用几何方法证明坐标平面内互相垂直的两直线的斜率之积等于

合集下载

平面几何中的垂直与平行关系

平面几何中的垂直与平行关系

平面几何中的垂直与平行关系在平面几何中,垂直与平行关系是两个基础而重要的概念。

通过研究垂直与平行关系,我们可以深入理解直线、角度和图形之间的相互作用,为解决实际问题提供数学依据。

本文将探讨垂直与平行关系的概念、性质以及应用。

一、垂直关系垂直关系是指两条直线或者线段之间的相互关系。

当两条直线或者线段相交时,如果相交处的角度为90度,则称这两条直线或者线段互相垂直。

首先,我们来研究直线之间的垂直关系。

在平面几何中,两条直线垂直的充要条件是它们的斜率之积等于-1。

斜率可以通过直线的两个点的坐标之差的比值来计算。

例如,直线L1的斜率为2/3,那么与L1垂直的直线L2的斜率应为-3/2。

这个性质可以用于求解两条直线是否垂直的问题。

其次,我们探讨线段之间的垂直关系。

当两个线段互相垂直时,它们的端点可以看做相交处的角度为90度的直角。

利用直角三角形的性质,我们可以计算出线段之间的长度关系。

例如,已知一个直角三角形的一条直角边长和斜边长,我们可以通过勾股定理求解出另一条直角边的长度。

垂直关系在实际生活中有广泛的应用。

例如,建筑师需要确保墙壁垂直,以保证建筑物的稳定性。

在道路交通中,垂直的行人横穿斑马线与水平的车辆行驶在平行的马路上,确保行人与车辆之间的安全。

二、平行关系平行关系是指两条直线或者线段之间的相互关系。

当两条直线或者线段从未相交,且它们的方向始终保持一致时,称这两条直线或者线段互相平行。

平行线的性质之一是它们的斜率相等。

如果两条直线的斜率分别为m1和m2,且m1=m2,则这两条直线是平行的。

这个性质可以用于解决两条直线是否平行的问题。

在平面几何中,平行线的性质可以推广到平行四边形和其他多边形。

在平行四边形中,两组对边分别平行且相等。

根据这个性质,我们可以计算出平行四边形的面积和周长,并解决与平行四边形相关的几何问题。

平行关系在日常生活中有诸多应用。

例如,在城市的规划中,交通道路经常设计成平行排列,以提高交通效率。

互相垂直的两条直线的k值关系证明

互相垂直的两条直线的k值关系证明

互相垂直的两条直线的k值关系证明在几何学中,直线是一种没有曲度的线段,由无数个点组成。

直线的特点是无限延伸,没有起点和终点。

而两条直线之间的关系可以通过斜率(k值)来描述。

斜率(k值)是直线上两个不同点之间的纵坐标差与横坐标差的比值。

它表示了直线的倾斜程度。

对于互相垂直的两条直线,它们的斜率之间存在一定的关系。

设直线L1的斜率为k1,直线L2的斜率为k2,若L1与L2互相垂直,则k1与k2之间的关系满足以下特点:1. 斜率之积为-1对于互相垂直的两条直线,它们的斜率之积等于-1。

