草和晚熟的心叶烟草杂交获得了品质优良的早熟杂种一代。公元1770年~公元1774年 ●氧气的发现,经历了一个较为漫长的曲折历程。造成这种曲折的原因尽管是多方面的, 但主要还是发现者本人的主观因素所造成的。因此,总结这一深刻教训,可给后人留下许多有益的历史启示。 人类关于氧气的研究,可以追溯到遥远的古代。据史书记载,公元8世纪,中国就曾经对大气进行过研究,并把大气分为阴阳两部分。到17世纪,罗伯特·波义耳(R. Boyle,1627-1691)在进行抽气机与燃烧实验时,发现了一些奇妙有趣的现象。在真空中,火药环只在受热的地方才燃烧,但一通入空气,立刻全部燃烧。这些燃烧现象,使波义耳得出结论:“空气中有一些活性物质不是被磷的烟雾消耗掉,就是被它驯化”。 这给人们以启发,那就是空气中含有两种截然不同的气体。此后,R. 虎克(R. Hooke,1635-1703)也做了类似的燃烧实验,并得出结论,认为空气中存在一种可以溶解可燃物体自身的东西。 罗伯特·波义耳和虎克的实验,对发现氧气都是极为有益的。只要沿着这个正确的思路去寻找空气中那种具有活性的物质是什么?氧气就会很顺利地被发现。但科学发现的道路是曲折的。在通往客观真理的征途上,遇到任何一点障碍,都可能使科学家犹豫不前,而大大推迟科学发现的时间。 在氧气发现的过程中,最大的障碍,就是“燃素说”的提出。它使一些科学家步入歧途,茫然而不能自拔。“燃素说”是英国人乔治.恩斯特.史塔尔继承了约翰.约阿希姆.帕克的《地下的自然哲学》中的学说,并综合了各家观点,于1703年较系统地阐述和发挥为完整理论的。史塔尔认为,空气中有一种可燃的油状土,即为燃素。史塔尔所说的燃素是“火质和火素而非火本身”,燃素存在于一切可燃物体中,在燃烧时,快速逸出。 燃素是金属性质、气味和颜色的根源。它是火微粒构成的火元素。按照“燃素说”的观点,

我国生命科学与生物技术的进展及趋势

我国生命科学与生物技术的进展及趋势 【摘要】 本文介绍了生物技术的重点研究领域,对欧美、日本等国家和我国生物技术的发展状况进行了综述,回顾了我国生物技术的发展历史,介绍和分析了我国生物技术的现状和存在问题,以及解决的对策,展望了21世纪我国生物技术的发展前景,希望21世纪的生物技术能更好的造福人民。 【关键词】:生命科学;生物技术; 趋势; 对策 党和政府对生物技术一向给予高度的重视。70年代末期, 就把遗传工程列为我国八大重 点科技领域之一。如果把1986年作为我国生物技术发展阶段的一条分界线, 那么, 1986年以前的七、八年, 我国生物技术处于一个初创阶段。中国科学院和高等院校一些生物学基础研究实力较强的单位, 率先开展基因工程和杂交瘤技术的研究。接着全国许多部门派遣访问学者到国外学习基因工程、细胞工程的技术方法。国内许多研究单位也相继开展基因工程、细胞工程、酶工程和发酵工程的研究, 为我国生物技术的发展奠定了基础。 总括来说,生物技术是分子遗传学、生物化学、微生物学等基础学科发展的产物。20 世纪90 年代以来, 生物技术特别是基因重组技术的发展突飞猛进, 产业化进程明显加快, 以欧美为中心的生物技术产业正在迅速兴起。在20 世纪最后几年里, 全世界生物技术市场较原有的增加了30% , 2000 年生物技术的产值预计达600 亿英镑。21 世纪将是生命科学和生物技术的世纪。 1 生物技术的重点研究领域 1.1 基因组研究研究人类基因组、哺乳类实验动物的基因组、低等真核及原核生物细胞基因组, 同时开展基因图谱的比较研究和技术开发。 1.2 基因治疗研究癌症等疾病的免疫调节和基因治疗、中枢神经系统疾病

