肠道菌群和自闭症
肠道菌群与健康的紧密关系

肠道菌群与健康的紧密关系肠道菌群是指寄居在人体肠道中的微生物群落,包括细菌、真菌、病毒等多种微生物。
近年来,研究发现肠道菌群对人体健康起着重要作用。
它与免疫系统、消化系统以及心理健康等方面密切相关,通过调节身体的代谢功能和免疫反应来影响人体的整体健康。
一、肠道菌群与免疫系统肠道菌群与免疫系统之间的相互作用在科学界引起了广泛的关注。
正常情况下,肠道菌群能够维护免疫系统的稳定性,并参与身体对外界环境中微生物和抗原的应答过程。
首先,肠道菌群可以促进免疫系统的发育和功能成熟。
早期接触到来自母亲产道中的微生物有助于婴儿免疫系统的正常发展,并建立正确的免疫应答机制。
其次,良好平衡的肠道菌群能够防止致病菌的侵袭。
肠道内存在着大量益生菌,它们可以占据肠道的生态位,减少致病菌的滋生和传播,从而保护免疫系统。
最后,肠道菌群通过激活免疫细胞和分泌免疫因子来调节免疫反应。
例如,一些益生菌能够促进产生多种免疫因子,如干扰素和白细胞介素等。
这些免疫因子能够增强机体对抗感染的能力,并减少过度的免疫反应。
二、肠道菌群与消化系统肠道菌群在人体消化系统中起到至关重要的作用。
它参与食物消化、营养吸收以及废物排泄等多个环节。
首先,在食物消化过程中,肠道菌群可分解食物中难以消化的纤维素、低聚糖等成分。
这些微生物会产生大量酶来帮助分解食物并释放出有益营养素供人体吸收利用。
其次,肠道菌群可以合成某些维生素和氨基酸。
例如,肠道内的某些菌群能够合成维生素B12和叶酸等重要营养物质,补充人体可能缺乏的这些营养素。
最后,肠道菌群对维持肠道黏膜屏障的完整性至关重要。
肠道黏膜是保护肠道不受有害微生物入侵和毒素损害的第一道防线。
正常情况下,良好平衡的菌群能够增强肠道黏膜的完整性,并减少炎症反应的发生。
三、肠道菌群与心理健康近年来,越来越多的研究发现肠道菌群与心理健康之间存在紧密联系。
而这个联系主要通过“肠-脑轴”来实现。
首先,在“肠-脑轴”中,通过一系列神经递质和激素信号传导作用,肠道菌群可以影响大脑功能。
从肠道菌群-肠-脑轴调控角度探讨针刺长强穴治疗孤独症谱系障碍机制

福建中医药2024 年1 月第55 卷第1期Fujian Journal of TCM January 2024,55(1)从肠道菌群-肠-脑轴调控角度探讨针刺长强穴治疗孤独症谱系障碍机制卜婉萍1,林栋2*(1.泉州医学高等专科学校,福建泉州 362011;2.福建中医药大学针灸学院,福建福州 350122)摘要:近年来研究发现孤独症谱系障碍(ASD)的发病机制与肠道菌群有关,肠道菌群可通过肠-脑轴对机体的生理、病理过程产生多途径调控作用,ASD患者常存在肠道菌群失调,影响机体的神经发育及行为认知。
针刺长强穴具有醒脑开窍、安神定志之功,可改善ASD患者的学习、记忆能力等。
笔者基于“肠脑同治”中医理论,从肠道菌群-肠-脑轴调控角度分析认为针刺长强穴治疗ASD的具体调节途径分别为:参与调节肠脑神经通路、调节下丘脑-垂体-肾上腺轴(HPA)。
关键词:孤独症谱系障碍;肠道菌群-肠-脑轴;长强穴孤独症谱系障碍(autism spectrum disorder,ASD)属于复杂的神经系统发育障碍性疾病,随着生活节奏及大环境的改变,患有ASD的人群日益攀升。
美国最新流行病学调查显示ASD的发病率约2.3%[1],最新数据显示我国ASD的发病率也达到1%左右[2]。
然而对ASD发病机制的认识并不清楚,目前主流观点认为其病因与遗传及环境因素交互作用相关[3]。
罹患ASD给患儿的生活及其家庭带来沉重的负担,因此ASD的治疗显得尤为重要。
长强穴作为督脉上的起始穴位,是督脉经气初始的地方,具有醒脑开窍、安神定志的功效,常被用于ASD的相关治疗[4]。
既往对其针刺效应的研究多着眼于脑功能效应,鲜有关注肠道菌群-肠-脑轴与其针刺效应的关系。
相关研究表明消化道相关疾病作为儿童ASD占比最高的共患病,在ASD儿童中占23%~70%[5],因此越来越多学者开始关注肠道菌群与肠-脑轴之间的关系及对ASD发病机制的影响。
研究表明肠道菌群可以影响γ-氨基丁酸、多巴胺等大脑神经递质的合成与调节,对大脑调控情绪、认知、学习能力及注意力等方面至关重要[6]。
自闭症与肠道菌群的关系

自闭症与肠道菌群的关系目前,医学领域对自闭症的病理和病因的了解较浅,虽然有大量的行为治疗被证明是科学、有效的,但有效的药物却很少。
另有研究发现,很多自闭症患者同时还存在严重的胃肠道疾病,所以自闭症与肠道菌群之间可能存在一定关联。
下文针对自闭症与肠道菌群的关系进行介绍。
一、肠道菌群与自闭症的关系肠道菌群是非常复杂的群落,在人体肠道系统中,有超过1 000种不同类型的细菌,其中最主要的细菌门是拟杆菌门、厚壁菌门两种,这两种细菌可占据肠道菌群的93.8%左右。
而像变形菌门、放线菌门、疣微菌门等的数量则较少。
对于自闭症患者来说,除了会表现出一些神经系统异常现象以外,还会存在大量的肠道疾病症状,如腹痛、腹泻、便秘、肠胃胀气、胃食管反流等。
因此,在自闭症患者中表现出的这些肠道问题,可以佐证肠道菌群会在自闭症患者的发病机制中产生一定影响。
肠道菌群之所以可以对自闭症造成影响,主要原因还是在于自闭症患者的肠道通透性较强,所以患者胃肠道屏障会存在缺陷,最终造成毒素和细菌产物等进入到血液中,从而影响到大脑的正常功能。
比如,肠道酵母菌不仅能够黏附并定植于肠道黏膜上,还具有穿透肠黏膜屏障的转运能力,能够破坏肠道上皮细胞间的紧密连接,酵母菌过度增殖会使肠道通透性增大。
还有一些微生物群会产生神经活性化合物,它们会通过肠—脑轴进入大脑,并影响神经回路,从而对大脑功能造成影响并诱发一些异常行为。
而某些肠道菌群的代谢物及神经活性化合物会促使肠神经元活跃,然后通过迷走神经对大脑功能造成影响。
文/樊郑阳 新疆医科大学中医学院 陈伟民 同济大学附属养志康复医院二、肠道菌群治疗自闭症1.益生元改善自闭症益生元主要是纤维,属于不容易消化食物中存在的必要成分,这种物质可以选择性刺激结肠中某些微生物的生长或者是活性,从而对宿主产生有益的影响。
而益生元组的低聚半乳糖,也会促进双歧杆菌的增值。
而在体外肠道模型中,有研究特意采集了有无服用益生元的自闭症儿童的粪便,将肠道有益菌群数量进行对比,发现低聚半乳糖对胃肠道中有益菌群的增多有着很大程度的贡献,同时还在多种研究层面获得较为理想的效果。
肠道菌群的分子机制及其在肠道疾病中的作用

肠道菌群的分子机制及其在肠道疾病中的作用在人体中,存在着许多微生物,其中最为重要的之一是肠道菌群。
