最新3第3节万有引力定律
第3节 万有引力定律

第3节 万有引力定律●导学天地 学习要求● 基本要求● 1.了解万有引力定律发现的思路和过程,知道重物下落与天体运动的统一性.● 2.知道万有引力是一种存在于所有物体之间的吸引力.● 3.知道万有引力定律公式的适用范围.● 4.会用万有引力定律公式解决简单的引力计算问题. ● 发展要求 ● 1.了解万有引力定律在科学史上的意义.● 2.体会科学规律发现过程中猜想与求证的重要性. ● 说明● 不要求计算空心球体与质点间的万有引力.学法指导本节课讲述牛顿通过对月—地检验发现,地面物体受到地球的作用力,与月球受到地球的吸引力为同一种力,并且大胆的提出世界上任意两个物体之间都具有“与两个物体的质量成正比,与它们之间距离的二次方成反比”的吸引力,经过直接或间接的检验,上述大胆的假设与推论成为科学史上最伟大的定律之一——万有引力定律,表达式中G 叫做引力常量,适用于任何物体,直到牛顿发现万有引力定律一百多年后,英国物理学家卡文迪许才测出了这个常量,使万有引力定律更具有了实用价值.自主学习● 知识梳理 ●● 自主探究● 1.月—地检验 ● (1)检验目的:维持月球绕地球运动的力与地球上苹果下落的力是否为同一种力.● (2)检验方法:由于月球轨道半径约为地球半径的60倍.则月球轨道上物体受到的引力是地球上的 ● .根据 ,物体在月球轨道上运动时的加速度(月球公转的向心加速度)应该是它在地面附近下落时的加速度(自由落体加速度)的2601.计算对比两个 就可以分析验证两个力是否为同一性质的力.● (3)结论:加速度关系也满足“反平方”规律.证明两种力为同种性质的力. ● 2.万有引力定律 ● (1)内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的 成正比,与它们之间距离r 的 成反比. ● (2)公式: . ● (3)说明:式中G 是比例系数,叫做 ,适用于任何两个物体.英国物理学家 比较准确地测出了G 的数值,通常取● 1.月—地检验的结果有什么重要的意义?● ●● ● 2.万有引力定律中说到任何两个物体之间都存在引力,那么是不是所有引力都能用公式F=G 2rMm 来计算呢?● ● ● 3.由万有引力定律可知地面上的物体也应受到地球对它的引力,该引力是否就是物体受到的重力? ●G= .引力常量是自然界中少数几个重要的物理常量之一. 理解升华重点、难点、疑点解析 1.月—地检验牛顿在思考使月球做圆轨道运动的向心力与地面物体所受的重力是否是同一性质的力时,曾提出过这样一个理想实验:设想有一个小月球非常接近地球,以至于几乎触及地球上最高的山顶,那么使这个小月球保持圆轨道运动的向心力当然就应该等于它在山顶处所受的重力,如果小月球突然停止做圆轨道运动,它就应该同山顶处的物体一样以相同的加速度下落.如果它所受的向心力不是重力,那么它就将在这两种力的共同作用下以更大的加速度下落,这与我们的经验是不符的.可见,重力和月球所受的向心力是同一性质的力.牛顿根据月球的周期和轨道半径,计算了月球围绕地球做圆周运动的向心加速度为:a=224Tr π =2.74×10-3 m/s 2 假设地球周围物体受到的重力与维持月球绕地球转动的力是同一种性质的力,则物体的重力也应满足G ∝221rm m ,因为月球到地心的距离是地球表面物体到地心距离(地球半径)的60倍,所以当把物体放置在月球轨道上时,G 应为地面附近的2601,则此时的重力加速度为g ′=22601601=='m Gm G g ≈2.72×10-3 m/s 2,这一数值与月球绕地球转动的向心加速度十分接近,从而证明了假设的正确性,即使月球绕地球转动的力与地球对物体施加的重力是同一种性质的力,都是地球对物体的吸引力.以上结论为牛顿发现万有引力定律奠定了理论基础.2.万有引力定律(1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比.(2)公式:F=G221rm m 式中的质量的单位用kg ,距离的单位用m ,力的单位用N ,G 是比例系数,叫做引力常量.(3)适用条件:适用于任何两个物体.但公式F=G221r m m 只能用来计算两个可看作质点的物体间的万有引力,其中r 为两个质点间的距离;对于两个均匀球体,可等效为质量集中在球心的两个质点,r 是两球心间的距离;如果两个物体间的距离远远大于物体本身的大小,两个物体均可视为质点.例如:如果两个物体相距无穷近,由公式F=G221r m m 可判断它们之间的引力就会无穷大,这种说法对吗?不对,因为两物体相距很近时,就不能看作质点,故公式F=G221r m m 就不能用来计算引力. (4)引力常量G①卡文迪许扭秤的设计原理:卡文迪许扭秤的工作原理是利用大球和小球间产生力矩,此力矩与金属丝力矩平衡.万有引力力矩使T 型架转动,T 型架转动时带动平面镜也发生转动,进而使入射到镜面上的光线发生偏转,从刻度尺上读出光线偏转时移动距离,进而计算偏转角度,利用金属丝扭转力矩和扭转角度的关系,求出扭转力矩,从而求出大球和小球间的万有引力,利用F=G 2r Mm ,即G=MmFr 2,求出G.②测定G 值的意义:a.证明了万有引力的存在;b.使万有引力定律有了真正的实用价值.3.物体在地面上所受的引力与重力的区别与联系 地球在不停地自转、地球上的物体随地球自转而做圆周运动,自转圆周运动需要一个向心力,是重力不直接等于万有引力而近似等于万有引力的原因,如图6-3-1万有引力为F ,重力为G ,自转向心力为F ′.当然,真实情况不会有这么大偏差.