现代生命科学与技术结课论文

现代生命科学技术的论文 基因芯片——“生物信息精灵” ——浅谈数学、计算机在现代生命科学研究中的作用 二十世纪是物理科学的世纪,而二十一世纪则是生命科学的世纪。生命科学,尤其是生物技术的迅猛发展,不仅与人类健康,农业发展以及生存环境密切相关,而且还将对其它学科的发展起到促进作用,所谓"今天的科学,明天的技术,后天的生产"。而生命科学的基础性研究是现代生物技术的源泉、科学和技术创新的关键。 现代生物技术,是一门领导尖端科技的学科,正因如此,我很想知道它与数学——我得专业课,计算机等理论或技术是怎样有机的联系在一起的。基于此,我利用课余时间查阅了许多网站、书籍,并有了小小的收获。现就“基因芯片”技术,浅谈如下。 一、基因芯片简介 基因芯片,也叫DNA芯片,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 由于被固定的分子探针在基质上形成不同的探针阵列,利用分子杂交及平行处理原理,基因芯片可对遗传物质进行分子检测,因此可用于进行基因研究、法医鉴定、疾病检测和药物筛选等。基因芯片技术具有无可比拟的高效、快速和多参量特点,是在传统的生物技术如检测、杂交、分型和DNA测序技术等方面的一次重大创新和飞跃。 二、基因芯片技术 生物芯片技术是于90年代初期随着人类基因组计划的顺利进行而诞生,它是通过像集成电路制作过程中半导体光刻加工那样的微缩技术,将现在生命科学研究中许多不连续的、离散的分析过程,如样品制备、化学反应和定性、定量检测等手段集成于指甲盖大小的硅芯片或玻璃芯片上,使这些分析过程连续化和微型化。也就是说将现在需要几间实验室、检验室完成的技术,制作成具有不同用途的便携式生化分析仪,使生物学分析过程全自动化,分析速度成千上万倍地提高,所需样品及化学试剂成千上万倍地减少。可以预见,在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 生物芯片技术是目前应用前景最好的DNA分析技术之一,分析对象可以是核酸、蛋白质、细胞、组织等。目前全世界用生物芯片进行疾病诊断还处于研究阶段,国外已将其用于观察癌基因及肌萎缩等一些遗传病基因的表达和突变情况。

生命科学研究进展

2010年以来的重大生命科学研究进展 摘要生命科学以其固有的特性和规律担负着二十一世纪新兴科学的光荣使命,经过近20年的发展,整个生命科学研究发生了根本变化。生命科学的研究对象和问题与经济社会之间的关系越来越紧密,比如人类健康、农业生产、人类居住环境等。近几年来生命科学发展更是令人瞩目,丹尼索瓦人基因组、用干细胞制造卵子、通过X射线激光解析蛋白质结构、基因组精密工程以及“DNA元素百科全书”计划,五项生命科学研究进展入选2012年《科学》杂志评选的年度十大科学进展。 关键词生命科学进展基因组干细胞 自第一次工业革命开始,科学技术就在人类的发展史上稳稳地占据了重要的地位,科学技术对社会发展影响的加强,能够促进那些与人类自身生活质量和环境改善等密切相关的领域,生命科学以其固有的特性和规律担负着二十一世纪新兴科学的光荣使命,现如今经济科技高速发展,然而人类社会中也产生了或多或少的问题,生命科学则正在以其科学性和人文性为人类社会服务着。 经过近20年的发展,整个生命科学研究发生了根本变化。一方面,随着研究的深入与细化,不断揭示出复杂生命现象背后的分子机制;另一方面,研究趋向于从系统角度认识微观层面。今生命科学基础研究呈现两大特点。随着研究的不断深入,研究的复杂度越来越大、研究周期变长,研究者的分工更加细化,研究者之间的合作和配合增加。比如疾病基因的鉴定,初期的生命科学基础研究主要研究单基因疾病,而现在则集中在多基因复杂疾病。研究难度的加大必然导致研究周期变长——许多重要成果来自于研究者十数年乃至更长时间的 研究积累。生命科学的研究对象和问题与经济社会之间的关系越来越紧密,比如人类健康、农业生产、人类居住环境等。 一、2010年以来世界重大生命科学进展 2012年底,美国《科学》评选了2012年十大科学进展,生命科学研究成果引人注目,其中有五项都是生命科学领域的研究进展,它们分别为丹尼索瓦人基因组、用干细胞制造卵子、通过X射线激光解析蛋白质结构、基因组精密工程以及“DNA元素百科全书”计划。生命科学的研究不只是在2012年才被评选进十大科学进展,2011年我们也可以看到十大科学进展中生命科学的身影,一项艾滋病研究位于榜首,其次人类起源之谜,光合蛋白II,微生物组新发现,重要的疟疾疫苗,清除衰老细胞、马铃薯基因组测序完成等占据了十项重大