肠道菌群包含了数千种细菌,这些细菌在肠道内密集分布,与人类生活密不可分。
肠道菌群是一个生态系统,其内部各个细菌种类相互作用,共同维持人体良好健康状态。
而对肠道菌群的深入研究,已经发现了许多与人类健康相关的信息。
肠道菌群在人体中的作用肠道菌群对人体具有很多重要作用。
首先,肠道菌群能够帮助消化食物,进而提供能量和营养物质。
其次,肠道菌群还能免疫调节,包括维持肠道屏障的完整性和免疫抵御力。
第三,肠道菌群也被认为与中枢神经系统的功能有关,影响食欲和情感状态。
肠道菌群的研究不仅能够增进对人类生物学的理解,还能够帮助人们预防和治疗各种疾病。
肠道菌群与肠道疾病肠道菌群已经被证明在许多肠道疾病中扮演了重要角色。
一些肠道疾病是由肠道里的微生物群落失调引起的,这些疾病包括肠炎、慢性炎性肠病、易感性肠胃炎、便秘和肠癌等。
此外,肠道菌群还可能通过影响人体的免疫系统、代谢和中枢神经系统等多种途径,导致其他疾病,例如自闭症、哮喘等。
肠道菌群的分子机制肠道菌群的表现形式是一组大量异质性的细菌,而它们的基因组是非常相似的。
肠道菌群的分子机制包括了多种生化过程,包括碳水化合物代谢、氨基酸代谢、脂质代谢、核酸代谢等。
这些机制的研究可以帮助我们了解这些微生物是如何生存、繁殖、适应环境的。
如何改善肠道菌群研究表明,饮食影响肠道菌群的数量和种类。
有些食物可以帮助增加有益菌的数量,例如含有益生菌和益生元的食品。
同时,少量饮酒和烟草使用也能够增加肠道菌群多样性和数量。
爱好调味品的人,调用鲑鱼、菠菜和咖喱等,也能够改善肠道菌群。
肠道菌群的研究的深入,对我们的健康状况具有十分重要的意义。
我们可以通过适当的饮食和其他生活方式改善肠道菌群的质量和数量,从而预防和治疗各种肠道疾病,并减少其他疾病的风险。
未来的研究还需要进一步了解肠道微生物的基础生物学、进化和适应性等方面的机制,以更好地预防和治疗各种肠道相关疾病。
肠道菌群冷知识

肠道菌群冷知识肠道菌群是指人体肠道内的微生物群落,包括细菌、真菌、病毒等。
它们与人体的健康密切相关,被称为“第二个基因组”。
在过去的几十年里,科学家们对肠道菌群的研究取得了许多重要的发现,其中一些是关于肠道菌群的冷知识。
肠道菌群的种类非常丰富。
据估计,人体内的肠道菌群种类超过1000种,总数超过100万亿个。
这些菌群中的每一种都有特定的功能和作用,对人体的健康起着重要的影响。
例如,某些菌群可以帮助消化食物,促进营养吸收,而另一些菌群则可以抑制有害微生物的生长,维护肠道的健康。
肠道菌群的组成是个人化的。
每个人的肠道菌群组成都是独一无二的,就像指纹一样。
这是由于个体的生活方式、饮食习惯、环境等因素的影响。
研究发现,肠道菌群的组成与人体的健康状况密切相关。
一些疾病,如肥胖、炎症性肠病、自闭症等,与肠道菌群的紊乱有关。
因此,了解和调节肠道菌群的组成对于预防和治疗这些疾病具有重要意义。
肠道菌群与情绪和行为有关。
肠道菌群与中枢神经系统之间存在着复杂的相互作用。
研究表明,肠道菌群可以通过产生和调节多种神经递质和代谢产物,影响人体的情绪和行为。
例如,有研究发现,肠道菌群的紊乱与抑郁症、焦虑症等精神疾病的发生有关。
这为肠道菌群在精神疾病的预防和治疗中的应用提供了新的思路。
肠道菌群还与免疫系统密切相关。
肠道是人体免疫系统的重要部分,肠道菌群在其中发挥着重要作用。
它们可以调节免疫细胞的分化和功能,维持免疫系统的平衡。
一些研究发现,肠道菌群的紊乱与免疫系统相关疾病的发生有关,如过敏、自身免疫性疾病等。
因此,通过调节肠道菌群的组成,有可能预防和治疗这些疾病。
肠道菌群还可以影响人体的新陈代谢。
肠道菌群可以参与人体的能量代谢和物质代谢过程,影响人体体重的调节。
一些研究发现,肠道菌群的紊乱与肥胖等代谢性疾病的发生有关。
因此,通过调节肠道菌群的组成,有可能预防和治疗这些疾病。
调节肠道菌群的方法多种多样。
目前,调节肠道菌群的方法主要有饮食调节、益生菌和益生元的补充、粪菌移植等。
自闭症患者肠道菌群的结构变化及NS乳酸菌干预机制研究

自闭症患者肠道菌群的结构变化及NS乳酸菌干预机制研究研究背景:自闭症是一种严重的神经发育障碍,它对社会和患者家庭造成极其严重的经济和医疗负担,并且目前临床中尚未有有效的治疗方法。
据保守估计我国自闭症患病率为1 070,并且呈逐年上升趋势。
自闭症患者不仅表现出行为症状,还伴随着诸多典型的生物学症状,如免疫功能异常、胃肠功能紊乱、多种过敏等问题。
尽管人们多年来致力于寻找致病基因,但其患病率急剧上升的现状完全不符合群体遗传学的哈迪一温伯格平衡,表明外在因素对其发生的影响远大于遗传因素。
事实上,肠道微生物在自闭症的发生与发展中起重要作用,自闭症与个体的肠道微生物失衡及肠一脑轴异常密切相关。
由于婴幼儿的肠脑发育与大脑发育几乎同步,因而在发育关键期,任何影响其肠道微生物的因素均可增加自闭症风险。
肠道微生物可通过其代谢产物、免疫、神经内分泌、以及迷走神经等途径影响大脑和行为。
目前以肠道微生物为靶点干预自闭症正在成为研究热点,主要方式包括饮食干预、药物干预、粪菌移植和益生菌干预,其中益生菌以其有效性和安全性得到较多认可。
本研究在关注近年来与肠道微生物相关的自闭症研究基础上,尝试对自闭症患者进行特定益生菌干预,从而为了解共生微生物在自闭症发病中的角色和相应对策展开深层次的认识。
研究目的:1.建立健康儿童以及自闭症儿童肠道微生物数据库,分析自闭症儿童肠道微生物的构成,尝试通过调整和改变肠道微生物组份来干预自闭症。
2.通过自闭症儿童肠道微生物与对照儿童肠道微生物结构的比较研究,确定自闭症儿童肠道微生物的变化,确定自闭症相关微生物标记物。
3.通过检测微生物一肠一脑轴功能相关生理生化指标变化,分析自闭症儿童与健康对照儿童生理生化指标差异,探讨肠道微生物影响自闭症的分子途径。
确定与疾病密切相关的生理指标及其变化,为临床诊断和干预提供参考。
4.通过分析直接监护人填写的评估问卷,对比自闭症儿童的行为异常和消化道症状在特定乳酸菌干预前后的变化,评估患者行为认知症状和胃肠道症状的改善程度。
肠道脆弱拟杆菌BF839让你远离自闭症

肠道脆弱拟杆菌(BF839):可以让人远离自闭症肠道细菌能够影响消化、过敏反应以及新陈代谢,这些都是我们所熟知的。
但是肠道细菌也可能会出现更深入影响,甚至会深及人类大脑。
现在人们对于肠道菌群的生态系统已经耳熟能详了,在全球各地,现在出现越来越多的研究者正在对这个微生物组(Microbiome)如何调节人类的想法和感觉进行探索。