图6-3-1(1)物体在一般位置时F ′=mr ω2,F ′、F 、G 不在一条直线上(2)当物体在赤道上时,F ′达到最大值F max ′ F max ′=mR ω2,此时重力最小: G min =F-F ′=G2RMm -mR ω2. (3)当物体在两极时F ′=0 G=F ,重力达最大值G max =G2R Mm. 可见,只有在两极时重力等于万有引力,其他位置重力要小于万有引力.由于自转需要的向心力很小,一般情况下认为重力近似等于万有引力.例题评析应用点一:万有引力定律公式的理解例1:如图6-3-2所示两球间的距离为r ,两球的质量分布均匀,大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球的万有引力大小为 ( )图6-3-2A.G221rm m B.G2121r m m C.G22121)(r r m m +D.G2221)(r r r m m ++试解: .(做后再看答案,效果更好.) 思路分析: 公式F=G221r m m 中r 的物理意义应是两物体质心间的距离,而不是物体表面间的距离.解析: 两球质量分布均匀,可认为质量集中于球心,由公式可知两球间万有引力应为22121)(r r r m m G++,D 选项正确.答案为D. 思维总结:(1)万有引力定律适用于质点或两个均匀球体之间的万有引力. (2)均匀球体之间万有引力的计算应取两球心间距离. 拓展练习1-1: 若两物体之间的距离r 趋于零时,根据公式F=G221rm m ,请探究分析两物体间的万有引力将如何变化?应用点二:万有引力定律的应用例2已知均匀球体对其他物体的万有引力等效于将其全部质量集中于球心时对其他物体的万有引力,如图6-3-3所示,有一半径为R 的均匀球体,球心为O 1,质量为8M ,今自其内挖去一个半径为2R的小球,形成球形空腔的球心为O 2,将小球移出至图示位置与大球相切,小球球心为O 3,图中O 1、O 2、切点和O 3四点共线,求此时小球与大球剩余部分之间的万有引力.图6-3-3思路分析: 将均匀球体挖去一小球后变成了不均匀的球体,此时不能直接用万有引力定律公式来计算两球间的万有引力大小,但我们利用割补法来求解.解析: 小球质量为:m=大小V V ·8M=3334)2(34R R ππ·8M=M大球对小球O 3的万有引力为F 1=G222932)23(8R M G R M M ⋅=⋅ 小球O 2对小球O 3的万有引力为F 2=G 222RM G R M M =⋅ 小球O 3与大球剩余部分之间的万有引力为:F=F 1-F 2=22923R GM .答案:22923R GM思维总结:对于有规则几何形状、质量分布均匀的物体,它们之间的距离为几何中心的距离;对于质量分布不均匀的规则物体应具体情况具体分析,解题中注意发散思维的应用,本题的创新之处有两个:其一出题新,由质点间的引力和均匀球体的引力扩展到了有空腔的球体上;其二,解题的思路新,巧妙地运用了割补法来求解.拓展练习2-1: 如图6-3-4所示,一个质量均匀分布的半径为R 的球体对球外质点P 的万有引力为F ,如果在球体中央挖去半径为r 的一部分球体,且r=2R,则原球体剩余部分对质点P 的万有引力变为( )图6-3-4A.2F B.8F C.F 87D.4F 应用点三:重力和万有引力的关系例3:设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则g/g 0为 ( )A.1B.1/9C.1/4D.1/16 试解: .(做后再看答案,效果更好.)思路分析: 地球周围的物体受到地球的万有引力随高度的增加而减小,在忽略地球的自转时重力等于万有引力.解析: 地面上:G2R mM =mg 0. ①离地心4R 处:G2)4(R Mm=mg②由①②两式得:161)4(20==R R g g .答案为D. 思维总结:(1)切记在地球表面的物体:mg=G2r Mm成立的条件是忽略地球的自转. (2)物体在离地面一定高度处,所受的万有引力通常也用mg 表示,只是g 随高度的增加而减小,不再等于地面附近的g.拓展练习3-1: 设地球表面重力加速度为g ,月心到地心的距离是地球半径的60倍,试计算月球的向心加速度.● 自我反馈 ● 自主学习● 1.2601牛顿第二定律 结果● 2.乘积 二次方 F=G 221rm m 引力常量 卡文迪许 6.67×10-11 N ·m 2/kg 2 ● 例题评析● 拓展练习1-1: 略 ● 拓展练习2-1: C ● 拓展练习3-1:36001g ●演练广场夯实基础1.月—地检验的结果说明 ( ) A.地面物体所受地球的引力与月球所受地球的引力是同一种性质力 B.地面物体所受地球的引力与月球所受地球的引力不是同一种类型的力 C.地面物体所受地球的引力只与物体质量有关,即G=mgD.月球所受地球的引力除与月球质量有关外,还与地球质量有关 2.下列说法中正确的是 ( ) A.万有引力定律是卡文迪许发现的B.卡文迪许扭秤是用来验证万有引力定律是否正确的C.被人们称为“能称出地球质量的人”是牛顿D.万有引力常量是一个有单位的常量3.两大小相同的实心小铁球紧靠在一起,它们之间的万有引力为F ,若两个半径是小铁球2倍的实心大铁球紧靠在一起,则它们之间的万有引力为 ( )A.2FB.4FC.8FD.16F4.一个质子由两个u 夸克和一个d 夸克组成.一个夸克的质量是7.1×10-30 kg ,求两个夸克相距1.0×10-16 m 时的万有引力.5.如果已知地球的质量m=5.98×1024 kg ,太阳的质量M=1.97×1030 kg ,地球到太阳的距离R=1.49×1011 m ,那么太阳对地球的引力有多大?6.两艘轮船,质量都是1.0×104 t ,相距10 km ,它们之间的万有引力是多大?将这个力与轮船所受的重力比较,看看相差多少.7.