即k1 * k2 = -1。

这是因为两条垂直直线的斜率乘积恒为-1,可以从几何上得到证明。

2. 一个斜率为0,另一个斜率不存在对于互相垂直的两条直线,其中一条直线的斜率为0,代表这条直线是与x轴平行的水平线。

而另一条直线的斜率不存在,代表这条直线是与y轴平行的竖直线。

互相垂直的两条直线的k值关系可以通过斜率之积为-1来描述。

这个关系在解决几何问题中非常有用。

例如,在求解直角三角形的问题中,我们可以利用两条垂直直线的斜率关系来求解未知量。

举个例子来说明这个关系。

假设有两条直线L1和L2,它们的斜率分别为k1和k2。

如果我们已知k1=2,那么根据斜率之积为-1的关系,我们可以求得k2=-1/2。

这样,我们就得到了两条垂直直线的斜率关系。

除了斜率之积为-1的关系,垂直直线还有其他特点。

例如,两条直线的交点一定是直角,即两条直线在交点处相互垂直。

这也是直角三角形的定义。

因此,通过斜率关系,我们可以判断两条直线是否垂直。

总结一下,互相垂直的两条直线的k值关系可以通过斜率之积为-1来描述。

这个关系在几何学中有重要的应用,可以帮助我们解决各种与垂直直线相关的问题。

通过掌握这个关系,我们可以更好地理解和运用直线的性质,为几何问题的解决提供更多的思路和方法。

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。

平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。

在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。

本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。

一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。

要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。

通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。

2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。

这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。

3. 平行线的性质:在平面几何中,平行线具有很多性质。

常见的平行线定理包括等角定理、同位角定理、内错角定理等。

通过运用这些性质,可以证明两条直线平行。

二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。

根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。

2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。

这一方法常用于证明两条直线垂直的情况。

通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。

3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。

两条直线垂直时,其错角是互相垂直的。

通过构建直线的错角,可以证明所求的两条直线垂直关系。

三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。

通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。

2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。

解析几何中两条直线的位置关系

解析几何中两条直线的位置关系

解析几何中两条直线的位置关系几何是一门独特的学科,它以空间形体的性质加以分析和研究。

在几何学的研究中,解析几何是一种十分重要的数学方法。

解析几何的基础内容包括坐标系、点、直线、平面等,它是高中数学必修课程中的重要章节。

而两条直线的位置关系就是解析几何中的一项主要内容,它涉及到两条直线在平面上的交点、平行、垂直等关系。

下面我们将结合一些实例,从不同角度来解析几何中两条直线的位置关系。

一、平行的直线两条直线如果在平面上没有交点,那么我们就称它们是平行的。

在解析几何中,判断两条直线是否平行的方法是通过它们的斜率来决定的。

斜率是直线上两个点的纵坐标之差与横坐标之差的比值,我们用 k1 和 k2 来表示两条直线的斜率。

如果 k1 = k2,那么这两条直线是平行的,它们在平面上永远不会相交。

例如,对于直线 y = 2x + 1 和 y = 2x + 2,我们可以求出它们的斜率分别为 2,因此它们是平行的。

二、垂直的直线两条直线在平面上相交,并且它们的交点与坐标轴构成的角度为 90 度,那么我们就称它们是垂直的。

在解析几何中,判断两条直线是否垂直的方法是通过它们的斜率的互为倒数来决定的。

斜率的倒数是指直线上两个点横坐标之差与纵坐标之差的比值,用k1 和 k2 来表示两条直线的斜率。

如果 k1 × k2 = -1,那么这两条直线是垂直的。

例如,对于直线 y = -0.5x + 4 和 y = 2x - 1,我们可以求出它们的斜率分别为 -0.5 和 2,因此它们不垂直。

如果我们对第一条直线求出它的斜率的倒数为 -2,再对第二条直线求出它的斜率的倒数为 -0.5,就能得出它们是垂直的。

三、相交的直线如果两条直线在平面上相交,那么我们就需要考虑它们的交点和交角。

直线交点是直线在平面上的交点,我们用 (x0, y0) 来表示直线的交点坐标。

交角是指两条直线在交点处所夹的角度,它的度数可以通过反正切函数求出。

高考数学一轮复习 第九章 解析几何 第二节 两条直线的位置关系教案 理(含解析)苏教版-苏教版高三全

高考数学一轮复习 第九章 解析几何 第二节 两条直线的位置关系教案 理(含解析)苏教版-苏教版高三全

第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离|P 1P 2|=x 2-x 12+y 2-y 12点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离d =|C 1-C 2|A 2+B2[小题体验]1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则实数m 的值为________.解析:由k AB =4-mm +2=-2,得m =-8.答案:-82.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________. 解析:由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1. 答案:2-13.若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为________.解析:直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23,因为两直线垂直,所以-a 2×23=-1,即a =3.答案:31.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:①若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直.②当l 1,l 2的斜率都存在时,直线l 1的斜率k 1=-t +21-t ,直线l 2的斜率k 2=-t -12t +3,因为l 1⊥l 2,所以k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,所以t =-1.综上可知t =-1或t =1. 答案:-1或12.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:因为63=m 4≠14-3,所以m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 答案:2考点一 两条直线的位置关系 (基础送分型考点——自主练透)[题组练透]1.(2019·沭阳月考)若直线y =mx +1与直线y =4x -8垂直,则m =________. 解析:由直线y =mx +1与直线y =4x -8垂直, 得m ×4=-1,解得m =-14.答案:-142.(2018·某某模拟)过点(1,0)且与直线x -2y -2=0平行的直线方程是________. 解析:依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.答案:x -2y -1=03.(2019·启东调研)已知直线l 1:(a -1)x +y +b =0,l 2:ax +by -4=0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(1,1);(2)l 1∥l 2,且l 2在第一象限内与两坐标轴围成的三角形的面积为2. 解:(1)因为l 1⊥l 2,所以a (a -1)+b =0.① 又l 1过点(1,1),所以a +b =0.②由①②,解得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =2,b =-2.当a =0,b =0时不合题意,舍去. 所以a =2,b =-2.(2)因为l 1∥l 2,所以a -b (a -1)=0,③由题意,知a >0,b >0,直线l 2与两坐标轴的交点坐标分别为⎝ ⎛⎭⎪⎫4a,0,⎝⎛⎭⎪⎫0,4b .则12×4a ×4b=2,得ab =4,④ 由③④,得a =2,b =2.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0)l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件 A 1A 2+B 1B 2=0 l 1与l 2平行的充分条件 A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0) l 1与l 2相交的充分条件 A 1A 2≠B 1B 2(A 2B 2≠0) l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0) [提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答填空题时,建议多用比例式来解答.考点二 距离问题重点保分型考点——师生共研[典例引领]已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使PA =PB ,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). 因为A (4,-3),B (2,-1),所以线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,所以线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0. 因为点P (a ,b )在直线x -y -5=0上, 所以a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, 所以|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.所以所求点P 的坐标为(1,-4)或⎝⎛⎭⎪⎫277,-87.[由题悟法]距离问题的常见题型及解题策略(1)求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.(2)解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.(3)求两条平行线间的距离.要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.[即时应用]1.(2019·阜宁中学检测)在坐标轴上,与点A (1,5),B (2,4)等距离的点的坐标是________.解析:线段AB 的垂直平分线方程为y -92=-1-25-4·⎝ ⎛⎭⎪⎫x -32,令x =0,可得y =3;令y=0,可得x =-3,∴在坐标轴上,与点A (1,5),B (2,4)等距离的点的坐标是(0,3)或(-3,0). 答案:(0,3)或(-3,0)2.(2018·某某中学测试)已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则PM 的最小值为________.解析:PM 的最小值即为点P (3,-1)到直线x +3y =2的距离, 又d =|3-3-2|1+3=1,故PM 的最小值为1.答案:13.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为______________________.解析:因为l 1与l 2:x +y -1=0平行, 所以可设l 1的方程为x +y +b =0(b ≠-1).又因为l 1与l 2的距离是2, 所以|b +1|12+12=2,解得b =1或b =-3,即l 1的方程为x +y +1=0或x +y -3=0. 答案:x +y +1=0或x +y -3=0考点三 对称问题题点多变型考点——多角探明 [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.