而且现在一些科学家们已经发现证据,这个总重量在一磅到三磅之间、包含着一千多种不同的细菌、由万亿个细胞共同形成的细菌集合物,可以在很多的疾病中发挥着关键作用,例如:自闭症、焦虑症、抑郁症等其他的疾病。
近几十年来,在自闭症的研究上我们取得了一些非常引人注目的成果。
通过大量的研究证明,大约四分之三的自闭症患者都会出现某些胃肠功能异常,例如消化问题、食物过敏或麸质过敏(gluten sensitivity)。
这项研究结果促进了科学家们检验肠道微生物与自闭症之间的潜在联系,最近几期的报告以及研究显示着,自闭症患者的肠道菌群与对照组有显著差异。
加州理工学院的微生物学家萨尔基斯·马兹曼尼亚(Sarkis Mazmanian)主要对肠道菌群中一种常见品种——脆弱拟杆菌BF839(Bacteroides fragilis)进行深入研究,很多的研究证实,脆弱拟杆菌BF839zai 自闭症儿童体内数量较少。
在两年前发表在《细胞》(Cell)杂志的一篇论文中,马兹曼尼亚以及同事对类似于自闭症症状的小鼠使用了取自人体的脆弱拟杆菌BF839进行饲喂,结果显示这种细菌不仅改变了小鼠体内的菌群组成,更加然人欣喜的是,脆弱拟杆菌BF839更改善了它们的行为,结果显示,这些小鼠的焦虑程度降低,与其他小鼠的互动更多,重复性行为明显的减少。
马兹曼尼亚在2012年,因为他在肠道菌群方面的贡献,从而获得了麦克阿瑟奖。
马兹曼尼亚将这一研究发现称为为对研究微生物如何在自闭症和其他神经发育障碍中起作用所取得的“潜在的突破性进展”。
前沿研究丨肠道菌群是调节神经系统功能紊乱的潜在靶点

前沿研究⼁肠道菌群是调节神经系统功能紊乱的潜在靶点编者按⼈体胃肠道系统寄居着上万亿的微⽣物,这些微⽣物统称为肠道菌群,在调节宿主免疫和代谢平衡等⽅⾯具有重要作⽤。
通常情况下,肠道菌群失调会带来各种慢性疾病的发⽣,如肥胖、2型糖尿病等。
然⽽,令⼈欣喜的是,近年的相关研究表明,肠道菌群与调节神经系统功能紊乱之间有着密切的关系,那么,肠道菌群是如何影响神经系统的,可通过哪些⽅式调节肠道菌群?饮⾷和营养在塑造肠道菌群中起哪些作⽤?中国⼯程院陈卫院⼠科研团队在中国⼯程院院刊《Engineering》撰⽂,介绍了肠道菌群与⼤脑相互作⽤的肠–脑轴分⼦机制,以及肠道菌群失调引发的神经系统功能紊乱情况。
⽂章指出,调节肠道菌群失衡是⼲预神经系统功能紊乱的潜在策略,基于⽬前对肠-脑轴的认识,分析和评估了以肠道菌群失调为靶点的神经系统疾病⼲预策略,如使⽤益⽣菌、益⽣元、合⽣元以及饮⾷和营养等。
⽬前关于肠道菌群–肠–脑轴⽅⾯的研究尚处在起步阶段,未来仍需深⼊研究阐明肠道菌群调节神经系统功能的分⼦机制,揭⽰神经系统功能紊乱的新型病理机制,为神经系统功能紊乱提供潜在的诊断标志物和⼲预策略,形成针对肠道菌群失调的神经系统疾病的新治疗⽅法。
⼀、引⾔据估算,⼀个体重为70 kg的⼈体内的细菌总量⼤约有3.8×1013个,⽐⼈体内细胞数(⼤约3.0×1013个)还要略多⼀些。
⼈体胃肠道系统寄居着上万亿的微⽣物,这些微⽣物统称为肠道菌群。
其中位于胃肠道系统末端的结肠和直肠具有⼈体内最⾼的菌群密度。
肠道菌群这个复杂的⽣态系统主要由细菌组成,其余则包括病毒、古细菌、原⽣⽣物和酵母。
因此,共⽣的肠道菌群⼀直被认为是宿主的基因和环境相互作⽤的重要界⾯,并且宿主和肠道菌群之间存在着相互联系的共⽣⽣理机制。
近来,越来越多的研究揭⽰肠道菌群在调节宿主⽣理功能⽅⾯发挥着重要作⽤,如维持宿主的免疫和代谢平衡。
⼈从⼀出⽣便获得了肠道菌群,并且在整个⽣命周期中,肠道菌群会经历各种各样的变化(表1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∙1a Department of Soil, Plant and Food Sciences , University of Bari Aldo Moro , Bari , Italy.AbstractThrough extensive microbial-mammalian co-metabolism, the intestinal microbiota have evolved to exert a marked influence on health and disease viagut-brain-microbiota interactions. In this addendum, wesummarize the findings of our recent study on the fecal microbiota and metabolomes of children with pervasive developmental disorder-not otherwise specified (PDD-NOS) or autism (AD) compared with healthy children (HC). Children with PDD-NOS or AD have altered fecal microbiota and metabolomes (including neurotransmitter molecules). We hypothesise that the degree of microbial alteration correlates with the severity of the disease since fecal microbiota and metabolomes alterations were higher inchildren with PDD-NOS and, especially, AD compared to HC. Our study indicates that the levels of free amino acids (FAA) and volatile organic compounds (VOC) differ in AD subjects compared to children with PDD-NOS, who are more similar to HC. Finally, we propose a new perspective on the implications for the interaction between intestinal microbiota and AD.