已知地球半径为R ,将一物体从地面移到离地面高h 处时,物体所受万有引力减少到原来的一半,则h 为 ( )A.RB.2RC.2RD.(2-1)R8.地球质量约为火星质量的9倍,地球半径约为火星半径的2倍,那么在地球表面重力为600 N 的人到火星表面上的体重变为 .9.地球半径为R ,在离地面h 高处和离地面H 高处重力加速度之比为 . 能力提升10.某星球的半径与地球半径之比为2∶1,质量之比为1∶5,假如某人在星球上和地球上跳高,则他在星球上和在地球上以相同的初速度竖直向上跳起的高度之比是多少?11.月球表面重力加速度只有地球表面重力加速度的1/6,一根绳子在地球表面能拉着3 kg 的重物产生最大为10 m/s 2的竖直向上的加速度,g 地=10 m/s 2,将重物和绳子均带到月球表面,用该绳子能使重物产生沿月球表面竖直向上的最大加速度为 ( )A.60 m/s 2B.20 m/s 2C.18.3 m/s 2D.10 m/s 212.某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以a=21g 的加速度随火箭向上加速升空的过程中,当物体与卫星中的支持物相互挤压力为90 N 时,卫星距地球表面有多远?(地球半径R 地=6.4×103 km ,g 取10 m/s 2)13.一半径为R ,质量为M 的均匀球体,其球心O 与另一质量为m 的质点B 距离为l ,如图6-3-5所示,若切除以OA 的中点为球心、质量为m ′、以R 为直径的球体C ,求剩余部分对质点B 的万有引力?图6-3-5拓展阅读卡文迪许实验卡文迪许测引力常量时所做的实验,即卡文迪许实验.在牛顿发现万有引力定律100年后,英国物理学家卡文迪许(H.Cavendish )于1789年巧妙地利用扭秤测出了引力常量.卡文迪许的实验装置如图6-3-6所示.图6-3-6在一根金属丝下倒挂着一个T 形架,架的水平横梁两端各装一个质量为m 的小球,T 形架的竖直部分装有一面小平面镜,两个小球由于受到质量均为M 的两个大球的吸引而转动,使金属丝发生扭转.当吸引力的力矩跟金属丝的扭转力矩平衡时,T 形架停止不动.根据平面镜反射的光点在标尺上移动的距离可算出金属丝的扭转角度,结合事先测定的金属丝扭转角度跟扭转力矩的关系,就可以算出扭转力矩,从而算出引力F 和引力常量.卡文迪许测定的引力常量G=6.754×10-11 N ·m 2/kg 2.在以后的八九十年间,竟无人超过他的测量精度.引力常量的测定是验证万有引力定律的一个重要实验,它使万有引力定律有了真正的实用价值.卡文迪许把他的这个实验说成是“称地球的重量”(应该是“称地球的质量”).有了G 值后,我们还可以“称”出太阳或其他星球的质量.参考答案演练广场1.AD2.D3.D4.3.36×10-37 N5.解析:根据公式F=G2R Mm,代入数据有: F=6.67×10-11×2112430)1049.1(1098.51097.1⨯⨯⨯⨯ N=3.54×1022 N.答案:3.54×1022 N 6.解析:根据公式F=G221rm m ,代入数据有: F=6.67×10-11×2427)10()100.1(⨯ N =6.67×10-5 N.假设当地的重力加速度g=10 m/s 2,重力G=mg=1.0×107×10 N=1.0×108 N ,重力远远大于万有引力.答案:6.67×10-5 N 重力远远大于万有引力 7.D8.解析:在火星表面的重力由万有引力提供ma=2R GMm∴表面的加速度为 a=2RGMg a =2火火R M ×地地M M 2=91×4=94 ∴ma=94mg=94×600 N ≈266.7 N. 答案:266.7 N 9.(hR H R ++)210.解析:根据公式mg=2R GMm得星球表面的加速度为 g=2RGM, ∴地星g g =2星星R M ×地地M R 2=51×(21)2=201,根据运动学公式h=gv 22,得地星h h =星地g g =20.答案:20∶111.C12.解析:卫星在升空过程中可以认为是竖直向上做匀加速直线运动,设卫星离地面为h ,这时受到地球的万有引力为G2)(h R Gm+地在地球表面2地R GMm=mg ①在上升至地面h 时,F N -G2)(h R Mm+地=ma②由①②得22)(地地R h R +=m aF m gN -h=(maF mgN --1)R 地代入数据h=1.92×104 km. 答案:1.92×104 km13.解析:质量为M 的均匀球体对B 点的引力大小为 F 1=G2lMm质量为m ′的均匀球体对B 点的引力大小为: F 2=G2)2(R l mm -' 剩余部分对B 的万有引力为F=F 1-F 2=G 2lMm-G 2)2(R l mm -'. 答案:G 2lMm -G 2)2(R l mm -'。
万有引力定律精品课件完整版精品课件

万有引力定律精品课件完整版精品课件一、教学内容本节课我们将学习普通高中物理必修2第三章《万有引力定律》的相关内容。
具体涉及教材第三章第1节至第3节,详细内容包括万有引力定律的发现历程、定律表述及公式推导、万有引力常量的测定以及万有引力定律在天文学上的应用等。
二、教学目标1. 让学生了解万有引力定律的发现过程,理解万有引力定律的基本原理。
2. 掌握万有引力定律的数学表达式,能运用其解决实际问题。
3. 了解万有引力常量的测定方法,理解其物理意义。
三、教学难点与重点重点:万有引力定律的发现过程、数学表达式、应用。
难点:万有引力定律的公式推导,万有引力常量的测定。
四、教具与学具准备1. 教具:地球仪、天平、计算器、PPT课件。
2. 学具:笔记本、教材、计算器。