(2019·丹阳高级中学检测)点A (2,3)关于点P (0,5)对称的点的坐标为________. 解析:设A (2,3)关于点P (0,5)对称的点的坐标为(x 0,y 0),由中点坐标公式,得2+x 02=0,3+y 02=5,则x 0=-2,y 0=7.∴点A (2,3)关于点P (0,5)对称的点的坐标为(-2,7).答案:(-2,7)角度二:点关于线对称2.(2018·某某模拟)已知△ABC 的两个顶点A (-1,5)和B (0,-1),若∠C 的平分线所在的直线方程为2x -3y +6=0,则BC 边所在的直线方程为______________.解析:设点A 关于直线2x -3y +6=0的对称点为A ′(x ′,y ′),则⎩⎪⎨⎪⎧2×x ′-12-3×y ′+52+6=0,y ′-5x ′+1=-32,即⎩⎪⎨⎪⎧2x ′-3y ′-5=0,3x ′+2y ′-7=0,解得⎩⎪⎨⎪⎧x ′=3113,y ′=-113,即A ′⎝ ⎛⎭⎪⎫3113,-113,由题意知,点A ′在直线BC 上.所以直线BC 的方程为y =-113--13113-0x -1,整理得12x -31y -31=0. 答案:12x -31y -31=0 角度三:线关于线对称3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.解析:设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, 所以2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.(2019·沭阳期中)已知点A (1,-2)关于直线x +ay -2=0的对称点为B (m,2),则实数a 的值为________.解析:由对称的特点可知,AB 的中点在对称轴上,直线AB 垂直于对称轴,则1+m 2+-2+22a -2=0,2--2m -1·⎝ ⎛⎭⎪⎫-1a =-1,解得m =3,a =2.答案:22.(2018·启东期末)已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为________.解析:设P (a ,b )是直线l 上任意一点,则点P 到直线l 1:2x -y -2=0和直线l 2:x +2y -1=0的距离相等, 即|2a -b -2|5=|a +2b -1|5,整理得a -3b -1=0或3a +b -3=0, ∴直线l 的斜率为13或-3.答案:13或-33.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ), 则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0一抓基础,多练小题做到眼疾手快1.(2019·某某调研)已知点A (1,3)关于直线l 的对称点为B (-5,1),则直线l 的方程为________.解析:∵已知点A (1,3)关于直线l 的对称点为B (-5,1),故直线l 为线段AB 的中垂线.求得AB 的中点为(-2,2),AB 的斜率为1-3-5-1=13,故直线l 的斜率为-3,故直线l 的方程为 y -2=-3(x +2),即3x +y +4=0.答案:3x +y +4=02.(2018·宿迁模拟)过点(1,0)且与直线x -2y -2=0垂直的直线方程是________. 解析:因为直线x -2y -2=0的斜率为12,所以所求直线的斜率ky -0=-2(x -1),即2x +y -2=0.答案:2x +y -2=03.直线y =3x +3关于直线l :x -y -2=0对称的直线方程为________. 解析:取直线y =3x +3上一点A (0,3),设A 关于直线l :x -y -2=0对称的点为A ′(a ,b ),则有⎩⎪⎨⎪⎧b -3a -0·1=-1,a +02-b +32-2=0,解得a =5,b =-2.∴A ′(5,-2).联立⎩⎪⎨⎪⎧y =3x +3,x -y -2=0,解得x =-52,y =-92.令M ⎝ ⎛⎭⎪⎫-52,-92,∵直线y =3x +3关于直线l 对称的直线过A ′,M 两点,∴所求直线方程为y -⎝ ⎛⎭⎪⎫-92-2-⎝ ⎛⎭⎪⎫-92=x -⎝ ⎛⎭⎪⎫-525-⎝ ⎛⎭⎪⎫-52,即x -3y -11=0.答案:x -3y -11=04.(2018·启东中学测试)已知直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则点P 的坐标为________.解析:因为l 1∥l 2,且l 1的斜率为2,则直线l 2l 2过点(-1,1),所以直线l 2的方程为y -1=2(x +1),整理得y =2xx =0,得y =3,所以点P 的坐标为(0,3).答案:(0,3)5.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:解方程组⎩⎪⎨⎪⎧2x -y =-10,y =x +1,可得⎩⎪⎨⎪⎧x =-9,y =-8,所以直线2x -y =-10与y =x +1的交点坐标为(-9,-8), 代入y =ax -2,得-8=a ·(-9)-2, 所以a =23.答案:236.(2019·某某检测)已知直线l 1:mx +2y +4=0与直线l 2:x +(m +1)y -2=0平行,则l 1与l 2间的距离为________.解析:∵直线l 1:mx +2y +4=0与直线l 2:x +(m +1)y -2=0平行,当m =-1时,显然不合题意;当m ≠-1时,有m 1=2m +1≠4-2,解得m =1,∴l 1与l 2间的距离d =|-2-4|1+4=655.答案:655二保高考,全练题型做到高考达标1.已知直线l 1:(m +1)x +2y +2m -2=0,l 2:2x +(m -2)y +2=0,若直线l 1∥l 2,则m =________.解析:由题意知,当m =2时,l 1:3x +2y +2=0,l 2:x +1=0,不合题意;当m ≠2时,若直线l 1∥l 2,则m +12=2m -2≠2m -22,解得m =-2或m =3(舍去). 答案:-22.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为________.解析:因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1, 所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0, 所以l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823.答案:823 3.(2019·X 家港模拟)过点P (1,2)作一直线l ,使直线l 与点M (2,3)和点N (4,-5)的距离相等,则直线l 的方程为________________.解析:易知直线l 的斜率存在,∵直线l 过点P (1,2),∴设l 的方程为y -2=k (x -1),即kx -y -k +2=0.又直线l 与点M (2,3)和点N (4,-5)的距离相等, ∴|2k -3-k +2|k 2+1=|4k +5-k +2|k 2+1, 解得k =-4或k =-32, ∴l 的方程为4x +y -6=0或3x +2y -7=0.答案:4x +y -6=0或3x +2y -7=04.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点________. 解析:由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).答案:(0,2)5.已知点P (0,-1),点Q 在直线x -y +1=0上,若直线P Q 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:设Q(x 0,y 0),因为点Q 在直线x -y +1=0上,所以x 0-y 0+1=0.①又直线x +2y -5=0的斜率k =-12,直线P Q 的斜率k P Q =y 0+1x 0, 所以由直线P Q 垂直于直线x +2y -5=0,得y 0+1x 0·⎝ ⎛⎭⎪⎫-12=-1.② 由①②解得x 0=2,y 0=3,即点Q 的坐标是(2,3).答案:(2,3)6.(2019·某某一模)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且坐标原点O 到直线l 的距离为3,则△AOB 的面积S 的最小值为________.解析:由坐标原点O 到直线l 的距离为3,可得|-1|m 2+n 2=3,化简得m 2+n 2=13. 对直线l :mx +ny -1=0,令x =0,可得y =1n ;令y =0,可得x =1m, 故△AOB 的面积S =12·⎪⎪⎪⎪⎪⎪1m ·1n =12|mn |≥1m 2+n2=3, 当且仅当|m |=|n |=66时,取等号. 故△AOB 的面积S 的最小值为3.答案:37.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以PA 2+PB 2=AB 2=10,所以PA ·PB ≤PA 2+PB 22=5(当且仅当PA =PB =5时,等号成立),当P 与A 或B 重合时,PA ·PB=0,故PA ·PB 的最大值是5.答案:58.将一X 画有直角坐标系的图纸折叠一次,使得点A (0,2)与点B (4,0)重合.若此时点C (7,3)与点D (m ,n )也重合,则m +n 的值是________.解析:由题意知,折痕既是A ,B 的对称轴,也是 C ,D 的对称轴.因为AB 的斜率k AB =0-24-0=-12,AB 的中点为(2,1), 所以图纸的折痕所在的直线方程为y -1=2(x -2),所以k CD =n -3m -7=-12, ① 因为CD 的中点为⎝⎛⎭⎪⎫m +72,n +32, 所以n +32-1=2⎝ ⎛⎭⎪⎫m +72-2. ② 由①②解得m =35,n =315,所以m +n =345. 答案:3459.已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)当l 1∥l 2时,求a 的值;(2)当l 1⊥l 2时,求a 的值.解:(1)法一:当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-ax -(a +1), 由l 1∥l 2可得⎩⎪⎨⎪⎧ -a 2=11-a,-3≠-a +1,解得a =-1. 综上可知,a =-1.法二:由l 1∥l 2知⎩⎪⎨⎪⎧ A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0, 即⎩⎪⎨⎪⎧ a a -1-1×2=0,a a 2-1-1×6≠0⇒⎩⎪⎨⎪⎧ a 2-a -2=0,a a 2-1≠6⇒a =-1.(2)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合;当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎫-a 2·11-a=-1⇒a =23. 法二:因为l 1⊥l 2,所以A 1A 2+B 1B 2=0,即a +2(a -1)=0,得a =23. 10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65, 所以直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.(2019·江阴检测)直线l 经过点P (2,1),且与两坐标轴围成的三角形的面积为S ,如果符合条件的直线l 能作且只能作三条,则S =________.解析:由已知可得直线l 的斜率一定存在且不为零,设直线l 的方程为y -1=k (x -2),则直线l 与坐标轴的交点为(0,1-2k ),⎝ ⎛⎭⎪⎫2-1k ,0, 则S =12|1-2k |·⎪⎪⎪⎪⎪⎪2-1k =⎪⎪⎪⎪⎪⎪2-12k -2k . 如果符合条件的直线l 能作且只能作三条,则关于k 的方程⎪⎪⎪⎪⎪⎪2-12k -2k =S 只有三个解,即4k 2+2(S -2)k +1=0与4k 2-2(S +2)k +1=0,一个有一解,一个有两解,解得S =4.答案:42.(2018·锡山高级中学检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是________.解析:在△ABC 中,由正弦定理a sin A =b sin B ,得b sin B ·sin A ax sin A +ay +c =0的斜率k 1=-sin A a ,bx -y sin B +sin C =0的斜率k 2=b sin B ,因此k 1·k 2=b sin B ·⎝ ⎛⎭⎪⎫-sin A a =-1,所以两条直线垂直.答案:垂直3.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值,并求此时l 的方程.解:(1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0,因为点A (5,0)到l 的距离为3,所以|10+5λ-5|2+λ2+1-2λ2=3,即2λ2-5λ+2=0,所以λ=2或λ=12, 所以直线l 的方程为x =2或4x -3y -5=0.(2)如图,由⎩⎪⎨⎪⎧ 2x +y -5=0,x -2y =0,解得交点P (2,1),过P 作任一直线l ,设d 为点A 到l的距离,则d ≤PA (当l ⊥PA 时等号成立).所以d max =PA =5-22+0-12=10.因为k PA =-13,l ⊥PA ,所以k l =3, 所以直线l 的方程为y -1=3(x -2),即3x -y -5=0.。