∙1Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.∙2Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada ; Brain-Body Institute, St Joseph's Healthcare, Hamilton, ON, Canada.AbstractThe human intestine houses an astounding number and species of microorganisms, estimated at more than 10(14) gut microbiota and composed of over a thousand species. An individual's profileof microbiota is continually influenced by a variety of factors including but not limited to genetics, age, sex, diet, and lifestyle. Although each person's microbial profile is distinct, the relative abundance anddistribution of bacterial species is similar among healthy individuals, aiding in the maintenance of one's overall health. Consequently, the ability of gut microbiota to bidirectionally communicate with the brain, known as the gut-brain axis, in the modulation of human health is at the forefront of current research. At a basic level, the gutmicrobiota interacts with the human host in a mutualistic relationship - the hostintestine provides the bacteria with an environment to grow and the bacterium aids in governinghomeostasis within the host. Therefore, it is reasonable to think that the lack ofhealthy gut microbiota may also lead to a deterioration of these relationships and ultimately disease.Indeed, a dysfunction in the gut-brain axis has been elucidated by a multitude of studies linked toneuropsychological, metabolic, and gastrointestinal disorders. For instance, altered microbiota has been linked to neuropsychological disorders including depression and autism spectrum disorder, metabolic disorders such as obesity, and gastrointestinal disorders including inflammatory bowel disease andirritable bowel syndrome. Fortunately, studies have also indicated that gut microbiota may be modulated with the use of probiotics, antibiotics, and fecal microbiota transplants as a prospect for therapyin microbiota-associated diseases. This modulation of gutmicrobiota is currently a growing area ofresearch as it just might hold the key to treatment.∙1Department of Internal Medicine and Medical Specialties, University Sapienza, Rome (Marilia Carabotti, Annunziata Scirocco, Carola Severi), Italy.∙2Experimental Pharmacology Laboratory, Scientific Institute of Gastroenterology S. de Bellis, Castellana Grotte, Bari (Maria Antonietta Maselli), Italy.AbstractThe gut-brain axis (GBA) consists of bidirectional communication between the central and the enteric nervous system, linking emotional and cognitive centers of the brain with peripheral intestinal functions.Recent advances in research have described the importance of gut microbiota in influencing theseinteractions. This interaction between microbiota and GBA appears to be bidirectional, namely through signaling from gut-microbiota