2016-2017生命科学与技术研究进展考试试题库

2016-2017生命科学与技术研究进展考试题库 请各位同学注意:《生命科学与技术研究进展》课程 考试时间为:第十二周周六(2016年11月19日)晚上18:30—21:30 考试地点:东十二楼F101教室 1.简述2-3种转基因新技术的理论基础和操作原则。 1.植物转基因基因组中含有外源基因的植物。它可通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,有可能改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种,如玉米稻、北极鳄梨、转基因三倍体毛白杨。 2.动物转基因就是基因组中含有外源基因的动物。它是按照预先的设计,通过细胞融合、细胞重组、遗传物质转移、染色体工程和基因工程技术将外源基因导入精子、卵细胞或受精卵,再以生殖工程技术,有可能育成转基因动物。人工转基因技术原理是将人工分离和修饰过的优质基因,导入到生物体基因组中,从而达到改造生物的目的。具有不确定性。常用的方法和工具包括显微注射、基因枪、电破法、脂质体等。 2.展望你对转基因技术应用的前景。 转基因技术是利用分子生物学技术将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体性状的可遗传修饰。转基因技术已广泛应用于医药、工业、农业、环保、能源、新材料等领域。目前已有基因工程疫苗、基因工程胰岛素和基因工程干扰素等药物。其使用基因拼接技术或DNA重组技术(即转基因技术),指按照人们的意愿,定向地改造生物的遗传性状,产生出人类需要的基因产物,以此生产出的药物原料和药品。利用转基因技术进行遗传改良有着重要的意义,可以:第一、增加产量。第二、改良品质。第三、增强抗逆性。第四、生产转基因药品。 同时,转基因技术的发展打破了自然发展的规律或多或少破坏了生物界领域的和谐。转基因技术对生态系统和人类健康的危害: 第一,基因飘逸即基因流或基因水平转移到其他近缘物种。第二,转基因植物产生的杀虫毒素可由根部渗入土壤, 某种单一的转基因植物的大量种植可能会对土壤生物及微生物和环境产生不良影响, 因而减少本地区物种的多样性。第三,转基因产品的毒性, 能引起人的过敏反应。第四,转入植物的标记基因(特别是抗生素基因) ,有可能通过某种途径扩散到其他微生物中并使其产生新的抗药性,导致超级病原菌的产生。 因此转基因作物安全性需考虑的问题:(1)转基因作物的食品安全性:毒性、过敏反应、抗药性等。(2)环境释放的生态风险作为“外来种”是否带来生态风险;在环境中的残留及可能造成的基因污染;对土壤生态系统的影响;可能演变成农田杂草或将基因传递到其他杂草的风险。 3.请试论述生物能源的优越性及不足。 优越性:生物质能源具有资源丰富、可再生、低污染,能解决能源危机和保护生态环境。易燃烧,污染少,灰分较低。能控制环境污染,减轻对石油资源的依赖,推动农业产业链的发展,是解决全球能源危机的理想途径。(1)提供低硫燃料,(2)提供廉价能源(于某些条件下),(3)将有机物转化成燃料可减少环境公害(例如,垃圾燃料),(4)与其他非传统性能源相比较,技术上的难题较少。另外,①生物燃料是唯一能大规模替代石油燃料的能源产品,而水能、风能、太阳能、核能及其他新能源只适用于发电和供热。②生物燃料是产品上的多样性。能源产品有液态的生物乙醇和柴油,固态的原型和成型燃料,气态的沼气等多种能源产品。既可以替代石油、煤炭和天然气,也可以供热和发电。③生物燃料是原料上的多样性。生物燃料可以利用作物秸秆、林业加工剩余物、畜禽粪便、食品加工业的有机废水废渣、城市垃圾,还可利用低质土地种植各种各样的能源植物。 ④是生物燃料的“物质性”,可以像石油和煤炭那样生产塑料、纤维等各种材料以及化工原料等物质性的产品,形成庞大的生物化工生产体系。⑤生物燃料的“可循环性”和“环保性”。⑥生物燃料的“带动性”。生物燃料可以拓展农业生产领域,带动农村经济发展,增加农民收入;还能促进制造业、建筑业、汽车等行业发展。在中国等发展生物燃料,还可推进农业工业化和中小城镇发展,缩小工农差别,具有重要的政治、经济和社会意义。⑦生物燃料具有对原油价格的“抑制性”。⑧生物燃料是创造就业机会和建立内需市场。 不足:(1)植物仅能将极少量的太阳能转化成有机物,(2)单位土地面的有机物能量偏低,(3)缺乏适合栽种植物的土地,(4)有机物的水分偏多(50%~95%) 还有:热值及热效率低,体积大而不易运输,目前达不到规模化生产的程度:生物质合成燃料乙醇存在着“与人争粮”的问题,生物质合成生物柴油存在着污染较大的不足,生物制氢存在着产氢效率低,氢气收集困难等弊端,沼气发酵则存在着发酵效率低、持续运行能力差的缺点。