五、教学过程1. 引入新课:通过展示地球与月球相互吸引的动画,让学生初步认识万有引力现象,激发学习兴趣。
2. 讲解万有引力定律的发现历程:以牛顿的苹果故事为切入点,介绍万有引力定律的发现过程。
3. 讲解万有引力定律的数学表达式:通过PPT展示公式推导过程,引导学生理解万有引力定律的基本原理。
4. 实践情景引入:设置地球与月球之间的万有引力问题,让学生运用公式计算。
5. 例题讲解:讲解地球与月球之间的万有引力计算方法,引导学生掌握如何运用公式解决实际问题。
6. 随堂练习:布置相关练习题,让学生巩固所学知识。
7. 讲解万有引力常量的测定:介绍卡文迪许实验,解释万有引力常量的物理意义。
六、板书设计1. 万有引力定律的发现历程2. 万有引力定律的数学表达式3. 万有引力常量的测定方法4. 应用举例七、作业设计1. 作业题目:(1)根据万有引力定律,计算地球与月球之间的引力。
(2)已知地球半径、地球质量,计算地球表面的重力加速度。
2. 答案:(1)F = G Mm Me / r^2(2)g = G Me / R^2八、课后反思及拓展延伸1. 反思:本节课通过生动的实例引入,激发了学生的学习兴趣,讲解了万有引力定律的基本原理和数学表达式,使学生对万有引力定律有了较为深刻的认识。
万有引力定律公式总结

万有引力定律公式总结万有引力定律(Law of Universal Gravitation)是描述物体之间引力作用的基本定律。
该定律由英国科学家艾萨克·牛顿于1687年在《自然哲学的数学原理》中提出,并成为经典物理学的基石之一、万有引力定律公式可以总结如下。
1.描述两个物体之间引力的公式:F=G*(m1*m2)/r^2其中,F为两个物体之间相互作用的引力,m1和m2为这两个物体的质量,r为两个物体之间的距离,G为万有引力常数。
2.万有引力常数:万有引力常数是一个与公式中其它量无关的常数,它确定了万有引力的强度。
3.万有引力作用方向:万有引力是一个吸引力,它总是指向两个物体质心之间的连线上,即两个物体之间的直线距离上。
4.引力的大小与质量的关系从公式中可以看出,引力的大小与物体的质量成正比,质量越大,引力越大。
5.引力的大小与距离的关系从公式中可以看出,引力的大小与两物体之间的距离的平方成反比,距离越远,引力越小。
6.引力的超距作用:根据万有引力定律,物体之间的引力作用是无遮蔽的,即它可以穿过其它物体直接作用在目标物体上,不受中间物体的阻挡。
7.引力的矢量性质:引力是一个矢量,具有大小和方向。
根据牛顿第三定律,两个物体之间的引力大小相等,方向相反。
8.引力与质量无关性:万有引力定律公式总结的核心是描述物体之间引力作用的大小和方向。
它是宇宙中广泛存在的引力现象的基础定律,有效解释了天体运动、行星轨道等自然现象,并有广泛的应用领域,如天文学、航天工程、地质学等。
通过使用这一定律,科学家们能够研究各种宇宙现象,推导出波动力学、相对论等更深入的物理定律,对人类认识世界的发展产生了深远的影响。
6.3万有引力定律

第三节万有引力定律一、三维目标知识与技能1•了解万有引力定律得出的思路和过程,理解万有引力定律的含义,掌握万有引力定律的公式;2•知道任何物体间都存在着万有引力,且遵循相同的规律。
1 •通过月--地检验,体会逻辑推理在物理学中的重要性.2 •体会推导过程中的数量关系.情感、态度与价值观感受物体与物体之间的引力关系,从而体会大自然的奥秘.二、教学重、难点教学重点万有引力定律的理解与简单应用教学难点万有引力定律应该注意的问题和应用万有引力定律解决问题的方法和步骤。
三、教学方法探究、讲授、讨论、练习四、教学手段多媒体课件五、教学课时2课时六、教学过程复习:太阳与行星间的引力Mm大小:F G 厂r方向:沿着太阳和行星的连线一、月--地检验师引导思考:既然是行星与太阳之间的力使得行星不能飞离太阳,那么是什么力使得地面的物体不能离开地球,总要落回地面呢?也就是说,地球与太阳之间的吸引力会不会与地球吸引苹果的力是同一种力呢?即使是在最高的山顶上,都不会发现重力明显减弱,那么,这个力必定会延伸到远得多的地方。
它会不会作用到月球上?也就是说,拉住月球使它绕地球运动的力,与拉着苹果下落的力,以及地球、众行星与太阳之间的作用力也许真的是同一种力,遵循相同的规律?如何检验?猜想I :拉住月球使它绕地球运动的力,与拉着苹果下落的力,以及地球、众行星与太阳之间的作用力是同一种力,遵循相同的规律。
合作探究:如何检验猜想I ?①在牛顿的年代已经能够精确的测定重力加速度g=9.8m/s2、月地距离r与地球半径R关系r=60R。
根据猜想I计算月球由于受到地球对它的吸引力而产生的加速度a i。
忽略地球自转影响,地球对苹果m 2的吸引力等于苹果所受重力。
②牛顿的年代,天文观测测定的月球绕地球公转周期T 为27.3天,月地之间的距离r=3.8x 108m,计算月球绕地球运动的向心加速度a i③比较a i 和a i 的值,你能得出什么结论?师介绍模型图:中间是地球,地球质量为 M ,半径为R ,月球质量m i ,月球轨道半径r ,m 2为地球表面苹果的质量解答:①对月球m i ,有:地球对月球的吸引力提供月球做圆周运动的向心力。
万有引力定律3

两个结果非常接近。这一发现牛顿发现万有引力定律提供 了有力的论据,即地球对地面物体的引力与天体间的引力性 质相同,遵循同一规律。
于是他把此规律推广到自 然界中任意两个物体间, 即具有划时代意义的万有 引力定律。
F G Mm r2
5
万有引力定律
1、定律表述:自然界中任何两个物体
都是互相吸引的,引力的大小跟这两个
10
G值的测量:卡文迪许扭秤实验
11
1.卡文迪许扭称的测量方法
m´
F
rm
mF
m´
r
12
m´
F
rm
mF
m´
r