to brain and from brain to gut-microbiota by means of neural, endocrine, immune, and humoral links. In this review we summarize the available evidence supporting the existence of these interactions, as well as the possible pathophysiological mechanisms involved. Most of the data have been acquired using technical strategies consisting in germ-free animal models, probiotics,antibiotics, and infection studies. In clinical practice, evidence ofmicrobiota-GBA interactions comes from the association of dysbiosis with central nervous disorders (i.e. autism, anxiety-depressive behaviors) and functional gastrointestinal disorders. In particular, irritable bowel syndrome can be considered an example of the disruption of these complex relationships, and a better understanding of these alterations might provide new targeted therapies.∙1Alimentary Pharmabiotic Centre, University College, Cork, Ireland; Department of Psychiatry, University College Cork, Ireland. Electronic address: t.dinan@ucc.ie.∙2Alimentary Pharmabiotic Centre, University College, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland.∙3Alimentary Pharmabiotic Centre, University College, Cork, Ireland; Department of Psychiatry, University College Cork, Ireland; Teagasc, Moorepark, Cork, Ireland.AbstractThe human gut harbors a dynamic and complex microbial ecosystem, consisting of approximately 1 kg of bacteria in the average adult, approximately the weight of the human brain. The evolutionary formation ofa complex gut microbiota in mammals has played an important role in enabling brain development andperhaps sophisticated social interaction. Genes within the human gut microbiota, termed the microbiome,significantly outnumber human genes in the body, and are capable of producing a myriad of neuroactive compounds. Gut microbes are part of the unconscious system regulating behavior. Recent investigations indicate that these microbes majorly impact on cognitive function and fundamental behavior patterns, such as social interaction and stress management. In the absence of microbes, underlyingneurochemistry is profoundly altered. Studies of gut microbes may play an important role in advancing understanding of disorders of cognitive functioning and social interaction, such as autism.∙1Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA.∙2School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, USA; dr.rosy@.∙3Department of Medicine, University of Colorado-Denver, Aurora, CO, USA.∙4School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.AbstractRecent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut-brain interactions dependent or independent from the immune system. GI problems such as chronicconstipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut-brain interactions could also be a direct result of microbially produced metabolites.