数列的综合运用
数列的综合应用(一)

1 2
是以
3 2
为首项,
3 为公比的等比数列
故
an
1 2
3n 2
即
an
3n 1 2
8.(2014年新课标Ⅱ)已知数列{an}满足 a1 1
an1 3an 1
(Ⅰ)
an
3n 1 2
(Ⅱ)证明:
1 a1
1 a2
…+ 1 an
3 2
(
Ⅱ
)由(Ⅰ)知
an
3n 1 2
即
1 an
2 3n 1
因当n≥2时, 1 an
2 3n 1
1 3n1
所以
1 a1
1 a2
…+ 1 an
132
1 3
1 32
1 3n1
1
1 3n
1 1
3
3 2
1
1 3n
3 2
9.(2010年安徽)设 C1,C2,L ,Cn,L 是坐标平面上的一列圆 它们的圆心都在x轴的正半轴上,且都与直线 y 3 x 相切
3
对每一个正整数n圆 Cn 都与圆 Cn1 相互外切,以 rn 表示
面积均相等, 故
相互
…… 不妨将所有的△看成是等腰△,由边夹角式面积公式可得
经检验
5.(2011年全国)已知等差数列{an} 的前n项和为 Sn
若 OB a1OA a2011OC,且A,B,C三点共线(该直线不过点O) 则S2011=________
析:因A,B,C三点共线,故 a1 a2011 1
从而 OCn1 OCn CnCn1 3rn rn1 ……②
由①②式可得 rn1 3rn
…………
Tn+1 Tn
辅导专题之六:数列的综合运用

辅导专题之六:数列的综合运用1.已知公差不为零的等差数列{a n }的前n 项和为S n ,若3411S S 34与的等比中项为534111S ,S S 534与的等差中项为1,求此数列的前n 项和S n 取得最大值时n 的值。
1580,0,N*233n n a a n n n +≥≤⇒≤≤∈⇒=2.某企业2008年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预计从2009年起每年比上一年纯利润减少20万元。
2009年初该企业一次性投入资金600万元进行技术改造,预计在未扣除技术改造资金的情况下,第n 年(2009年为第一年)的利润为1500(1)2n +万元(n 为整数)。
从2009年起的前n 年,若该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元(需扣除技术改造资金),求n A 和n B 的表达式;250049010,5001002n n n A n n B n =-=--3.数列{}n a 的前n 项和2n nS an b=+,若112a =,256a =.(1)求数列{}n a 的前n 项和n S ;(2)求数列{}n a 的通项公式; (3)设21nn a b n n =+-,求数列{}n b 的前n 项和n T .()2211,,1111n n n n n n S a T n n n n +-===-+++4.数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列.(1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式;(3)求证:3121235nnb b b b a a a a ++++<. (1)2,4,8(2)2,31n n n a b n ==-(3)3552n nn T +=-5.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式;(2)求数列{}n na 的前n 项和n T .()12,121n n n n a T n -==-+6.已知向量1*1(,2),(2,),,n n n n p a q a n N ++==-∈向量p 与q 垂直,且1 1.a = (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log 1n n b a =+ ,求数列{}n n a b ⋅的前n 项和n S .()12,121n n n n a S n -==-+7.已知数列{}n a 中11=a ,121+=+n nn a a a (+∈N n ).⑴求证:数列⎭⎬⎫⎩⎨⎧n a 1为等差数列; ⑵设1+⋅=n n n a a b (+∈N n ),数列{}n b 的前n 项和为n S ,求满足20121005>n S 的最小正整数n .111,121221n n a S n n ⎛⎫==- ⎪-+⎝⎭8.在数列{}n a 中,*)(1,111N n a a a a n nn ∈+==+.(1)求证:数列⎭⎬⎫⎩⎨⎧n a 1是等差数列,并求数列{}n a 的通项公式;(2)设nn n a b ⋅=21,求数列}{n b 的前n 项和为n T ;1,2n n n n a b n ==9.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,而数列{}n b 的首项为1, 120n n b b +--=.(1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项n a 和n b ;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T 。
第五节 数列的综合应用 课件(共24张PPT)

所以数列{bn}的前n项和b1+b2+…+bn=log4[f(a1)·
f(a2)·…·f(an)]=log4(2×22×…×2n)= log421+2+…+n=12×(1+2+…+n)=n(n4+1).
