交流调速原理及应用(上传)

合集下载

交流电机变频调速原理与应用

交流电机变频调速原理与应用

异步电动机的“多功能控制器”。
3.风机、泵类的调速节能
风机、泵类的调速节能是调压调速系统应用得最多的领域之一。
3 异步电动机变频调速基础
变频调速时s变化很小,效率最高,性能也最好。
变频调速是异步电机交流调速系统的主流。
3.1 变频时的电压控制方式及控制特性
xK
1.变频的同时为什么要变压
r1
x1
②交交变频
电 动
鼠笼式转子
调压调速
机 感应电动机
交流调压
电压源型
常规意义 同步电动机
①变频调速,他控式
②变频调速,矢量控 制
①交直交变频 (整流+无源逆变) ②交交变频
①电流源型 ②电压源型
同 步
无换向器 电机
变频调速,自控式

动 机 无刷直流电动机 变频调速,自控式
开关磁阻电动机 变频调速,自控式
I1
定子每相电动势的有效值: E 14.44f1N 1kN 1 mU 1 U1
E1
x2
Im
xm
若f1↓,U1不变,则磁通Φm ↑ ,Im ↑ ↑ 。
rm
r2
I2 Er
若f1↑,U1不变,则磁通Φm↓,I不变时T ↓ 。
B m ,E1
结论:频率变化时,若不同时改变电压, 则会使电机的磁通 mN 大幅变化,这将使电机运行不正常甚至损坏电机,所以变频的
Ui
+
-
GT
U ct
+
TG
~ VVC
M 3~
Hale Waihona Puke 2.3 交流调压调速系统的制动
交调系统制动时,通常采用在定子绕组中通入直流电流(能耗制动)的方法。

交流调速器工作原理

交流调速器工作原理

交流调速器工作原理
调速器,又称变速器,是一种能够改变机械传动比的装置,用于实现不同输出速度和扭矩需求的调节。

调速器主要由齿轮、液力耦合器、离合器、轴承、传动齿皮带等部分组成。

调速器的工作原理主要包括以下几个方面:
1. 齿轮传动:调速器中的齿轮组通过不同数量的齿轮进行传动,改变输入与输出轴的转速比。

不同齿轮的组合可以得到不同的传动比,实现输出速度和扭矩的调节。

2. 液力耦合器/液力变矩器:液力耦合器是调速器中的一种重
要元件,它通过液体的动力传递来实现能量的连续传输。

液力耦合器由泵、涡轮和导向叶片等部分组成。

当输入轴转动时,泵叶片将液体(通常是油)推向轴向涡轮,产生涡轮反作用力,使得输出轴开始转动。

液力耦合器能够实现平滑的启动和停止过程,并在传递大扭矩时起到缓冲作用。

3. 离合器:调速器中的离合器用于断开或连接输入轴和输出轴之间的传动。

通过操作离合器,可以实现不同阶段对传动的控制,例如启动、停止以及换挡过程。

4. 传动带:调速器中的传动带通常由橡胶和纤维材料制成,用于连接齿轮和轴承等部件,将动力传递给输出轴。

总的来说,调速器通过齿轮传动、液力耦合器、离合器和传动带等方式实现输入与输出轴的转速比调节,从而满足不同工况
下的输出需求。

调速器的工作原理使得它在各种机械设备中得到广泛应用,例如汽车、船舶、工程机械等。

交流电机调速原理和方法

交流电机调速原理和方法

交流电机简介“交流电机”是用于实现机械能和交流电能相互转换的机械。

由于交流电力系统的巨大发展,交流电机已成为最常用的电机。

交流电机与直流电机相比,由于没有换向器(见直流电机的换向),因此结构简单,制造方便,比较牢固,容易做成高转速、高电压、大电流、大容量的电机。

交流电机功率的覆盖范围很大,从几瓦到几十万千瓦、甚至上百万千瓦。

20世纪80年代初,最大的汽轮发电机已达150万千瓦。

交流电机是由美籍塞尔维亚裔科学家尼古拉·特斯拉发明的。

电机原理用单相电容式电机说明:单相电机有两个绕组,即起动绕组和运行绕组。

两个绕组在空间上相差90度。

在起动绕组上串联了一个容量较大的电容器,当运行绕组和起动绕组通过单相交流电时,由于电容器作用使起动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。