• 扭秤实验的物理思想和科学方法:扭秤装置把微 小力转变成力矩来反映,扭转角度又通过光标的
移动来反映.从而确定物体间的万有引力.
13
平面镜的作用?
① 巧妙证明、精确测量、第一次.
实用价值
⑶当研究物体不能看成质点时,可把物体假想 分割成无数个质点,求出一个物体上每个质 点与另一物体上每一个质点的万有引力然后 求合力。
7
3、G: 引力常量
G 6.671011 Nm2 / kg2
(1)引力常量适用于任何两个物体 (2)意义:在数值大小上等于两个质量都是1kg 的物体相距1m时的相互作用力。
60
1.月球绕地球做圆周运动的加速度 是多少?
18
问题2 月球绕地球的公转周期27.3
天及轨道半径3.84×105km,地球表面 的物体受到地球的引力可近似认为等 于物体的重力,物体的重力加速度为 9.8m/s2. 地球的半径为月球绕地球运 转半径的 1 .
60
2.如果两力都遵循相同规律,请根 据牛顿第二定律写出它们加速度表 达式,加速度之比应是多大? 19
万有引力定律高中物理

有关高中物理“万有引力定律”的概念
有关高中物理“万有引力定律”的概念如下:
万有引力定律是描述物体之间相互引力的定律,由艾萨克·牛顿在1687年提出。
它表明任何两个物体之间都存在引力,且这个引力与它们质量的乘积成正比,与它们距离的平方成反比。
在高中物理中,万有引力定律通常表示为:F = G * (m1 * m2) / r^2,其中F 是两个物体之间的引力,m1 和m2 分别是两个物体的质量,r 是它们之间的距离,G 是引力常量,其值约为6.67430 × 10^-11 m^3 kg^-1 s^-2。
万有引力定律在天文学中有着重要的应用,它解释了行星轨道运动和天体运动的规律。
此外,万有引力定律也是研究宇宙学和天体物理学等领域的基础。
在高中物理中,学生通常会学习如何使用万有引力定律计算两个物体之间的引力,以及如何使用它来解释一些天体运动的规律。
同时,学生也会学习到万有引力定律的一些特殊情况,例如在地球表面的物体所受的重力可以看作是地球对该物体的万有引力。
总之,万有引力定律是高中物理中的一个重要概念,它描述了物体之间的引力规律,为我们理解天体运动和宇宙结构提供了基础。
高中物理必修2 第六章 万有引力与航天——第3节 万有引力定律

第3节万有引力定律1 月——地检验(1)牛顿的思路:地球绕太阳运动是因为受到太阳的引力,人跳起后又能落回地球是因为人受到地球的引力,这些力是否是同一种力?是否遵循相同的规律?实践是检验真理的唯一标准,但在当时的条件下很难通过实验来验证,这就自然想到了月球.(2)月一地检验:基本思想是如果重力和星体间的引力是同一性质的力,都与距离的二次方成反比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是地面重力加速度的1/3600,因为月心到地心的距离约为地球半径的60倍.(3)检验过程:牛顿根据月球的周期和轨道半径,计算出月球围绕地球做圆周运动的向心加速度23224 2.710m/s ra Tπ-==⨯.—个物体在地面的重力加速度为g =9.8m/s 2,若把这个物体移到月球轨道的高度,根据开普勒第三定律可以导出21a r ∝(21a r ∝,而32r k T =,则21a r∝).因为月心到地心的距离是地球半径的60倍,32212.7210m/s 60a g -==⨯.即其加速度近似等于月球的向心加速度的值.(4)检验结果:月球围绕地球做近似圆周运动的向心加速度十分接近地面重力加速度的1/3600,这个重要的发现为牛顿发现万有引力定律提供了有力的证据,即地球对地面物体的引力与天体间的引力,本质上是同一性质的力,遵循同一规律. 2 万有引力定律(1)内容:自然界中任何两个物体都互相吸引,引力的方向良它们的连线上,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间距离r 的二次方成反比.(2)公式:122m m F Gr=,其中11226.6710N m /kg G -=⨯⋅,称为万有引力常量,而12m m 、分别为两个质点的质量.r 为两质点间的距离.(3)适用条件:①严格地说,万有引力定律只适用于质点间的相互作用.②两个质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 是两个球体球心间的距离,③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离. ④两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r 为两物体质心间的距离.(4)注意:公式中F 是两物体间的引力,F 与两物体质量乘积成正比,与两物体间距离的平方成反比,不要理解成F 与两物体质量成正比,与距离成反比.(5)对万有引力定律的理解.①万有引力的普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物质之间的基本相互作用之一,任何客观存在的两部分有质量的物质之间都存在着这种相互作用.②万有引力的相互性:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向相反,分别作用在两个物体上,③万有引力的客观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量臣大的天体间,它的作用才有宏观物理意义.④万有引力的特殊性:两个物体间的万有引力,只与它们本身的质量有关,与它们之间的距离有关,和所在空间的性质无关,和周围有无其他物体的存在无关.(6)发现万有引力定律的重大意义.