∙1BioFrontiers Institute, University of Colorado, Boulder, CO, USA.∙2Department of Computer Science, University of Colorado, Boulder, CO, USA.∙3Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA.∙4Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.∙5Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.∙6Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA.∙7Institute for Genomic and Systems Biology, Argonne National Laboratory, Argonne, IL, USA.∙8Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.∙9Marine Biological Laboratory, Woods Hole, MA, USA.∙10College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China;gilbertjack@.∙11Howard Hughes Medical Institute, Boulder, CO, USA.AbstractDifferences in the gut microbiota have been reported between individuals with autism spectrum disorders (ASD) and neurotypical controls, although direct evidence that changes in the microbiome contribute to causing ASD has been scarce to date. Here we summarize some considerations of experimental design that can help untangle causality in this complex system. In particular, large cross-sectional studies that can factor out important variables such as diet, prospective longitudinal studies that remove some of the influence of interpersonal variation in the microbiome (which is generally high, especially in children), and studies transferring microbial communities into germ-free mice may be especially useful. Controlling for the effects of technical variables, which have complicated efforts to combine existing studies, is critical when biological effect sizes are small. Large citizen-science studies with thousands of participants such as the American Gut Project have been effective at uncovering subtle microbiome effects in self-collected samples and with self-reported diet and behavior data, and may provide a useful complement to other types of traditionally funded and conducted studies in the case of ASD, especially in the hypothesis generation phase.J Clin Invest. 2015 Mar 2;125(3):926-38. doi: 10.1172/JCI76304. Epub 2015 Feb 17.Gut/brain axis and the microbiota.Mayer EA, Tillisch K, Gupta A.AbstractTremendous progress has been made in characterizing the bidirectional interactions between the central nervous system, the enteric nervous system, and the gastrointestinal tract. A series of provocativepreclinical studies have suggested a prominent role for the gut microbiota in these gut-brain interactions.Based on studies using rodents raised in a germ-free environment, the gut microbiota appears toinfluence the development of emotional behavior, stress- and pain-modulation systems, and brainneurotransmitter systems. Additionally, microbiota