在时间和空间上形成两个相同的脉冲磁场,使定子与转子之间的气隙中产生了一个旋转磁场,在旋转磁场的作用下,电机转子中产生感应电流,电流与旋转磁场互相作用产生电磁场转矩,使电机旋转起来。

调速原理额定转速n=60f/p(1-s)=同步转速N1(1-S)f电源频率p电机极对数s转差率1.利用变频器改变电源频率调速,调速范围大,稳定性平滑性较好,机械特性较硬。

就是加上额定负载转速下降得少。

属于无级调速。

适用于大部分三相鼠笼异步电动机。

2.改变磁极对数调速,属于有级调速,调速平滑度差,一般用于金属切削机床。

3.改变转差率调速。

(1)转子回路串电阻:用于交流绕线式异步电动机。

调速范围小,电阻要消耗功率,电机效率低。

一般用于起重机。

(2)改变电源电压调速,调速范围小,转矩随电压降大幅度下降,三相电机一般不用。

用于单相电机调速,如风扇。

(3)串级调速,实质就是就是转子引入附加电动势,改变它大小来调速。

也只用于绕线电动机,但效率得到提高。

交流电机调速方法一、变极对数调速方法:改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速。

单相交流电机 调速原理

单相交流电机 调速原理

单相交流电机调速原理
单相交流电机的调速原理主要包括以下几种方法:
1. 调节供电电压:通过调节电源的电压来改变电机的转速。

降低供电电压会使电机转速下降,增加供电电压则使转速增加。

但是这种方法只适用于感应电动机,对于复杂负载的单相电动机效果不佳。

2. 转子电阻调速:在单相感应电机的转子回路中加入一个可调节的电阻,通过改变电阻的大小来改变电机转速。

增加电阻会减小转矩,从而减小转速。

这种方法适用于无负载或轻负载的场景。

3. 相位移调速:通过改变电动机中的电流和电压的相位差来控制转速。

可以通过改变转子电阻、电容、电感等元件来实现相位差的调节,从而改变电机的转速。

这种方法主要适用于单相感应电动机。

4. 变频调速:使用变频器将电源频率变换为可调节的频率,并将其输入到电动机中,从而实现对转速的精确调节。

变频调速器能够提供稳定的输出电压和频率,适用范围广,可实现精确的转速控制。

通过以上不同的调速方法,可以根据实际需求选择合适的调速方案,实现单相交流电机的转速控制。

交流调速系统的应用原理

交流调速系统的应用原理

交流调速系统的应用原理1. 简介交流调速系统是一种用于调节电机转速的系统,广泛应用于各种机械设备中。

它通过改变电机输入的电压和频率来控制电机的转速,从而实现对设备的精准控制。

本文将介绍交流调速系统的应用原理,并对其工作流程进行详细解析。

2. 应用原理交流调速系统主要由四个部分组成:输入电源、频率变换器、转速反馈器和控制器。

下面将逐一介绍各个部分的作用和原理。

2.1 输入电源输入电源是整个交流调速系统的能量来源,通常为市电或发电机提供的交流电。

输入电源的电压和频率决定了交流调速系统的工作状态,对于不同的设备,需要选择合适的输入电源参数。

2.2 频率变换器频率变换器是交流调速系统的核心组件之一,它负责接收输入电源的电压和频率,并将其转换为适合电机工作的电压和频率。