它把地面上的运动和天体运动的规律统一起来,第一次揭示了自然界中一种基本的相互作用力,使人们树立了认识并支配宇宙自然规律的信心,解放了思想. 3 引力常量的测定通过查阅资料得到地球、月球的质量和半径,月地距离,月球绕地球一周的时间,以此估算G 的大小,发现G 值是很小的,那么如何测定G 的大小?牛顿之后的100多年,英国物理学家卡文迪许在实验室里通过扭秤装置,比较准确地得出了G 值,当时测量11226.74510N m /kg G -=⨯⋅.目前标准值为11226.6725910N m /kg G -=⨯⋅,通常取11226.6710N m /kg G -=⨯⋅.引力常量G 的三点说明:(1)引力常量测定的理论公式为212Fr G m m =,单位为22N m /kg ⋅.(2)物理意义:引力常量在数值上等于两个质量都是1kg 的质点相距1m 时的相互吸引力.(3)由于引力常量G 很小,我们日常接触的物体的质星又不是很大,所以我们很难觉察到它们之间的引力,例如两个质量各为50kg 的人相距1m 时,他们相互间的引力相当于几粒尘埃的重力.但是,太阳对地球的引力可以将直径为几千米的钢柱拉断. 4 引力常量测量的意义(1)卡文迪许通过改变质量和距离,证实了万有引力的存在及万有引力定律的正确性. (2)第一次测出了引力常量,使万有引力定律能进行定量计算,显示出真正的实用价值.(3)标志着力学实验精密程度的提高,开创了测量弱力的新时代.(4)卡文迪许实验是物理学上非常著名和重要的实验,学习时要注意了解和体会前人是如何巧妙地将物体间的非常微小的力显现和测量出来的;引力常量G 的测定有重要的意义,如果没有G 的测定,则万有引力定律只有其理论意义,而无更多的实际意义.正是由于卡文迪许测定了引力常量G ,才使得万有引力定律在天文学的发展上起了重要的作用.此实验不仅用实验证明了万有引力的存在,更使得万有引力定律有了真正的实用价值.例如,可以用测定地球表面物体重力加速度的方法,测定地球的质量,电正是由于这一应用,使卡文迪许被人们称为是“能称出地球质量的人”. 5 重力加速度的基本计算方法(1)在地球表面附近(h R 处的重力加速度g .(不考虑自转) 方法一:根据万有引力定律,有2Mmmg GR=,229.8m/s M g G R ==. 式中245.8910kg M =⨯,66.3710m R =⨯.方法二:利用与地球平均密度的关系,得3224/343M R g G G G R R R πρπρ===. (2)在地球上空距离地心r R h =+处的重力加速度为g .根据万有引力定律,得221M g G r r'=∝,22g R R g r R h '⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭,则()22R g g R h '=+.(3)在质量为M ',半径为R '的任意天体表面上的重力加速度为g ',根据万有引力定律,有22M M g G R R '''=∝'',2g M R g M R ''⎛⎫= ⎪'⎝⎭,则2M R g g M R '⎛⎫'= ⎪'⎝⎭.上述中M 均为地球的质量,g 均为地球表面的重力加速度. 6 物体在赤道上失重的四个重要规律地球在不停地自转,除两极之外,地球上的物体由于绕地轴做匀速圆周运动,都处于失重扶态,且赤道上的物体失重最多,设地球为匀质球体,半径为R ,表面的引力加速度为0g g ≈,并不随地球自转变化.(1)物体在赤道上的视重等于地球的引力与物体随同地球自转所需的向心力之差. 如图6-3-1所示,根据牛顿第二定律,有2N mg F m R ω-=.所以物体在赤道上的视重为2N F mg m R mg ω=-<.(2)物体在赤道上的失重等于物体绕地轴转动所需的向心力. 物体在赤道上的失重,即视重的减少量为2N F mg F m R ω=-=. (3)物体在赤道上完全失重的条件.设想地球自转角速度加快,使赤道上的物体刚好处于完全失重状态,即0N F =,有20N F mg mR ω=-,则22200002v mg ma mR m m R R T πω⎛⎫==== ⎪⎝⎭.所以完全失重的临界条件为209.8m/s a g ==,01rad/s 800ω=,07.9km/s v =,025024s 84min T ===. 上述结果恰好是近地面人造地球卫星的向心加速度、角速度、线速度和周期. (4)地球不因自转而瓦解的最小密度.地球以T =24h 的周期自转,不发生瓦解的条件是赤道上的物体受到的万有引力大于或等于该物体做圆周运动所需的向心力,即22mg m R T π⎛⎫≥ ⎪⎝⎭,根据万有引力定律,有243M g GG R R πρ==, 所以,地球的密度应为32318.9kg/m GTπρ≥=. 即最小密度为3min 18.9kg/m ρ=.地球平均密度的公认值为30min 5523kg/m ρρ= .足以保证地球处于稳定状态. 7 万有引力定律的两个重要推论推论一:在匀质球层的空腔内任意位置处.质点受到地壳万有引力的合力为零,即0F =∑.推论二:在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力,即2M mF G r ''=.例题1 (1)天文观测数据可知,月球绕地球运行周期为27.32天,月球与地球间相距3.87×108m ,由此可计算出加速度a =0.0027m/s 2;(2)地球表面的重力加速度为9.8m/s 2,月球的向心加速度与地球表面重力加速度之比为1:3630,而地球半径(6.4×106m )和月球与地球间距离的比值为1:60.这个比值的平方1:3600与上面的加速度比值非常接近.