生命科学进展研究心得(1)

生命科学研究进展报告会心得 通过对生命科学进展这门学科几天的学习,我对新世纪的生命科学的发展和研究动态有了大致的了解。生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。用于有效地控制生命活动,能动地改造生物界,造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系,是当今在全球范围内最受关注的基础自然科学。 生命科学这门学科的研究对象:最简单的生命(病毒)到最复杂的生物(如人类)在内的各种动物、植物和微生物等生命物质的结构和功能,它们各自发生和发展的规律,生物之间以及生物与环境之间的相互关系;以及为什么要学习生命科学:是自然科学发展的需要,是生命科学自身发展的需要,是提高科学素养和弘扬科学精神的需要,是人类社会可持续发展的需要。通过几天的学习,我对最基本的生命现象和有关生命科学的基础定律等有了一定的认识和了解。在这过程中,我感叹神奇的大自然造就了多姿多彩的生命形态,生命进化过程中形成了各种令人叹服的复杂的功能器官和组织,各种各样的生物体之间在长期演化中形成的各种生物链和依存、竞争关系,我们的地球因为这些生命的存在而独一无二。在本次听课的过程中,我对水稻的生长过程产生了浓厚的兴趣,也对水稻在生长过程中易患疾病的种类、现象及原因都有了一定的了解。 随着现代生物学研究水平的不断深入,不仅仅需要先进的仪器设备和技术,也需要其他学科领域知识的交叉渗透,以解决越来越多样化的问题。现在生物学的研究逐渐深入,遇到的问题也更加复杂化,单靠本学科的知识和研究方式去研究,将会逐渐暴露出极大的弊病,限制生物科学的发展。只有加强学科间的交流与合作,大力发展生物交叉学科,才能推动生物科学走向另一个发展的飞跃。比如,化学与生物学科的相互促进可谓来源渊远,自实验生物学阶段开始,化学都在生物学研究的发展里起着重要的主导作用。一直以来,生物科学的发展都是随着化学的发展不断取得进展的。进入分子生物学阶段后,化学与生物学的相互渗透将会进一步发展和多样化,化学将在指导生命现象,蛋白质谱系和基因组的研究中,发挥越来越大的作用。任何一门学科都不应当是孤立地研究,而是应该与其他任何相关的知识联系在一起。只有做到与其他学科的交流合作与共同促进,才能达到这一目的。生物交叉科学,在未来将对生物科学,以至于人类的发展,发挥越来越大的作用。 通过本门课程的学习,使我们加深理解生物科学研究在国民经济、人类生存环境、资源合理利用和开发中的低位和作用,加强我们对生物科学前瞻性的认识。我们比较全面和深入地了解了生物科学最新的研究进展,发展方向和应用前景,开放了我们视野,拓宽知识,明确职责,积极主动投身生物科学研究行列。

生命科学对我们日常生活的影响

生命科学对我们日常生活的影响 摘要:现代科学技术发展极大地推进了人类社会的进步,尤其生命科学领域的进展给我们的生活带来了翻天覆地的变化,生命科学可以说已经成为当今世界最为活跃的科技领域之一。而这一领域的研究成果也正广泛应用于人类社会,在人类的衣食住行方面以及减少人类疾病和动植物病害、改善人类的营养状况,减少环境公害、保护自然资源等方面都产生了巨大的效益。 关键字:生命科学人类生活 一、引言 随着人类社会的迅猛发展,能源、资源、人口、粮食、疾病等社会问题也变得越来越严峻,然而用常规的物理化学方法又很难完全解决这些问题,但生命科学却能帮助我们很好的解决这些问题。21世纪可以说是生命科学的世纪,因为生命科学在人类生活的方方面面都产生重要的影响。我们的一举一动、一言一行都离不开生命科学;我们的吃穿住行也离不开生命科学;可以说在人类的生活中生命科学无处不在。 二、生命科学的涵义 简单的说,生命科学就是研究生命现象及其规律的科学。它既研究各种生命活动的现象和本质,又研究生物与生物之间、生物与环境之间的相互关系,以及生命科学原理和技术在人类经济、社会活动中的应用。生命科学是一门很高深的学科,包括了很多的领域,它的历史悠久,发展意义重大。 三、生命科学的发展 自古以来,人类就没有停止过对神秘的生命现象孜孜不倦的探索。17世纪前,由于科学技术水平的限制,人类对生命科学的认知也仅仅停留在好奇和崇拜的阶段,直到18世纪40年代,英国的虎克首次用自制的显微镜观察到了细胞,不久,荷兰的 Leeuwenhoek便清晰的观察了活动的细胞,并证实了细胞是所有生命的结构基础;随后18世纪60年代中期,“现代遗传学之父”---奥地利的传教士孟德尔通过豌豆实验阐明了生物遗传的两个最基本最经典的规律——分离规律和自由组合定律,开创了遗传学研究的新纪元。在19世纪50年代中期,watson 和crick共同发明了DNA的双螺旋结构,并因此获得了诺贝尔奖,DNA双螺旋结构的阐明也标志着现在分子生物学的诞生。20世纪四十至五十年代前后,生物学家们开始积极吸收数学、物理、化学等其他科学最新的研究成果及技术,对生命科学展开了分子层面的研究。进入二十世纪八十年代,生命科学更势不可挡,成为影响当代人生活的四大科学之首。目前,生命科学可以说已经成为21世纪当之无愧的第一科学。国际知名核心期刊与生命科学相关的论文占着越来越多的比例,世界优秀科技成果评选总不会离开生物科学的最新成果,无论从这些还是从对人类生活及思想的影响来看,生命科学都是当今世界科学研究的核心,最为炙手可热的领域。 四、生命科学在人类生活中