频率变换器采用电子元器件来实现,内部含有逆变器、滤波器等电路,通过调整电路中的元器件参数,可以实现对输出电压和频率的控制。

2.3 转速反馈器转速反馈器用于监测电机的转速,并将转速信息反馈给控制器。

转速反馈器通常采用传感器或编码器等设备,将转速信号转换为电信号,并传递给控制器进行处理。

2.4 控制器控制器是交流调速系统的大脑,它接收转速反馈器传来的信号,并根据设定的目标转速进行处理。

控制器包含了一些计算和调节算法,根据转速反馈信号和设定值之间的差异,调整频率变换器的输出,使电机的转速逐渐接近目标转速。

3. 工作流程交流调速系统的工作流程如下:1.输入电源供电,提供工作所需的电压和频率。

2.频率变换器接收输入电源的电压和频率信号,并将其转换为适合电机工作的电压和频率。

3.转速反馈器监测电机的实际转速,并将转速信号传递给控制器。

4.控制器根据设定的目标转速和转速反馈信号之间的差异,计算出需要调整的频率变换器输出。

5.控制器将调整后的频率变换器输出信号发送给频率变换器,调整电机的电压和频率。

6.电机根据调整后的电压和频率工作,逐渐接近设定的目标转速。

交流调速器的工作原理【详解】

交流调速器的工作原理【详解】

交流调速器工作原理:HW-A-1040型(DC12v24v电压通用型)调速器、工作原理:是通过改变输出方波的占空比使负载上的平均电流功率从0-100%变化、从而改变负载、灯光亮度/电机速度。

利用脉宽调制(PWM)方式、实现调光/调速、它的优点是电源的能量功率、能得到充分利用、电路的效率高。

例如:当输出为50%的方波时,脉宽调制(PWM)电路输出能量功率也为50%,即几乎所有的能量都转换给负载。

而采用常见的电阻降压调速时,要使负载获得电源最大50%的功率,电源必须提供71%以上的输出功率,这其中21%消耗在电阻的压降及热耗上。

大布部分能量在电阻上被消耗掉了、剩下才是输出的能量、转换效率非常低。

此外HW-A-1040型调速因其采用开关方式热耗几乎不存在、HW-A-1040型调速在低速时扭矩非常大、因为调速器带有自动跟踪PWM、另外采用脉宽调制(PWM)方式、可以使负载在工作时得到几乎满电源电压、这样有利于克服电机内在的线圈电阻而使电机产生更大的力矩功率。

交流调速器简介:HW-A-1040交流调速器是一种控制交流马达速度和力矩的器件,目前主要为调压和调频两种类型,前者一般指软启动控制器,后者一般指常见的变频调速器。

早期的交流调速器一般采用可控硅,GTR等功率器件,采用8位的单片机来实现,后来由于IGBT和IPM等功率模块的出现,响应速度就更快了,目前一般采用DSP这类高速芯片来控制和实现,交流调速器已经慢慢取代直流调速器在传动系统中的应用,目前是一种主流的传动系统调速器件,其技术也在不断发展中。

脉宽调制的全称为:Pulse WidthModulator、简称PWM、由于它的特殊性能、常被用于直流负载回路中、灯具调光或直流电动机调速、HW-1040型调速器、就是利用脉宽调制(PWM)原理制作的马达调速器、PWM调速器已经在:工业直流电机调速、工业传送带调速、灯光照明调解、计算机电源散热、直流电扇等、得到广泛应用。

交流调速器工作原理

交流调速器工作原理

交流调速器工作原理
调速器是一种用于调节机械设备转速的装置,它使用一种称为调速器的装置来实现工作原理。

调速器通常包含一个控制系统和一个执行系统。

工作原理如下:当控制系统接收到调速信号时,它会根据信号的要求调整执行系统的工作状态。

控制系统通常由一个感知器、一个比较器和一个执行器组成。

感知器是一个用来感知原始信息的装置,可以是传感器或者人工输入。

它能够感知到机械设备的转速,并将其转化为电信号。

比较器负责将感知到的信号与设定值进行比较,然后产生一个偏差信号。

如果实际转速低于设定值,偏差信号会告诉执行器,需要增加动力输出;如果实际转速高于设定值,偏差信号会告诉执行器,需要减少动力输出。

执行器则负责根据比较器发出的指令调整机械设备的工作状态。

它可以通过控制设备的供电电压或调整传动系统的速比来改变输出功率。

综上所述,调速器通过感知器感知机械设备的转速,然后通过比较器和执行器实现对设备转速的调节。

这个过程一直持续进行,以保持设备转速在设定范围内的稳定工作。

交流调速的功率控制原理

交流调速的功率控制原理

交流调速的功率控制原理【摘要】交流调速的功率控制原理在工业领域具有重要意义。

本文从功率控制的基本原理、交流调速的原理、功率控制的应用、功率控制技术的发展以及功率控制的优势等方面进行深入探讨。

通过分析交流调速功率控制的原理和优势,可以更好地了解其在工业生产中的作用和意义。

我们也展望了交流调速功率控制在未来的发展趋势,并强调了其在工业生产中的重要性。

交流调速的功率控制原理不仅具有实际应用价值,而且在推动工业现代化发展中发挥着重要作用。

【关键词】交流调速、功率控制、原理、应用、技术发展、优势、重要性、未来发展。

1. 引言1.1 交流调速的功率控制原理交流调速的功率控制原理是现代工业中非常重要的一项技术。

通过对电流进行控制,可以实现对交流电机的转速进行调节,从而使其在不同负载下保持稳定运行。

功率控制的基本原理是通过调节电压或电流来控制电机的功率输出,从而实现对电机转速的调节。

交流调速的原理是利用变频器等电气设备,通过改变电压、频率等参数来控制电机的转速,实现功率控制的目的。

功率控制在工业生产中具有广泛的应用,能够提高设备的运行效率,减少能耗,提高生产质量。

随着技术的不断发展,功率控制技术也在不断更新,出现了更加高效、智能化的控制方式。

功率控制的优势在于可以根据实际需求对设备进行精准控制,节约能源,延长设备使用寿命,提高生产效率。

交流调速的功率控制原理的重要性不言而喻,它可以帮助工业企业提高生产效率,降低生产成本,提升竞争力。

展望未来,随着科技的不断进步,交流调速功率控制技术将会更加智能化、高效化,为工业生产带来更多的便利和效益。

2. 正文2.1 功率控制的基本原理功率控制的基本原理是调节电源系统中的功率输出,以满足用户对电能的需求。

在交流调速中,功率控制是通过控制电压或电流的大小来调节电机的转速和扭矩。

功率控制的基本原理包括以下几个方面:1. 电压调节:通过改变电源系统中的电压来控制电机的输出功率。

当电压增大时,电机的输出功率也会增加,反之亦然。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流调速原理及应用第一单元 交流调速的原理——异步电机变压变频调速系统(VVVF 系统)异步电机的变压变频调速系统一般简称为变频调速系统。

由于在调速时转差功率不随转速而变化,调速范围宽,无论是高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美,因此现在应用面很广。

第一节 变压变频调速的基本控制方式定子每相电动势m N s 1g S 44.4Φk N f E =只要控制好 E g 和 f 1 ,便可达到控制磁通Φm 的目的,对此,需要考虑基频(额定频率)以下和基频以上两种情况。

1、基频以下调速要保持 Φm 不变,当频率 f 1 从额定值 f 1N 向下调节时,必须同时降低 E g ,使常值=1f E g即采用恒值电动势频率比的控制方式。

然而,绕组中的感应电动势是难以直接控制的,当电动势值较高时,可以忽略定子绕组的漏磁阻抗压降,而认为定子相电压 U s ≈ E g ,则得常值=1f U s 这是恒压频比的控制方式。

但是,在低频时 U s 和 E g 都较小,定子阻抗压降所占的份量就比较显著,不再能忽略。

这时,需要人为地把电压 U s 抬高一些,以便近似地补偿定子压降。

带定子压降补偿的恒压频比控制特性示于图1中的 b 线,无补偿的控制特性则为a 线。

2、基频以上调速在基频以上调速时,频率应该从 f 1N 向上升高,但定子电压U s 却不可能超过额定电压U sN ,最多只能保持U s = U sN ,这将迫使磁通与频率成反比地降低,相当于直流电机弱磁升速的情况。

把基频以下和基频以上两种情况的控制特性画在一起,如图2所示。

如果电机在不同转速时所带的负载都能使电流达到额定值,即都能在允许温升下长期运行,则转矩基本上随磁通变化,按照电力拖动原理,在基频以下,磁通恒定时转矩也恒定,属于“恒转矩调速”性质,而在基频以上,转速升高时转矩降低,基本上属于“恒功率调速”。

第二节 异步电动机电压-频率协调控制时的机械特性1、 恒压恒频正弦波供电时异步电动机的机械特性当定子电压U s 和电源角频率w 1恒定时,异步电机在恒压恒频正弦波供电时的机械特性方程式T e = f (s )如下:2'lr ls 2122'r s 'r 121s p e )()(3L L s R sR R s U n T +++⎪⎪⎭⎫ ⎝⎛=ωωω当s 很小时,转矩近似与s 成正比,机械特性T e = f (s )是一段直线。

当s 接近于1时,转矩近似与s 成反比,机械特性T e = f (s )是一段双曲线。

当s 为以上两段的中间数值时,机械特性从直线段逐渐过渡到双曲线段,如图3所示。

2、基频以下电压-频率协调控制时的机械特性可以有多种配合。

对于同一组转矩T e和转速n(或转差率s)的要求,电压U s和频率w1的不同配合下机械特性也是不一样的,因此可以有不同方式的电压-频率协调控在U s和w1制。

各种控制方式的机械特性如图4所示。

第三节变压变频调速系统中的脉宽调制(PWM)技术1、正弦波脉宽调制(SPWM)技术以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave),并用频率和期望波相同的正弦波作为调制波(Modulation wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。

按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。

这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation ,简称SPWM ),这种序列的矩形波称作SPWM 波。

如图5所示。

2、 电压空间矢量PWM(SVPWM)控制技术(磁链跟踪控制技术)经典的SPWM 控制主要着眼于使变压变频器的输出电压尽量接近正弦波,并未顾及输出电流的波形。

交流电动机需要输入三相正弦电流的最终目的是在电动机空间形成圆形旋转磁场,从而产生恒定的电磁转矩。

如果对准这一目标,把逆变器和交流电动机视为一体,按照跟踪圆形旋转磁场来控制逆变器的工作,其效果应该更好。

这种控制方法称作磁链跟踪控制。

磁链的轨迹是交替使用不同的电压空间矢量得到的,所以又称电压空间矢量PWM (SVPWM , Space Vector PWM )控制。

图6给出定子磁链矢量端点的运动轨迹。

第四节 基于动态模型按转子磁链定向的矢量控制系统异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。

需要高动态性能的异步电机图5 SPWM 原理 ωt Oua)b)图6-3Ou ωt图6 六拍逆变器供电时电动机电压空间矢量与磁链矢量的关系调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。

经过多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是按转子磁链定向的矢量控制系统。

图7给出异步电动机的坐标变换结构图。

从整体上看,输入为A ,B ,C 三相电压,输出为转速w ,是一台异步电机。

从内部看,经过3/2变换和同步旋转变换,变成一台由i m 和 i t 输入,由 w 输出的直流电机。

既然异步电机经过坐标变换可以等效成直流电机,那么,模仿直流电机的控制策略,得到直流电机的控制量,经过相应的坐标反变换,就能够控制异步电机了。

由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统(Vector Control System ),控制系统的原理结构如图8所示。

图7 异步电动机的坐标变换结构图3/2——三相/两相变换; VR ——同步旋转变换;ϕ ——M 轴与α轴(A 轴)的夹角ABC第二单元交流调速技术应用第一节西门子6SE70高性能变频器的应用一、现场总线测控系统的构造该装置的控制柜内部包括交流变频调速、全数字直流调速和PLC三大部分,是整个电控系统的主体。

我们主要学习,交流变频调速部分。

对于高性能通用变频器,它主要有三种:第一种是有速度传感器的矢量控制变频器;第二种是无速度传感器的矢量控制变频器;第三种是无速度传感器的直接转矩控制变频器。

这三种变频器中,第一种的控制精度高且性能好,但变频器系统价格昂贵;第二种和第三种控制精度和性能一般,但变频器系统简单,价格便宜。

西门子6SE70变频器属于第一种。

另外,高性能通用变频器为了满足不同的工程需要,有几种硬件结构:独立试变频器、公共直流母线式变频器和带能量回馈单元的变频器。

西门子6SE70属于前一种。

出于对系统安全性、可靠性的考虑,装置出厂时被定义为:交流变频调速子系统为速度闭环矢量控制,运行时需与PLC配合进行部分开关联锁,通过操作台的“6SE70合闸”和“6SE70分闸”按钮对主回路的交流接触器进行操作,通过操作台的“6SE70启动”和“6SE70停止”按钮控制变频器的起停,通过操作台的“6SE70模入”旋钮控制变频器的速度给定,操作台设有“6SE70主回路已合”及“6SE70系统运行”指示灯显示,控制柜的柜门上方设有“交流电机电流”和“交流电机转速”模拟表显示,操作台设有“系统急停”和“故障复位”按钮。

合闸操作:①合断路器Q0,此为系统总隔离开关;②确保熔断器FU1、FU4、FU5、FU6、FU9通路;③合断路器Q1,为PLC部分和开关电源供电;④确保熔断器1FU1、1FU2、1FU3、FU10通路;⑤合断路器Q3,为6SE70变频器的主回路供电;⑥合断路器Q4,为交流变频电机的风机供电,并确认风机工作正常;⑦按下操作台的“6SE70合闸”按钮合主回路接触器,此时红色“6SE70主回路已合”指示灯应点亮。

转电机操作:①通过操作台的“6SE70模入”旋钮控制变频器的速度给定;②按下操作台的“6SE70启动”按钮使变频器运行,此时绿色“6SE70系统运行”指示灯应点亮,电机开始按一定的斜坡旋转升速至给定速度并稳定运行;③通过控制柜柜门上方的“交流电机电流”和“交流电机转速”模拟表观察电机电流和电机转速的变化情况,也可通过变频器的PMU面板或PC上的DriveMonitor软件观察到各种详细的运行信息(详见SIMOVERT MASTERDRIVES 矢量控制使用大全);④按下操作台的“6SE70停止”按钮使变频器停机,电机开始按一定的斜坡降速直至停止,此时绿色“6SE70系统运行”指示灯应熄灭。

出现意外或故障时的操作:①当交流传动发生意外时,应停止正在运行的变频器,正确的停车规程是:使用“6SE70停止”按钮(带斜坡,仅停变频器)或“系统急停”按钮(零斜坡,全部传动停车)使电机停止运转,待电机静止后,根据需要可断开全部断路器;②变频器内部集成有多种故障检测与保护,在大多数情况下,当交流传动发生故障时,变频器可以检测到故障并立刻作出响应,变频器封锁脉冲并自由停车,在PMU面板上显示故障号,此时请根据故障号处理相应的问题,待问题解除后,应使用“故障复位”按钮确认,PMU面板上显示的故障号应消失,否则系统不能运行。

二、6SE70变频器的原理框图三、配电系统接线图(见29、30、31页)四、变频器外围接线图(见31页)五、6SE70变频器的基本操作说明六、实验内容(一)简单应用(开环U/F控制)1、U/F结构图2、操作结构示意图3、参数设置步骤A、参数恢复工厂设置过程:B、应用参数设置步骤(二)、实验二闭环矢量控制设置:1、闭环控制框图2、参数设置过程第二节松下VF-7F变频器的应用一、VF-7F变频器的构造及控制板功能和外围端子说明1、另外,外围还有2、记录相关的实验现象。

实验六停止方式的选择一、实验目的掌握不同的停止方式,根据实际运行条件能选择并设定相关的参数二、实验步骤1、试验惯性停止,观察现象。

P11=12、试验减速停止,观察现象,要求采用直流制动的方法;相关参数的设定:P11=0 P12=30 P13=4 P14=203、自行设定频率范围及输出频率值4、要求设定为外部控制变频器的启动和停止,即设定相关的P08的值;5、接线运行,观察输出显示;6、按下停止按扭,观察直流制动现象。

相关文档
最新文档