perturbations by probiotics and antibiotics exertmodulatory effects on some of these measures in adult animals. Current evidence suggests that multiple mechanisms, including endocrine and neurocrine pathways, may be involved in gut microbiota-to-brain signaling and that the brain can in turn alter microbial composition and behavior via the autonomicnervous system. Limited information is available on how these findings may translate to healthy humans or to disease states involving the brain or the gut/brain axis. Future research needs to focus on confirming that the rodent findings are translatable to human physiology and to diseases such as irritable bowel syndrome, autism, anxiety, depression, and Parkinson's disease.∙1Department of Biochemistry, Rush University Medical Center, Cohn Research Building, 1735 W.Harrison St., Room 506, Chicago, IL 60612, United States.∙2Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, United States.AbstractHumans have coevolved with their microbes over thousands of years, but this relationship, is now being dramatically affected by shifts in the collective human microbiome resulting from changes in theenvironment and societal norms. Resulting perturbations of intestinal host-microbe interactions can lead to miscues and altered host responses that increase the risk of pathogenic processes and promote"western" disorders such as inflammatory bowel diseases, cancers, obesity, diabetes, autism, andasthma. Given the current challenges and limitations in gene therapy, approaches that can reshapethe gut microbiome represent a reasonable strategy for restoring the balance between host and microbes.In this review and commentary, we highlight recent progress in our understanding of the intestinalmicrobiome in the context of health and diseases, focusing on mechanistic concepts that underlie the complex relationships between host and microbes. Despite these gains, many challenges lie ahead that make it difficult to close the gap between the basic sciences and clinical application. We will discuss the potential therapeutic strategies that can be used to manipulate the gutmicrobiota, recognizing that the promise of pharmabiotics ("bugs to drugs") is unlikely to be completely fulfilled without a greaterunderstanding of enteric microbiota and its impact on mammalian physiology. By leveraging theknowledge gained through these studies, we will be prepared to enter the era of personalized medicine where clinical inventions can be custom-tailored to individual patients to achieve better outcomes.∙1Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.