生命科学与技术

生命科学与技术 一、培养目标 本专业培养德、智、体、美全面发展,掌握坚实、宽厚的自然科学和生命科学基础理论,具备系统的生物高新技术和∕或生物医学工程专业知识和创新、创业技能,能在生命科学与技术领域从事科学研究、技术开发、企业管理等方面工作的,富有社会责任感的,具有国际视野和竞争力的综合型、创新型高级专业人才。 二、主干学科与相关学科 主干学科:生物学/生物医学工程 相关学科:生物工程、生物医学工程、生物信息工程、管理科学与工程。 三、专业主干课程 普通生物学、生物化学、生物物理学、遗传学、细胞生物学、微生物学、分子生物学、人体解剖生理学、生物医学工程概论、计算机程序设计、电路、信号与系统、数字电子技术、模拟电子技术、电子技术实验、工程制图。 四、主要实践环节 工程训练、综合技能训练、专业实习、企业实践、野外考察实践、毕业设计、军事训练。 五、学制与学位 学制6年。工学或理学硕士学位。 首先获得学士学位。继续学习2-3年,符合硕士研究生毕业条件,可获得硕士学位。 六、毕业条件 本科阶段最低完成180学分(课内),及课外8学分;通过CET4级考试;并且军事训练考核合格;通过《国家学生体质健康标准》测试;方可获得毕业证和学士学位证。 修完硕士研究生课程,通过CET6级考试;通过硕士学位论文答辩,获得硕士学位。

七、选课说明及要求 本专业为六年制硕士学位培养。实行通识教育、专业教育、和硕士论文的分阶段连续培养模式。其中前两年主要完成通识类课程和科学基础课程的学习;第5-7学期完成专业主干课程和专业选修课程的学习,第7学期还需完成部分研究生课程的学习;第8学期进入本科毕业设计阶段。后两年进入研究生课题研究阶段,包括题目选定、开题论证、实验研究以及硕士毕业论文写作。论文工作于第12学期结束,参加所在系组织的硕士学位论文答辩。 1.课程设置表中模块选修的具体说明 (1)通识教育模块:必修27学分,选修16学分,共计43学分。其中基础通识类课程12学分,包括基础通识类核心课限选6学分,限定在《世界文明》、《社会与艺术》、《生命与环境》三种门类中各选1门课程,和基础通识类选修课任选6学分。思想政治教育与国防教育课程必修16学分。体育、英语、计算机类必修15学分。学生还可根据自己的兴趣和精力选修其它课程。 (2)学科教育模块:必修106学分,选修11学分,共计117学分。其中基础科学课程必修46.5学分;专业主干课程(包括学科基础课程和专业基础课程)必修50.5学分;专业课程必修9学分,选修至少11学分。 (3)集中实践模块:必修20学分。包括工程训练2学分(电子实习、现代控制测试系统各1学分);综合技能训练1学分;专业实习3学分;企业实践1学分;野外考察实践1学分;毕业设计12学分。 (4)双语课程:每个学生要求必修至少两门双语课程。 (5)本专业学生第7学期确定研究生导师,与普通班推免研究生工作同步进行。在第7、8学期,修完全部研究生课程,所得学分可计入在本校继续攻读研究生学位的课程学分。所选研究生课程学分可以计入本科阶段的基础通识类选修课或专业选修课学分,但不能取代本科180学分。 2、集中实践的说明与要求 (1)工程实践 工程实践由两门课程构成:电工实习和现代控制测试系统(测控实习),分别安排在第3、4学期,通过实践,使学生初步了解工程的概念,建立大工程意识。由工程坊负责安排具体内容,并进行考核。 (2)综合技能训练 包括:生命科学数据的获得、保存、评价、解释和展示;生命科学实验预案的设计;生命科学实验仪器设备的正确使用及注意事项;团队协作和个人工作的安排技巧;资料查阅、文献综述、科技论文写作;个人展示等技能的基本训练。此外,要求每个学生至少参加一项国家或学校的大学生创新计划项目,或开放实验项目。安排在第5-7学期,由指导教师负责考核。 (3)专业实习 在三年级学习结束后,到生物技术企业/公司、医学仪器设备企业/公司、或生物制药企业/公司进行专业实习和管理实践,了解与专业有关的生产实际和管理情况。实习方式以集中实习为主,要求有完整的环节,结束后由实习单位给出评价,个人提交总结报告,通过答辩后给出最终成绩。 (4)企业实践 在5-6学期,邀请国内外相关产业的知名公司或企业以由公司或企业授课(中文或英文)+ 在企业公司实践的方式进行培训实践活动。由培训企业/公司及带队教师共同考核。 (5)野外考察实践

相关文档
最新文档