答案:n(n4+1)
得2,f(a1),f(a2),…,f(an),2n+4成等差数
列,则数列{an}的前n项和Sn=
.
解析:(1)因为F(x)=f x+12-1是R上的奇函数, 所以F(-x)=-F(x), 故f 12-x+f 12+x=2(x∈R),(*) 令x=0,得f 12=1. 令t=12-x,则12+x=1-t(t∈R), (*)式可化为f(t)+f(1-t)=2(t∈R).
因此{an}的通项公式为an=3n-2 1.
(2)由(1)知a1n=3n-2 1. 因为当n≥2时,3n-1≥2×3n-1, 所以3n-1 1≤2×13n-1. 于是a11+a12+…+a1n≤1+13+…+3n1-1=321-31n<32. 所以a11+a12+…+a1n<32.
考点2 数列与函数的综合应用
[例2] (1)已知F(x)=f x+12 -1是R上的奇函
数,an=f(0)+f n1+f n2+…+f n-n 1+f(1)(n∈
N*),则数列{an}的通项公式为( )
A.an=n-1
B.an=n
C.an=n+1
D.an=n2
(2)已知函数f(x)=log2 x,若数列{an}的各项使
1.已知等差数列{an}的前n项和为Sn,公差d>0,a6和
a8是函数f(x)=
15 4
ln
x+
数列的综合应用

高三数学(人教版)
第六章 ·专题研究二
专 题 讲
nf(n+1) 1 (3)由题知,bn= f n =3n,
解
1 n(n+1) n(n+1)
1
11
专
则Tn=3×
2
=
6
,
∴பைடு நூலகம்n=
6(n-n+
). 1
题
111
1
1111 1
11
训 练
∴
T1+T2+
T3+…
+Tn
=
6(1-
2+2-
3+3
-
4+…
+n-n+
) 1
∴
1 a=2,f(x)=
(12)x.
高三数学(人教版)
第六章 ·专题研究二
专 题
又点(n-1,
an n2
)(n∈ N*)(在函数f(x)= ax的图象上,
讲 解
从
而ann2=21n-
1,即
an=
n2 2n-
1.
专 题
(n+ 1)2 n2 2n+ 1 (2)由 bn= 2n -2n= 2n 得,
训
练
111
1
Tn,试比较T1+T2+T3+…+Tn与 6的大小.
高三数学(人教版)
第六章 ·专题研究二
专 题
∴f(n+ 1)=
1 3
f(n)(n∈ N*),∴数列{f(n)}(n∈ N*)是以
讲
解
1
1
f(1)=3为首项,3为公比的等比数列,
专 题
∴f(n)=13×(13)n- 1,即f(n)=(13)n(n∈ N*).
=6(1- 1 ). n+ 1
∵
n∈
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
数列的综合运用

数列的综合运用考纲要求:掌握常见数列应用问题的解法; 掌握数列与其它知识的综合应用.教材复习1.解决数列应用问题的步骤:2.数列应用题的常见模型:等差模型、等比模型、混合模型、生长模型(如分期付款)、递推模型.基本知识方法1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键.3.解题时,还要注重数学思想方法的应用,如“函数与方程”、“数形结合”、“分类讨论”、“化归转化”.典例分析:考点一 等差数列、等比数列的综合应用 问题1.(全国Ⅰ文)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=()1求{}n a ,{}n b 的通项公式;()2求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .考点二 数列与函数、方程、不等式的综合应用问题2.(江西)等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n a b 是公比为64的等比数列.()1求n a 与n b ;()2求证1211134n S S S +++<.问题3.(安徽文)设函数()sin 2xf x x =+的所有正的极小值点从小到大排成的数列为{}n x .(Ⅰ)求数列{}n x ;(Ⅱ)设{}n x 的前n 项和为n S ,求sin m S .考点三 数列的实际应用问题4.(湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元.(Ⅰ)用d 表示1a ,2a ,并写出1n a 与n a 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).考点四 数列与其他知识综合问题5.(陕西)如图,从点()10,0P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P .再从2P 做x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:11,P Q ;22,P Q ;…;,n n P Q ,记k P 点的坐标为(,0)k x (0,1,2,,k n =).(1)试求k x 与1k x -的关系(2k n 剟);(2)求112233||||||||n n PQ PQ PQ PQ ++++.课后作业:1.有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.2.(东北师大附中高三月考)数列}{n a 的前n 项和记作n S ,满足1232-+=n a S n n ,)(*N n ∈.()1证明数列}3{-n a 为等比数列;并求出数列}{n a 的通项公式. ()2记n n na b =,数列}{n b 的前n 项和为n T ,求n T .