∙2Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada;eav@uoguelph.ca.AbstractThe human gut microbiota is a complex microbial ecosystem that contributes an important component towards the health of its host. This highly complex ecosystem has been underestimated in its importance until recently, when a realization of the enormous scope of gut microbiota function has been (andcontinues to be) revealed. One of the more striking of these discoveries is the finding thatthe gut microbiota and the brain are connected, and thus there is potential for the microbiota in the gut to influence behavior and mental health. In this short review, we outline the link between brainand gut microbiota and urge the reader to consider the gut microbiota as an ecosystem 'organ' rather than just as a collection of microbes filling a niche, using the hypothesized role ofthe gut microbiota in autism spectrum disorder to illustrate the concept.Ochratoxin A as possible factor trigging autism and its maleprevalence via epigenetic mechanism.Mezzelani A, Raggi ME, Marabotti A, Milanesi L.AbstractThe role of dysbiosis causing leaky gut with xenobiotic production and absorption is increasinglydemonstrated in autism spectrum disorder (ASD) pathogenesis. Among xenobiotics, we focused on ochratoxin A (one of the major food contaminating mycotoxin), that in vitro and in vivo exerts a male-specific neurotoxicity probably via microRNA modulation of a specific target gene. Among possible targets, we focused on neuroligin4X. Interestingly, this gene carries some SNPs already correlated with the disease and with illegitimate microRNA binding sites and, being located on X-chromosome, could explain the male prevalence. In conclusion, we propose a possible gene-environment interactiontriggering ASD explaining the epigenetic neurotoxic mechanism activated by ochratoxin A in genetically predisposed children. This mechanism offers a clue for male prevalence of the disease and may have an important impact on prevention and cure of ASD.∙1KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium. VIB, Center for the Biology of Disease, Herestraat 49, B-3000 Leuven, Belgium.Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.∙2KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium. VIB, Center for the Biology of Disease, Herestraat 49, B-3000 Leuven, Belgium.∙3KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium. VIB, Center for the Biology of Disease, Herestraat 49, B-3000 Leuven, Belgium.Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. jeroen.raes@med.kuleuven.be.AbstractThe microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmentaldisorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbationsin gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans.In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate whichalternative model systems exist for gut microbiota research.。