以上结果说明(). A 地面物体所受地球的引力与月球所受地球的引力是同一种性质力 B 地面物体所受地球的引力与月球所受地球的引力不是同一种类型的力 C 地面物体所受地球的引力只与物体质量有关,即G=mg D 月球所受地球的引力除与月球质量有关外,还与地球质量有关例题2 对于万有引力定律的表达式122Gm m F r,下列说法中正确的是(). A 只要1m 和2m 是球体,就可用上式求解万有引力 B 当r 趋于零时,万有引力趋于无限大C 两物体间的引力总是大小相等的,而与12m m 、是否相等无关D 两物体间的引力总是大小相等、方向相反,是一对平衡力例题3 两艘轮船,质量都是1.0×104t ,相距10krn ,它们之间的引力是多大?这个力与轮船所受重力的比值是多少?例题4 如图6-3-4所示,一个质量为M 的匀质实心球,半径为R ,如果从球上挖去一个直径为R 的球,放在相距为d 的地方.求下列两种情况下,两球之间的引力分别是多大?(1)从球的正中心挖去;(2)从与球面相切处挖去;并指出在什么条件下,两种计算结果相同?例题5 关于引力常量,下列说法正确的是().A 引力常量是两个质量为1 kg 的质点相距1m 时的相互吸引力B 牛顿发现了万有引力定律,给出了引力常量的值C 引力常量的测定,证明了万有引力的存在D 引力常量的测定,使人们可以测出天体的质量例题6如图6-3-5所示,火箭内平台上放有测试仪器,火箭从地面启动后,以加速度2g竖直向上做匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的1718.已知地球半径为R .求火箭此时离地面的高度.(g 为地面附近重力加速度)例题7某星球“一天”的时间是T =6h ,用弹簧测力计在星球的“赤道”上比在“两极”处测同一物体的重力时读数小10%,设想该星球自转的角速度加快,使赤道上的物体会自动飘起来,这时星球的“一天”是多少小时?例题8 地球赤道上的物体,由于地球自转产生的向心加速度223.3710m/s a -=⨯,赤道上的重力加速度29.77m/s g =,试问:(1)质量为m 的物体在地球赤道上所受地球的万有引力为多大?(2)要使在赤道上的物体由于地球的自转完全失去重力(完全失重),地球自转的角速度应加快到实际角速度的多少倍?例题9 宇航员站在一星球表面上某高处,沿水平方向抛出一个小球,经过时间t 小球落到星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大为原来的2倍,则,已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,求该星球的质量M .例题10 中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为1s 30T =,问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?(计算时星体可视为均当匀球体,引力常量11226.6710N m /kg G -=⨯⋅)基础演练1如图6-3-7所示两球间的距离为r ,两球的质量分布均匀,大小分别为12m m 、,则两球的万有引力大小为().A 122m m Gr B 1221m m G r C ()12212m m G r r +D ()12212m m G r r r ++2万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律,以下说法正确的是().A 物体的重力不是地球对物体的万有引力引起的B 人造地球卫星离地球越远,受到地球的万有引力越大C 人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D 宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用3引力常量为G ,地球质量为M ,地球可看成球体,半径为R .忽略地球的自转,则地球表面重力加速度的大小为(). A GM g R = B g GR = C 2GMg R= D 缺少条件,无法算出 知能提升1假如地球自转角速度增大,关于物体的万有引力以及物体重力,下列说法正确的是().A 放在赤道地面上物体的万有引力不变B 放在两极地面上物体的重力不变C 放在赤道地面上物体的重力减小D 放在两极地面上物体的重力增大2设地球表面重力加速度为0g ,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则0/g g 为(). A1 B1/9 C1/4 D1/163地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%,经估算,地核的平均密度为___________kg/m 3.(地球的半径66.410m R =⨯,万有引力常量11226.710N m /k g G -=⨯⋅,结果取两位有效数字)4月球半径是地球半径的14,在地球和月球表面分别用长度相同的细线拴住一个小球,使之在竖直平面内做圆周运动,已知小球通过圆周最高点的临界速度,在地球上是1v ,在月球上是2v ,求地球与月球的平均密度之比.5宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ';(2)已知该星球的半径与地球半径之比为:R R 星地=1:4,求该星球的质量与地球质量之比:M M 星地.6某宇航员在飞船发射前测得自身连同宇航服等随身装备共重840N ,在火箭发射阶段,发现当飞船随火箭以/2a g =的加速度匀加速竖直上升到某位置时(其中g 为地球表面处的重力加速度),其身下体重测试仪的示数为1220N .