走向高考:1.(湖北)若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a ,则a = .A 4 .B 2 .C 2- .D 4-2. (天津)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =.A 2 .B 4 .C 6 .D 83.(海南)已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd+的最小值是 .A 0 .B 1 .C 2 .D 44.已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=5.(全国Ⅰ)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为6.(北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和. 已知数列是等和数列,且,公和为5,那么的值为 ,这个数列的前n 项和的计算公式为7.(四川)设函数()2cos f x x x =-,{}n a 是公差为8π的等差数列, 125()()()5f a f a f a π++⋅⋅⋅+=,则2313[()]f a a a -=.A 0.B 2116π.C 218π.D 21316π8.(安徽)如图,互不-相同的点12,,,n A A X 和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是9. (浙江文)若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列.()1求数列124,,S S S 的公比;()2若24S =,求{}n a 的通项公式.10.(四川文)已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(Ⅰ)求1a ,2a 的值;(Ⅱ)设10a >,数列110{lg }na a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.11. (陕西文) 已知实数列{}n a 是等比数列,其中71a =,且451a a +,,6a 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)数列{}n a 的前n 项和记为n S ,证明:128n S <(123)n =,,,.。
数列的综合应用
数列的综合应用1、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
(2)形如11n n n a a ka b --=+的递推数列都可以用倒数法求通项。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
2、数列求和的常用方法:(1)公式法:①等差数列求和公式; ②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.; ③常用公式:1123(1)2n n n ++++=+L222112(1)(21)6n n n n +++=++L ,33332n(n+1)1+2+3++n =[]2L .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性 ,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ; ⑤2122(1)2(1)11n n n n n n n n n +-=<<=--+++-.(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
数列的综合运用新
解析:对于A,即若{an}>M,an与an+1中至少有一个 不小于M,则数列{an}的各项不一定都大于M,错误;对于 B,若{an}>M,an与an+1中至少有一个不小于M,{bn}>M, bn与bn+1中至少有一个不小于M,但它们不一定是同一个n 值,则{an+bn}>2M不成立;对于C,若{an}>M,数列各项 的正负及M的正负不确定,则{a}>M2不成立;则只有D成立,
(4)数列的实际应用:现实生活中涉及利率,产品利润, 工作效率,人口增长,常常考虑用数列知识加以解决.
1.某种细菌在培养过程中,每20分钟分裂一次(1个分
裂成2个),经过3小时,这种细菌由1个可以繁殖成 ( )
A.511个
B.512个
C.1023个
D.1024个
解析:由题意知,细菌繁殖过程可以看作一个首项为
1,公比为2的等比数列模型,所以a10=a1q9=29=512.故应 选B.
答案:B
2 . 数 列 {an} 的 通 项 公 式 是 关 于 x 的 不 等 式 x2 -
x<nx(n∈N*)的解集中的整数个数,则数列{an}的前n项和Sn
=
()
A.n2
B.n(n+1)
C.
D.(n+1)(n+2)
解析:由x2-x<nx,得0<x<n+1(n∈N*), 因此an=n, Sn=
故选D.
答案:D
1.在解决数列综合问题时要注意以下方面 (1)用函数的观点和思想认识数列,将数列的通项公式 与求和公式都看作自变量为正整数的函数. (2)用方程思想去处理数列问题,把通项公式与求和公 式 看作列方程的等量关系. (3)用转化思想去处理数学问题,将实际问题转化为等 差数列或等比数列问题. (4)用猜想与递推的思想去解决数学问题.