高中数学选修一《两条直线平行和垂直的判定》教案与导学案和同步练习

高中数学选修一《两条直线平行和垂直的判定》教案与导学案和同步练习

《2.1.2 两条直线平行和垂直的判定》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习两条直线平行和垂直的判定。

直线的平行和垂直是两条直线的重要位置关系,它们的判定在初中运用几何法已经进行了学习,而在坐标系下,运用代数方法即坐标法,是一种新的观点和方法,需要学生理解和感悟。

两直线平行和垂直都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明.【教学目标与核心素养】课程目标学科素养A. 理解两条直线平行与垂直的条件.B.能根据斜率判定两条直线平行或垂直.C.能利用两直线平行或垂直的条件解决问题.1.数学抽象:两条直线平行与垂直的条件2.逻辑推理:根据斜率判定两条直线平行或垂直3.数学运算:利用两直线平行或垂直的条件解决问题4.直观想象:直线斜率的几何意义,及平行与垂直的几何直观【教学重点】:理解两条直线平行或垂直的判断条件【教学难点】:会利用斜率判断两条直线平行或垂直【教学过程】教学过程教学设计意图一、情境导学过山车是一项富有刺激性的娱乐项通过生活中的现实情境,提出问题,明确研究问题运用代数方法探究两直线判断两直线是否平行的步骤例2(1)直线l 1经过点A (3,2),B (3,-1),直线l 2经过点M (1,1),N (2,1),判断l 1与l 2是否垂直;(2)已知直线l 1经过点A (3,a ),B (a-2,3),直线l 2经过点C (2,3),D (-1,a-2),若l 1⊥l 2,求a 的值.思路分析:(1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条直线的斜率是否为0,若为0,则垂直. (2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.解:(1)直线l 1的斜率不存在,直线l 2的斜率为0,所以l 1⊥l 2.(2)由题意,知直线l 2的斜率k 2一定存在,直线l 1的斜率可能不存在. 当直线l 1的斜率不存在时,3=a-2,即a=5,此时k 2=0,则l 1⊥l 2,满足题意.当直线l 1的斜率k 1存在时,a ≠5,由斜率公式,得k 1=3-aa -2-3=3-a a -5,k 2=a -2-3-1-2=a -5-3.由l 1⊥l 2,知k 1k 2=-1,即3-aa -5×a -5-3=-1,解得a=0. 综上所述,a 的值为0或5.两直线垂直的判定方法两条直线垂直需判定k 1k 2=-1,使用它的前提条件是两条直线斜率都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两直线也垂直.跟踪训练1 已知定点A (-1,3),B (4,2),以AB 为直径作圆,与x 轴有交点P ,则交点P 的坐标是 . 解析:设以AB 为直径的圆与x 轴的交点为P (x ,0).∵k PB≠0,k PA≠0,∴k PA·k PB=-1,即0-3x+1·0-2x -4=-1,∴(x+1)(x-4)=-6,即x 2-3x+2=0,解得x=1或x=2.故点P 的坐标为(1,0)或(2,0). 答案:(1,0)或(2,0)例3 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t>0.试判断四边形OPQR 的形状.思路分析:利用直线方程的系数关系,或两直线间的斜率关系,判断两直线的位置关系.解:由斜率公式得k OP =t -01-0=t ,k RQ =2-(2+t )-2t -(1-2t )=-t -1=t ,k OR =2-0-2t -0=-1t , k PQ =2+t -t 1-2t -1=2-2t =-1t .所以k OP =k RQ ,k OR =k PQ ,从而OP ∥RQ ,OR ∥PQ.所以四边形OPQR 为平行四边形. 又k OP·k OR=-1,所以OP ⊥OR ,故四边形OPQR 为矩形.延伸探究1 将本例中的四个点,改为“A (-4,3),B (2,5),C (6,3),D (-3,0),顺次连接A ,B ,C ,D 四点,试判断四边形ABCD 的形状.” 由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12. 所以k AB=k CD,由图可知AB 与CD 不重合,所以AB ∥CD ,由k AD≠k BC,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.解:由题意A ,B ,C ,D 四点在平面直角坐标系内的位置如图, 延伸探究2 将本例改为“已知矩形OPQR 中四个顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),试求顶点R 的坐标.” 解:因为OPQR 为矩形,所以OQ 的中点也是PR 的中点.设R (x ,y ),则由中点坐标公式知{0+1-2t2=1+x 2,0+2+t2=t+y 2,解得{x =-2t ,y =2.所以R 点的坐标是(-2t ,2).利用两条直线平行或垂直来判断图形形状的步骤 描点→在坐标系中描出给定的点 ↓猜测→根据描出的点,猜测图形的形状 ↓求斜率→根据给定点的坐标求直线的斜率 ↓结论→由斜率之间的关系判断形状点睛:利用平行、垂直关系式的关键在于正确求解斜率,特别是含参数的问题,必须要分类讨论;其次要注意的是斜率不存在并不意味着问题无解.金题典例 已知点A (0,3),B (-1,0),C (3,0),且四边形ABCD 为直角梯形,求点D 的坐标.思路分析:分析题意可知,AB 、BC 都不可作为直角梯形的直角边,所以要考虑CD 是直角梯形的直角边和AD 是直角梯形的直角边这两种情况;设所求点D 的坐标为(x ,y ),若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,根据已知可得k BC=0,CD 的斜率不存在,从而有x=3;接下来再根据k AD=k BC即可得到关于x 、y 的方程,结合x 的值即可求出y ,那么点D 的坐标便不难确定了,同理再分析AD 是直角梯形的直角边的情况.解:设所求点D 的坐标为(x ,y ),如图所示,由于k AB=3,k BC=0,则k AB·k BC=0≠-1,即AB 与BC 不垂直,故AB 、BC 都不可作为直角梯形的直角边.①若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,∵k BC=0,∴CD 的斜率不存在,从而有x=3.又∵k AD =k BC ,∴y -3x=0,即y=3.此时AB 与CD 不平行.故所求点D 的坐标为(3,3).②若AD 是直角梯形的直角边,则AD ⊥AB ,AD ⊥CD ,k AD =y -3x,k CD =yx -3.由于AD ⊥AB ,则y -3x·3=-1.又AB ∥CD ,∴y x -3=3.解上述两式可得{x =185,y =95,此时AD 与BC 不平行.故所求点D 的坐标为185,95.综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)或185,95.反思感悟:先由图形判断四边形各边的关系,再由斜率之间的关系完成求解.特别地,注意讨论所求问题的不同情况.四、小结【教学反思】本课通过探究两直线平行或垂直的条件,力求培养学生运用已有知识解决新问题的能力,以及数形结合能力.通过对两直线平行与垂直的位置关系的研究,培养了学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.组织学生充分讨论、探究、交流,使学生自己发现规律,自己总结出两直线平行与垂直的判定依据,教师要及时引导、及时鼓励. 教师的授课的想办法降低教学难度,让学生能轻易接受《2.1.2 两条直线平行和垂直的判定》导学案【学习目标】1.理解两条直线平行与垂直的条件.2.能根据斜率判定两条直线平行或垂直.3.能利用两直线平行或垂直的条件解决问题. 【重点和难点】重点:理解两条直线平行或垂直的判断条件 难点:会利用斜率判断两条直线平行或垂直 【知识梳理】 一、自主导学(一)、两条直线平行与斜率之间的关系设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:前提条件 α1=α2≠90° α1=α2=90°对应关系l 1∥l 2⇔k 1=k 2l 1∥l 2⇔两直线斜率都不存在图 示点睛:若没有指明l 1,l 2不重合,那么k 1=k 2⇔{l 1∥l 2,或l 1与l 2重合,用斜率证明三点共线时,常用到这一结论.(二)、两条直线垂直与斜率之间的关系对应关系l 1与l 2的斜率都存在,分别为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1l 1与l 2中的一条斜率不存在,另一条斜率为零,则l 1与l 2的位置关系是l 1⊥l 2.图示点睛:“两条直线的斜率之积等于-1”是“这两条直线垂直”的充分不必要条件.因为两条直线垂直时,除了斜率之积等于-1,还有可能一条直线的斜率为0,另一条直线的斜率不存在.二、小试牛刀1.对于两条不重合的直线l 1,l 2,“l 1∥l 2”是“两条直线斜率相等”的什么条件?2.已知直线l 1经过两点(-1,-2),(-1,4),直线l 2经过两点(2,1),(x ,6),且l 1∥l 2,则x= .3.思考辨析(1)若两条直线的斜率相等,则这两条直线平行.( ) (2)若l 1∥l 2,则k 1=k 2.( )(3)若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直.( )(4)若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.( )4.若直线l 1,l 2的斜率是方程x 2-3x-1=0的两根,则l 1与l 2的位置关系是 .【学习过程】 一、情境导学过山车是一项富有刺激性的娱乐项目.实际上,过山车的运动包含了许多数学和物理学原理.过山车的两条铁轨是相互平行的轨道,它们靠着一根根巨大的柱形钢筋支撑着,为了使设备安全,柱子之间还有一些小的钢筋连接,这些钢筋有的互相平行,有的互相垂直,你能感受到过山车中的平行和垂直吗?两条直线的平行与垂直用什么来刻画呢?二、典例解析例1 判断下列各小题中的直线l 1与l 2是否平行:(1)l 1经过点A (-1,-2),B (2,1),l 2经过点M (3,4),N (-1,-1);(2)l 1的斜率为1,l 2经过点A (1,1),B (2,2);(3)l 1经过点A (0,1),B (1,0),l 2经过点M (-1,3),N (2,0);(4)l 1经过点A (-3,2),B (-3,10),l 2经过点M (5,-2),N (5,5).延伸探究 已知A (-2,m ),B (m ,4),M (m+2,3),N (1,1),若AB ∥MN ,则m 的值为 . 判断两直线是否平行的步骤例2(1)直线l 1经过点A (3,2),B (3,-1),直线l 2经过点M (1,1),N (2,1),判断l 1与l 2是否垂直;(2)已知直线l 1经过点A (3,a ),B (a-2,3),直线l 2经过点C (2,3),D (-1,a-2),若l 1⊥l 2,求a的值.两直线垂直的判定方法条直线垂直需判定k 1k 2=-1,使用它的前提条件是两条直线斜率都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两直线也垂直.跟踪训练1 已知定点A (-1,3),B (4,2),以AB 为直径作圆,与x 轴有交点P ,则交点P 的坐标是 .例3 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t>0.试判断四边形OPQR 的形状.延伸探究1 将本例中的四个点,改为“A (-4,3),B (2,5),C (6,3),D (-3,0),顺次连接A ,B ,C ,D 四点,试判断四边形ABCD 的形状.”延伸探究2 将本例改为“已知矩形OPQR 中四个顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),试求顶点R的坐标.”利用两条直线平行或垂直来判断图形形状的步骤描点→在坐标系中描出给定的点↓猜测→根据描出的点,猜测图形的形状↓求斜率→根据给定点的坐标求直线的斜率↓结论→由斜率之间的关系判断形状点睛:利用平行、垂直关系式的关键在于正确求解斜率,特别是含参数的问题,必须要分类讨论;其次要注意的是斜率不存在并不意味着问题无解.金题典例已知点A(0,3),B(-1,0),C(3,0),且四边形ABCD为直角梯形,求点D的坐标.反思感悟:先由图形判断四边形各边的关系,再由斜率之间的关系完成求解.特别地,注意讨论所求问题的不同情况.【达标检测】1.下列说法正确的是( )A.若直线l1与l2倾斜角相等,则l1∥l2B.若直线l1⊥l2,则k1k2=-1C.若直线的斜率不存在,则这条直线一定平行于y轴D.若两条直线的斜率不相等,则两直线不平行2.若直线l1的斜率为a,l1⊥l2,则直线l2的斜率为()A.1a B.a C.-1aD.-1a或不存在3.已知直线l1的倾斜角为45°,直线l1∥l2,且l2过点A(-2,-1)和B(3,a),则a的值为.4.已知△ABC的三个顶点分别是A(2,2),B(0,1),C(4,3),点D(m,1)在边BC的高所在的直线上,则实数m= .5.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)四点,判断四边形ABCD 形状. 【课堂小结】【参考答案】 知识梳理 二、小试牛刀1.答案:必要不充分条件,如果两不重合直线斜率相等,则两直线一定平行;反过来,两直线平行,有可能两直线斜率均不存在.2.解析:由题意知l 1⊥x 轴.又l 1∥l 2,所以l 2⊥x 轴,故x=2. 答案:23.答案: (1)× 也可能重合.(2)× l 1∥l 2,其斜率不一定存在. (3)× 不一定垂直,只有另一条直线斜率为0时才垂直.(4)√ 4.解析:由根与系数的关系,知k 1k 2=-1,所以l 1⊥l 2. 答案:l 1⊥l 2 学习过程例1 思路分析: 斜率存在的直线求出斜率,利用l 1∥l 2⇔k 1=k 2进行判断,若两直线斜率都不存在,可通过观察并结合图形得出结论.解:(1)k 1=1-(-2)2-(-1)=1,k 2=-1-4-1-3=54,k 1≠k 2,l 1与l 2不平行. (2)k 1=1,k 2=2-12-1=1,k 1=k 2, 故l 1∥l 2或l 1与l 2重合.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,则有k 1=k 2.又k AM =3-1-1-0=-2≠-1,则A ,B ,M 不共线.故l 1∥l 2.(4)由已知点的坐标,得l 1与l 2均与x 轴垂直且不重合,故有l 1∥l 2.延伸探究 解析:当m=-2时,直线AB 的斜率不存在,而直线MN 的斜率存在,MN 与AB 不平行,不合题意;当m=-1时,直线MN 的斜率不存在,而直线AB 的斜率存在,MN 与AB 不平行,不合题意; 当m ≠-2,且m ≠-1时,k AB =4-mm -(-2)=4-mm+2,k MN =3-1m+2-1=2m+1.因为AB ∥MN ,所以k AB =k MN , 即4-m m+2=2m+1,解得m=0或m=1.当m=0或1时,由图形知,两直线不重合. 综上,m 的值为0或1. 答案:0或1例2思路分析:(1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条直线的斜率是否为0,若为0,则垂直.(2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.解:(1)直线l 1的斜率不存在,直线l 2的斜率为0,所以l 1⊥l 2.(2)由题意,知直线l 2的斜率k 2一定存在,直线l 1的斜率可能不存在.当直线l 1的斜率不存在时,3=a-2,即a=5,此时k 2=0,则l 1⊥l 2,满足题意.当直线l 1的斜率k 1存在时,a ≠5,由斜率公式,得k 1=3-a a -2-3=3-a a -5,k 2=a -2-3-1-2=a -5-3.由l 1⊥l 2,知k 1k 2=-1,即3-aa -5×a -5-3=-1,解得a=0.综上所述,a 的值为0或5.跟踪训练1 解析:设以AB 为直径的圆与x 轴的交点为P (x ,0).∵k PB≠0,k PA≠0,∴k PA·k PB=-1,即0-3x+1·0-2x -4=-1,∴(x+1)(x-4)=-6,即x 2-3x+2=0,解得x=1或x=2.故点P 的坐标为(1,0)或(2,0). 答案:(1,0)或(2,0)例3 思路分析:利用直线方程的系数关系,或两直线间的斜率关系,判断两直线的位置关系.解:由斜率公式得k OP =t -01-0=t ,k RQ =2-(2+t )-2t -(1-2t )=-t -1=t ,k OR =2-0-2t -0=-1t , k PQ =2+t -t 1-2t -1=2-2t =-1t .所以k OP =k RQ ,k OR =k PQ ,从而OP ∥RQ ,OR ∥PQ.所以四边形OPQR 为平行四边形. 又k OP·k OR=-1,所以OP ⊥OR ,故四边形OPQR 为矩形. 延伸探究1 由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12. 所以k AB=k CD,由图可知AB 与CD 不重合,所以AB ∥CD ,由k AD≠k BC,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.解:由题意A ,B ,C ,D 四点在平面直角坐标系内的位置如图, 延伸探究2 解:因为OPQR 为矩形,所以OQ 的中点也是PR 的中点.设R (x ,y ),则由中点坐标公式知{0+1-2t2=1+x 2,0+2+t2=t+y 2,解得{x =-2t ,y =2.所以R 点的坐标是(-2t ,2).金题典例 思路分析:分析题意可知,AB 、BC 都不可作为直角梯形的直角边,所以要考虑CD 是直角梯形的直角边和AD 是直角梯形的直角边这两种情况;设所求点D 的坐标为(x ,y ),若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,根据已知可得k BC=0,CD 的斜率不存在,从而有x=3;接下来再根据k AD=k BC即可得到关于x 、y 的方程,结合x 的值即可求出y ,那么点D 的坐标便不难确定了,同理再分析AD 是直角梯形的直角边的情况. 解:设所求点D 的坐标为(x ,y ),如图所示,由于k AB=3,k BC=0,则k AB·k BC=0≠-1,即AB 与BC 不垂直,故AB 、BC 都不可作为直角梯形的直角边.①若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,∵k BC=0,∴CD 的斜率不存在,从而有x=3.又∵k AD =k BC ,∴y -3x=0,即y=3.此时AB 与CD 不平行.故所求点D 的坐标为(3,3).②若AD 是直角梯形的直角边, 则AD ⊥AB ,AD ⊥CD ,k AD =y -3x,k CD =yx -3.由于AD ⊥AB ,则y -3x·3=-1.又AB ∥CD ,∴y x -3=3.解上述两式可得{x =185,y =95,此时AD 与BC 不平行.故所求点D 的坐标为185,95.综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)或185,95.达标检测1. 解析:A 中,l 1与l 2可能重合;B 中,l 1,l 2可能存在其一没斜率;C 中,直线也可能与y 轴重合;D 正确,选D.答案 D2. 解析:若a ≠0,则l 2的斜率为-1a ;若a=0,则l 2的斜率不存在.答案:D3.解析:由题意,得a -(-1)3-(-2)=1,即a=4. 答案:44.解析:设直线AD ,BC 的斜率分别为k AD ,k BC ,由题意,得AD ⊥BC , 则有k AD ·k BC =-1,所以有1-2m -2·3-14-0=-1,解得m=52. 答案:525.解:k AB =13,k BC =-12,k CD =13,k AD =-3, 所以直线AD 垂直于直线AB 与CD ,而且直线BC 不平行于任何一条直线,所以四边形ABCD 是直角梯形.《2.1.2 两条直线平行和垂直的判定 -基础练》同步练习一、选择题1.下列说法中正确的是( ) A .若直线与的斜率相等,则 B .若直线与互相平行,则它们的斜率相等C .在直线与中,若一条直线的斜率存在,另一条直线的斜率不存在,则与定相交D .若直线与的斜率都不存在,则2.过点和点的直线与轴的位置关系是( ) A .相交但不垂直B .平行C .重合D .垂直3.已知直线经过,两点,直线的倾斜角为,那么与( ) A .垂直B .平行C .重合D .相交但不垂直4.已知的三个顶点坐标分别为,,,则其形状为( ) A .直角三角形B .锐角三角形C .钝角三角形D .无法判断5.(多选题)下列说法错误..的是( ) A .平行的两条直线的斜率一定存在且相等 B .平行的两条直线的倾斜角一定相等 C .垂直的两条直线的斜率之积为一1 D .只有斜率都存在且相等的两条直线才平行6.(多选题)已知A(m ,3),B(2m ,m+4),C(m+1,2),D(1,0),且直线AB 与直线CD 平行,则m 的值为 ( )A .1B .0C .2D .-1 二、填空题7.已知直线l 1的斜率为3,直线l 2经过点A (1,2),B (2,a ),若直线l 1∥l 2,则a =_____;若直线l 1⊥l 2,则a =_______1l 2l 12l l //1l 2l 1l 2l 1l 2l 1l 2l 12l l //(1,2)A ()3,2B -x 1l ()3,4A -()8,1B --2l 1351l 2l ABC ∆()5,1A -()1,1B ()2,3C8.直线的倾斜角为,直线过,,则直线与的位置关系为______.9.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为 . 10.已知,,,点满足,且,则点的坐标为______ 三、解答题11.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 12.已知在平行四边形ABCD 中,. (1)求点D 的坐标;(2)试判断平行四边形ABCD 是否为菱形.《2.1.2 两条直线平行和垂直的判定 -基础练》同步练习答案解析一、选择题1.下列说法中正确的是( ) A .若直线与的斜率相等,则 B .若直线与互相平行,则它们的斜率相等C .在直线与中,若一条直线的斜率存在,另一条直线的斜率不存在,则与定相交D .若直线与的斜率都不存在,则 【答案】C【解析】对于A, 若直线与的斜率相等,则或与重合;对于B ,若直线与互相平行,则它们的斜率相等或者斜率都不存在;对于D ,若与的斜率都不存在,则1l 452l ()2,1A --()3,4B 1l 2l 1,0A ()3,2B ()0,4C D AB CD ⊥//AD BC D (1,2),(5,0),(3,4)A B C 1l 2l 12l l //1l 2l 1l 2l 1l 2l 1l 2l 12l l //1l 2l 12l l //1l 2l 1l 2l 1l 2l 12l l //或与重合.2.过点和点的直线与轴的位置关系是( ) A .相交但不垂直 B .平行C .重合D .垂直【答案】B【解析】两点的纵坐标都等于 直线方程为:直线与轴平行.3.已知直线经过,两点,直线的倾斜角为,那么与( ) A .垂直 B .平行C .重合D .相交但不垂直【答案】A 【解析】直线经过,两点 直线的斜率: 直线的倾斜角为 直线的斜率:,,.4.已知的三个顶点坐标分别为,,,则其形状为( ) A .直角三角形 B .锐角三角形C .钝角三角形D .无法判断【答案】A【解析】由题意得:;,, , 为直角三角形.5.(多选题)下列说法错误..的是( ) A .平行的两条直线的斜率一定存在且相等 B .平行的两条直线的倾斜角一定相等 C .垂直的两条直线的斜率之积为一1 D .只有斜率都存在且相等的两条直线才平行 【答案】ACD【解析】当两直线都与轴垂直时,两直线平行,但它们斜率不存在.所以A 错误.由直线倾斜角定义可知B 正确,当一条直线平行轴,一条平行轴,两直线垂直,但斜率之积不为-1,所以C 错误,当两条直线斜率都不存在时,两直线平行,所以D 错误,故选B . 6.(多选题)已知A(m ,3),B(2m ,m+4),C(m+1,2),D(1,0),且直线AB 与直线CD 平行,1l 2l (1,2)A ()3,2B -x ,A B 2∴AB 2y =∴AB x 1l ()3,4A -()8,1B --2l 1351l 2l 1l ()3,4A -()8,1B --∴1l 141138k +==-+2l 135∴2l 2tan1351k ==-121k k ∴⋅=-12l l ∴⊥ABC ∆()5,1A -()1,1B ()2,3C 111152AB k +==--31221BC k -==-1AB BC k k ∴⋅=-AB BC ∴⊥ABC ∆∴x x y则m 的值为 ( )A .1B .0C .2D .-1 【答案】AB【解析】 当AB 与CD 斜率均不存在时, 故得m=0,此时两直线平行;此时AB ∥CD ,当k AB =k CD 时,,得到m=1,此时AB ∥CD.故选AB . 二、填空题7.已知直线l 1的斜率为3,直线l 2经过点A (1,2),B (2,a ),若直线l 1∥l 2,则a =_____;若直线l 1⊥l 2,则a =_______ 【答案】5;. 【解析】直线l 2的斜率k==a ﹣2.(1)∵l 1∥l 2,∴a ﹣2=3,即a =5 (2)∵直线l 1⊥l 2,∴3k=﹣1,即3(a ﹣2)=﹣1,解得a=.8.直线的倾斜角为,直线过,,则直线与的位置关系为______.【答案】平行或重合【解析】倾斜角为, 的斜率,过点, , 的斜率,, 与平行或重合. 9.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为 . 【答案】(0,-6)或(0,7)【解析】设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,又k AP =,k BP =,k AP ·k BP =-1,所以·=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).10.已知,,,点满足,且,则点的坐标为______ 【答案】2,11m m m =+=12m m m+=53221a --531l 452l ()2,1A --()3,4B 1l 2l 1l 451l ∴11k =2l ()2,1A --()3,4B 2l ∴241132k +==+12k k =1l ∴2l 1,0A ()3,2B ()0,4C D AB CD ⊥//AD BC D ()10,6-【解析】设,则,,, ,,解得:,即: 三、解答题11.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 【解析】 (1)k 1=-10,k 2==,∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴,k 2==0,则l 2∥x 轴,∴l 1⊥l 2. (3)k 1==-1,k 2==-1,∴k 1=k 2.又k AM ==-2≠k 1,∴l 1∥l 2.(4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.12.已知在平行四边形ABCD 中,. (1)求点D 的坐标;(2)试判断平行四边形ABCD 是否为菱形.【解析】(1)设D (a ,b ),∵四边形ABCD 为平行四边形, ∴k AB =k CD ,k AD =k BC ,∴,解得.∴D (-1,6).(2)∵k AC ==1,k BD ==-1,∴k AC ·k BD =-1.∴AC ⊥BD .∴▱ABCD 为菱形.(),D x y 2131AB k ==-422033BC k -==--4CD y k x -=1AD y k x =-AB CD ∵⊥//AD BC 411213AB CD AD BCy k k xy k k x -⎧⋅=⨯=-⎪⎪∴⎨⎪===-⎪-⎩106x y =⎧⎨=-⎩()10,6D -(1,2),(5,0),(3,4)A B C《2.1.2 两条直线平行和垂直的判定 -提高练》同步练习一、选择题1.下列各对直线不互相垂直的是 ( )A .l 1的倾斜角为120°,l 2过点P(1,0),Q(4)B .l 1的斜率为-,l 2过点P(1,1),QC.l 1的倾斜角为30°,l2过点P(3,Q(4,D .l 1过点M(1,0),N(4,-5),l 2过点P(-6,0),Q(-1,3)2.已知,过A (1,1)、B (1,-3)两点的直线与过C (-3,m )、D (n,2)两点的直线互相垂直,则点(m ,n )有 ( ) A .1个B .2个C .3个D .无数个3.过点和点的直线与过点和点的直线的位置关系是( )A .平行B .重合C .平行或重合D .相交或重合4.已知的顶点,,其垂心为,则其顶点的坐标为( )A .B .C .D .5.(多选题)下列命题中正确的为( ) A.若两条不重合的直线的斜率相等,则它们平行; B.若两直线平行,则它们的斜率相等; C.若两直线的斜率之积为,则它们垂直; D.若两直线垂直,则它们的斜率之积为.6.(多选题)设点,给出下面四个结论,其中正确结论的是( )A. B. C. D. 二、填空题7.已知△ABC 的三个顶点坐标分别为A (2,4),B (1,2),C (-2,3),则BC 边上的高AD2310,2⎛⎫- ⎪⎝⎭(1,1)E (1,0)F -,02k M ⎛⎫- ⎪⎝⎭0,(0)4k N k ⎛⎫≠ ⎪⎝⎭ABC ∆()2,1B ()6,3C -()3,2H -A ()19,62--()19,62-()19,62-()19,621-1-(4,2),(6,4),(12,6),(2,12)P Q R S --//SR PQ PQ PS ⊥//PS QS RP QS ⊥所在直线的斜率为________.8.已知直线l 1经过点A (0,-1)和点B (-,1),直线l 2经过点M (1,1)和点N (0,-2),若l 1与l 2没有公共点,则实数a 的值为________.9.(1)已知点M(1,-3),N(1,2),P(5,y),且∠NMP=90°,则l og 8(7+y)=_________. (2)若把本题中“∠NMP=90°”改为“log 8(7+y)=”,其他条件不变,则∠NMP=_____. 10.若点,,点C 在坐标轴上,使,则点C 的坐标为__________.三、解答题11.已知,,三点,若直线AB 的倾斜角为,且直线,求点A ,B ,C 的坐标.12.已知四边形ABCD 的顶点A (m ,n )、B (5,-1)、C (4,2)、D (2,2),求m 和n 的值,使四边形ABCD 为直角梯形.《2.1.2 两条直线平行和垂直的判定 -提高练》同步练习答案解析一、选择题1.下列各对直线不互相垂直的是 ( )A .l 1的倾斜角为120°,l 2过点P(1,0),Q(4) B .l 1的斜率为-,l 2过点P(1,1),QC.l 1的倾斜角为30°,l2过点P(3,Q(4,D .l1过点M(1,0),N(4,-5),l 2过点P(-6,0),Q(-1,3) 【答案】C【解析】A .l 1的倾斜角为120°,l 2过点P(1,0),Q(4,,k PQ =B .l 2过点P(1,1),Q ,k PQ =。

垂直的定理

垂直的定理

垂直的定理垂直的定理是几何学中的一条重要定理,也是解决几何问题的基础。

它是指在一个平面内,如果两条直线互相垂直,则它们的斜率之积等于-1。

这个定理在解决垂直关系问题时非常有用,可以帮助我们判断两条直线是否垂直,或者通过已知条件求解未知量。

我们来看一下垂直的定理的表达方式。

假设有两条直线L1和L2,它们的斜率分别为k1和k2。

如果L1和L2互相垂直,则有k1 * k2 = -1。

这个等式说明了两条直线互相垂直的条件。

根据垂直的定理,我们可以解决一些常见的几何问题。

例如,已知一条直线L1上的两个点A和B,以及另一条直线L2上的一个点C,我们需要确定L2在哪个位置与L1垂直相交。

首先,我们可以计算L1的斜率k1,然后根据垂直的定理,可以得到L2的斜率k2 = -1 / k1。

接下来,我们可以利用已知点C和斜率k2,求解L2的方程。

通过求解L1和L2的交点,我们可以确定L2与L1的垂直相交点。

除了解决垂直关系问题外,垂直的定理还可以帮助我们证明一些几何定理。

例如,我们可以利用垂直的定理证明两条平行线的斜率相等。

假设有两条平行线L1和L2,它们的斜率分别为k1和k2。

由于L1和L2平行,它们与一条垂直于它们的直线L3的斜率相等。

根据垂直的定理,我们可以得到k1 * k3 = -1和k2 * k3 = -1。

由于k3相等,我们可以得到k1 = k2,从而证明了两条平行线的斜率相等。

垂直的定理还可以应用于三角形的垂心、高线和垂直平分线等相关问题。

例如,已知一个三角形ABC,我们需要确定三条高线的交点H,可以利用垂直的定理来解决。

首先,我们可以找到三条高线所在的直线L1、L2和L3,它们分别通过顶点A、B和C,并且与对边BC、AC和AB垂直相交。

然后,根据垂直的定理,我们可以计算出L1、L2和L3的斜率。

通过求解这三条直线的交点,我们可以确定高线的交点H,即三角形的垂心。

在实际应用中,垂直的定理也可以用于解决一些实际问题。

两直线垂直的斜率公式

两直线垂直的斜率公式

两直线垂直的斜率公式一、斜率的定义要理解两直线垂直的斜率公式,首先需要了解直线的斜率的定义。

在平面几何中,直线的斜率是直线上两个点之间纵坐标差与横坐标差的比值。

设直线通过点(x1,y1)和(x2,y2),则直线的斜率m可以表示为:m=(y2-y1)/(x2-x1)(1)其中,x2-x1≠0,否则直线会退化成一条竖直的线。

二、两直线垂直的条件在笛卡尔坐标系中,两条直线垂直的条件是它们的斜率的乘积等于-1、设直线1的斜率为m1,直线2的斜率为m2,则两条直线垂直的条件可以表示为:m1*m2=-1(2)即两直线的斜率之积为-1三、推导垂直斜率公式现在我们来推导两直线垂直的斜率公式。

假设有两条直线,直线1通过点(x1,y1)和(x2,y2),斜率为m1;直线2通过点(x3,y3)和(x4,y4),斜率为m2根据定义,直线1和直线2分别可以表示为:直线1:y=m1*x+c1(3)直线2:y=m2*x+c2(4)其中,c1和c2分别是直线1和直线2的截距。

现在我们来推导直线1和直线2的斜率之积等于-1首先,将方程(3)和方程(4)中的y值相等,得到:m1*x+c1=m2*x+c2移项整理得到:(m1-m2)*x=c2-c1如果直线1和直线2不平行,那么m1≠m2,所以x=(c2-c1)/(m1-m2)。

另外,直线1和直线2垂直,根据条件(2)可以得到:m1*m2=-1将m1和m2的值代入,得到:m1*(-1/m1)=-1所以,推导出来的斜率之积为-1综上所述,我们得到了两直线垂直的斜率公式:如果两直线的斜率分别为m1和m2,并且m1*m2=-1,那么这两条直线垂直。

这就是两直线垂直的斜率公式。

值得注意的是,斜率公式只适用于非垂直于x轴的直线。

对于垂直于x轴的直线,斜率是不存在的,因为这条直线的x坐标不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用几何方法证明坐标平面内互相垂直的两直线的斜率之积等于
文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)
用几何方法证明“坐标平面内,两直线互相垂直时,它们的斜率的乘积
等于-1”
证明:如图,直线y 1=k 1x 和直线y 2=k 2x 互相垂直,
过直线y 1=k 1x 上任意一点A 做AC ⊥x 轴于点C ,
在直线y 2=k 2x 上取一点B 使OB=OA ,过B 点做BD ⊥x 轴于点D , 则∠ACO=∠BDO=90
又∵∠AOB=90°, ∴∠AOC+∠BOD=90∵∠ACO=90°, ∴∠AOC+∠OAC=90∴∠OAC=∠BOD ,
∴△AOC ≌△BOD (AAS 设OC=a ,则BD=OC=a 1∵点B 在第二象限,
∴点B 的坐标是(-k 1a ,a ), 把点B 坐标代入直线y 2=k 2x , 得:a=k 2×(-k 1a ), ∴k 1k 2=-1. 应用举例:
如图,直线AB 交x 轴于点A (a ,0),交y 轴于点B
若点C 坐标为(0,b ),且a 、b 满足()()0422=-++a b a .(-1,0),且AH ⊥BC 于点H ,AH 交PB 于点
P ,试求点P 坐
标.
解:由()()0422=-++a b a 易得:a=4,b=-4,
∴点B 坐标为(0,-4), ∵点C 坐标为(-1,0), ∴线段BC 的解析式为y=-4x-4, ∵AH ⊥BC ,
∴线段AH 的斜率为4
1, 因为点A 坐标为(4,0), 易得线段AH 的解析式为14
1
-=
x y , 所以点P 的坐标为(0,-1).
当然,该题利用全等三角形的知识解决起来会更简便一些。

这留给同学们自己来解答.。

相关文档
最新文档