设地球半径R =6400km ,地球表面重力加速度g 取10m/s 2 1.03 1.02=).问: (1)该位置处的重力加速度g '是地面处重力加速度g 的多少倍? (2)该位置距地球表面的高度h 为多大?最新5年高考名题诠释考题1 天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为 1.4小时,引力常量11226.6710N m /kg G -=⨯⋅,由此估算该行星的平均密度约为(). A 331.810kg/m ⨯B 335.610kg/m ⨯C 431.110kg/m ⨯D 432.910kg/m ⨯考题 2 已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天,利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为().A0.2 B2 C20 D200考题3火星的质量和半径分别约为地球的110和12,地球表面的重力加速度为g ,则火星表面的重力加速度约为().A0.2gB0.4g C2.5g D5g考题 4 探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比().A 轨道半径变小B 向心加速度变小C 线速度变小D 角速度变小例题5为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T .火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出().A 火星的密度和火星表面的重力加速度B 火星的质量和火星对“萤火一号”的引力C 火星的半径和“萤火一号”的质量D 火星表面的重力加速度和火星对“萤火一号”的引力考题6 一物体静置在平均密度为ρ的球形天体表面的赤道上,已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为(). A 1243G πρ⎛⎫ ⎪⎝⎭B 1234G πρ⎛⎫ ⎪⎝⎭C 12G πρ⎛⎫ ⎪⎝⎭D 123G πρ⎛⎫ ⎪⎝⎭考题7 质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的().A 线速度v =角速度ω=C 运行周期2T =向心加速度2Gm a R= 考题8 一行星绕恒星做圆周运动,由天文观测可得,其运行周期为T ,速度为v ,引力常为G ,则().A 恒星的质量为32v T G πB 行星的质量为2324v GT π C 行星运动的轨道半径为2vT πD 行星运动的速度为2v Tπ。
万有引力定律

万有引力定律编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
[1] 万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适的万有引力定律表示如下:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
中文名万有引力定律外文名Law of universal gravitation 表达式F=(G×M₁×M₂)/R²提出者艾萨克·牛顿提出时间1687年应用学科数学、自然哲学、物理学、自然学等适用领域范围物理学、自然学等推理依据编辑伽利略在1632年实际上已经提出离心力和向心力的初步想法。
布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665~1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。
一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。
根据1684年8月~10月的《论回转物体的运动》一文手稿中,牛顿很可能在这个手稿中第一次提出向心力及其定义。
万有引力与相作用的物体的质量乘积成正比,是发现引力平方反比定律过渡到发现万有引力定律的必要阶段.·牛顿从1665年至1685年,花了整整20年的时间,才沿着离心力—向心力—重力—万有引力概念的演化顺序,终于提出“万有引力”这个概念和词汇。
·牛顿在《自然哲学的数学原理》第三卷中写道:“最后,如果由实验和天文学观测,普遍显示出地球周围的一切天体被地球重力所吸引,并且其重力与它们各自含有的物质之量成比例,则月球同样按照物质之量被地球重力所吸引。
另一方面,它显示出,我们的海洋被月球重力所吸引;并且一切行星相互被重力所吸引,彗星同样被太阳的重力所吸引。
由于这个规则,我们必须普遍承认,一切物体,不论是什么,都被赋与了相互的引力(gravitation)的原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.零
C.
G
Mm R2
B.无穷大 D.无法确定
解析:地心周围的物体对放到地心处的物体 的万有引力的合力为零,所以选项A正确.
小结:
1、牛顿在前人工作的基础上发现了万有 引力定律 .
FGmr2m
2、引力常量 G 6 .6 7 1 1 0 N 1m 2/k 2 g中央电教馆资源中心制作
2003.12
3第3节万有引力定律
一、对行星运动原因的认识
伽利略:一切物体都有合并的趋势,这种趋势导 致物体做圆周运动;
开普勒:行星绕太阳运动,一定是受到来自太阳 的类似于磁力的作用;
笛卡儿:行星运动是因为在行星周围有旋转的物 质作用在行星上;
例题
设想把质量为的物体放在地球的中心,地球质 量为M,半径为R,则物体与地球间的万有引力 是( )