数列的综合应用
数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。
数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。
本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。
一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。
数列是按照一定规律排列的一组数,其中每个数称为数列的项。
根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。
1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。
等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。
等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。
1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。
首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。
因此,这辆汽车在5个小时内共行驶了75公里。
2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。
首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。
因此,这名学生前10次数学考试的总分为875分。
《数列综合应用举例》教案
《数列综合应用举例》教案一、教学目标1. 理解数列的概念及其性质2. 掌握数列的通项公式和求和公式3. 能够运用数列解决实际问题二、教学内容1. 数列的概念及其性质2. 数列的通项公式和求和公式3. 数列在实际问题中的应用三、教学重点与难点1. 教学重点:数列的概念、性质、通项公式和求和公式2. 教学难点:数列在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解数列的概念和性质2. 采用示例法,教授数列的通项公式和求和公式3. 采用案例分析法,让学生学会运用数列解决实际问题五、教学过程1. 引入:通过生活中的实例,如等差数列“每月工资”、“每分钟心跳次数”等,引导学生认识数列的概念和性质。
2. 讲解:讲解数列的概念、性质、通项公式和求和公式,通过示例让学生理解并掌握这些知识点。
3. 练习:布置一些练习题,让学生运用所学的数列知识解决问题,巩固所学内容。
4. 案例分析:选取一些实际问题,如“等差数列投资”、“数列在数据处理中的应用”等,让学生学会运用数列知识解决实际问题。
5. 总结:对本节课的内容进行总结,强调数列在实际中的应用价值。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评估学生对数列概念和性质的理解程度。
2. 练习题评价:通过学生完成的练习题,检查学生对数列通项公式和求和公式的掌握情况。
3. 案例分析评价:评估学生在案例分析中的表现,判断其能否将数列知识应用于实际问题中。
七、教学拓展1. 数列在数学其他领域的应用:介绍数列在代数、几何、概率等领域中的应用,激发学生的学习兴趣。
2. 数列与其他学科的交叉:探讨数列在其他学科如物理、化学、生物等方面的应用,拓宽学生的知识视野。
八、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、教学方法的适用性、学生对数列知识的掌握程度等,以便对后续教学进行调整和改进。
九、课后作业布置一些有关数列的练习题,包括填空题、选择题和解答题,让学生巩固所学知识,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/4
3.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R
且a≠b)的四个根组成首项为1/4的等差数列,
则a+b的值为
.
变题:
若关于x的方程x2-ax+8=0和x2-bx等比数列,则
a+b的值为
.
2021/3/4
• ⑴a2,a3,a4的值及数列{an}的通项公式; • ⑵a2+a4+a6+…a2n的值.
2021/3/4
例题:
例1.设数列{an}是等差数列,a5=6 .
⑴当a3=3时,请在数列{an}中找一项am ,使得a3 、a5、 am成 等比数列;
⑵当a3=2时,若自然数n1、n2、…、nt 足
、…(t∈N※)满
a nt
5<n1<n2<…<nt ,使得a3、a5、、、… 、 成等 比数列,求数列{nt}的通项公式.
2021/3/4
例题:
例2.已知{an}是公比为q的等比数列,a1,a3,a2且成 等差数列.
⑴求q的值; ⑵设{bn}是以2为首项,q为公差的等差数列,其 前n项和 为Sn,当n≥2时,比较Sn与bn的大小, 并说明理由.
2021/3/4
例题:
例 3. 数 列 {an} 的 前 n 项 和 为 Sn , 且 a1=2 , nan+1=Sn+n(n+1). ⑴求数列{an}的通项公式; ⑵ 令Tn=Sn/2n,①当n为何正整数值时,Tn>Tn+1; ②若对一切正整数n,总有Tn≤m,m的取值范围.
2021/3/4
练习:
1.已知a 、b是不相等的正数,且a 、x 、y 、b 依次成等差数列,a、m、n、b依次成等比数 列,则 (x+y)2 /mn 的取值范围是 .
2.首项为-24的等差数列,从第十项起开始为正
数,则公差d的取值范围
.
2021/3/4
• 3.数列{an}的前n项和为Sn,且a1=1, an+1=Sn/3,n=1,2,3,……,求: