微积分基本知识汇总
微积分知识点简单总结

微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
3. 基本初等函数的导数公式。
- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。
- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。
1. 函数的单调性。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。
2. 函数的极值。
- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。
微积分知识点总结ppt

微积分知识点总结ppt一、基本概念1. 导数的定义:导数的定义是函数在一点的导数,是该函数在这一点的切线的斜率。
2. 导数的性质:基本公式,和,积,商法则等。
3. 函数的极值:通过导数求函数的极值点及极值。
4. 函数的单调性:通过导数研究函数的单调性。
5. 函数的凹凸性:通过导数研究函数的凹凸性。
二、微分学1. 微分的概念:微分是函数在某一点处的导函数的表现,是切线的截距。
2. 微分的计算:通过导函数求微分。
3. 微分的应用:微分在函数的近似计算,误差估计及优化问题中的应用。
三、积分学1. 不定积分:通过求导数的逆运算求不定积分。
2. 定积分:通过Riemann和定积分求解面积及曲线弧长等问题。
3. 定积分的性质:定积分的基本性质及计算公式。
4. 定积分的应用:定积分在物理,力学,生物等领域的应用。
四、微积分基本定理1. 微积分基本定理的概念:微分与积分之间的关系。
2. 牛顿—莱布尼兹公式:微积分基本定理的应用。
3. 微积分基本定理的证明:微积分基本定理的几何和代数证明。
4. 微积分基本定理的应用:微积分基本定理在实际问题中的应用。
五、一元函数微积分1. 一元函数极限:一元函数极限的概念及计算方法。
2. 一元函数连续性:一元函数连续性的概念及计算方法。
3. 一元函数导数:一元函数导数的概念及计算方法。
4. 一元函数积分:一元函数积分的概念及计算方法。
六、多元函数微积分1. 多元函数极限:多元函数极限的概念及计算方法。
2. 多元函数连续性:多元函数连续性的概念及计算方法。
3. 多元函数偏导数:多元函数偏导数的概念及计算方法。
4. 多元函数积分:多元函数积分的概念及计算方法。
七、微分方程1. 微分方程的基本概念:微分方程的定义及分类。
2. 微分方程的解法:微分方程的解法及技巧。
3. 微分方程的应用:微分方程在物理,工程等领域的应用。
八、泰勒级数与麦克劳林级数1. 泰勒级数:泰勒级数的定义及计算方法。
微积分笔记整理

微积分笔记整理以下是一份微积分笔记整理的示例,涵盖了微积分的一些关键概念和公式:一、导数(Derivative)1. 定义:函数在某一点的切线斜率。
2. 公式:$(f(x+h)-f(x))\div h$(当$h$趋近于$0$时)。
3. 导数的意义:- 函数的变化率。
- 曲线的切线斜率。
- 判断函数的单调性。
二、微分(Differential)1. 定义:函数在某一点的切线增量。
2. 公式:$df=f^\prime(x)dx$。
3. 微分的意义:- 切线的近似值。
- 函数的增量。
三、积分(Integral)1. 定义:函数在某个区间上的面积。
2. 公式:$\int_{a}^{b}f(x)dx$。
3. 积分的意义:- 函数的面积。
- 函数的平均值。
- 求导的逆运算。
四、微积分基本定理(Fundamental Theorem of Calculus)1. 牛顿-莱布尼茨公式(Newton-Leibniz Formula):若$F^\prime(x)=f(x)$,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$。
2. 不定积分(Indefinite Integral):函数的原函数族。
3. 定积分(Definite Integral):函数在某个区间上的确定积分值。
五、常见函数的导数和积分1. 常数函数:导数为$0$,积分为$cx$($c$为常数)。
2. 线性函数:导数为常数,积分为$cx+d$($c$、$d$为常数)。
3. 指数函数:导数为指数本身,积分为指数加$1$的反函数。
4. 对数函数:导数为$\frac{1}{x}$,积分为$x\ln|x|+c$。
5. 三角函数:正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数;积分根据不同的三角函数有不同的公式。
微积分公式知识点总结

微积分公式知识点总结1. 导数的基本公式导数是描述函数变化率的概念,它在物理学、工程学和经济学等领域有着广泛的应用。
函数f(x)在点x处的导数可以用极限的概念来表示:f'(x) = lim [f(x + Δx) - f(x)] / Δx , Δx→0其中f'(x)表示函数f(x)在点x处的导数。
根据导数的定义,可以得到一些常用函数的导数公式,比如:常数函数的导数:(k)’ = 0幂函数的导数:(x^n)’ = nx^(n-1)指数函数的导数:(e^x)’ = e^x对数函数的导数:(log_ax)’ = 1/(xlna)三角函数的导数:(sinx)’ = cosx,(cosx)’ = -sinx,(tanx)’ = sec^2x这些基本的导数公式在微积分的学习中是非常常见的,学生们需要熟练掌握这些公式,以便在求导的过程中能够更加得心应手。
2. 高阶导数公式对于函数f(x)的导数f'(x),我们可以再次对f'(x)进行求导,得到f''(x),称为f(x)的二阶导数。
类似地,我们可以继续求导,得到f'''(x)、f''''(x)等高阶导数。
对于高阶导数,也有一些常用的公式,比如:n次幂函数的n阶导数:(x^n)^(n) = n!指数函数的n阶导数:(e^x)^(n) = e^x三角函数的n阶导数:(sinx)^(n) = sin(x + nπ/2),(cosx)^(n) = cos(x + nπ/2)对于高阶导数的计算,一般都会用到多次的链式法则、乘积法则和商法则,因此在实际求解中需要特别注意这些规则的应用。
3. 积分的基本公式积分是导数的逆运算,它可以用来求解函数的面积、定积分和不定积分等问题。
对于函数f(x)的积分,我们可以用不定积分符号∫f(x)dx来表示。
下面是一些常用的积分公式:幂函数的积分:∫x^n dx = x^(n+1) / (n+1) + C指数函数的积分:∫e^x dx = e^x + C三角函数的积分:∫sinx dx = -cosx + C,∫cosx dx = sinx + C这些基本的积分公式对于求解积分问题非常有用,学生们需要通过大量的练习来熟练掌握这些公式,以便能够在实际问题中灵活运用。
微积分知识点概要

微积分(知识点概要)微积分 (知识点概要)第一章函数、极限与连续1.1函数定义与符号1.2极限概念与运算法则1.3求极限的方法1.4函数的连续性1.1函数的定义(P1)1函数的定义1.若变量x、y之间存在着确定的对应关系,即当x的值给定时,唯一y值随之也就确定,则称y是x的函数,记为y=f(x)。
2.确定函数有两个要素:函数的定义域和对应关系。
例如:y=lgx2 与y =2lgx 就不是相同的函数,因为它们的定义域不同。
2函数记号一旦在问题中设定函数y=f(x),记号“f”就是表示确定的对应规则,f(3)就是表示按此对应规则在x=3时所对应的函数值y等。
3初等函数(P6)称幂函数x k(k为常数),指数函数a x ,对数函数loga x (a为常数,a﹥0,a≠1)三角函数及反三角函数为基本初等函数。
凡由基本初等函数经有限次...加、减、乘、除及有限次复合且能用一个式子表达的函数,称为初等函数。
4函数的简单性质(1)有界性:(P5)对于函数f(x),若存在常数M、m对定义域内所有xf(x)≤M 称f(x)有上界f(x)≥m 称f(x)有下界,既有上界又有下界简称有界。
(2)奇偶性:(P3)若函数f(x)的定义域关于x=0的对称区间,又对于定义域内的任意x均有f(-x)=f(x) 则称f(x)为偶函数。
f(-x)=-f(x) 则称f(x)为奇函数。
(3)单调性:(P4)若函数f(x)在[a、b]上有定义对∀x∊[a、b]x1﹤x2时f(x1)≤f(x2) f(x) 在[a、b]上↗f(x1)≥f(x2) f(x) 在[a、b]上↘(4)周期性:(P5)若存在常数a(a≠0),使对任意x且有f(x)= f(x+a)则称f(x)为周期函数,称常数a 为f(x)的周期。
1.2极限概念与运算法则1极限的直观定义(P11)当一个变量f(x)在x →a 的变化过程中变化趋势是无限地接近于一个常数b ,则称变量f(x)在x →a 的过程中极限存在。
高中微积分重要知识点总结

高中微积分重要知识点总结一、函数与极限1. 函数概念:函数是一种特殊的映射关系,它将一个自变量映射为一个因变量。
2. 函数的性质:奇函数、偶函数、周期函数等。
3. 极限概念:当自变量趋于某一值时,函数的取值趋于一个确定的常数。
4. 极限的性质:唯一性、有界性、保号性等。
5. 极限的计算方法:无穷小替换法、洛必达法则、泰勒展开式等。
二、导数与微分1. 导数的概念:函数在某一点的变化率。
2. 导数的性质:可加性、可积性、伊尔米特公式等。
3. 导数的计算方法:基本导数公式、复合函数求导、隐函数求导、参数方程求导等。
4. 微分的概念:函数值的变化量与自变量的变化量的比值。
5. 微分的性质:可加性、可积性、微分中值定理等。
三、微分中值定理与应用1. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。
2. 泰勒公式及应用:泰勒展开式、泰勒公式的应用。
3. 凹凸性与拐点:二阶导数的概念、凹凸性的判定、拐点的判定。
四、不定积分与定积分1. 不定积分:初等函数的不定积分、换元积分法、分部积分法、有理函数的积分、三角函数的积分等。
2. 定积分:黎曼积分的概念、定积分的性质、定积分的计算方法、定积分的应用。
五、微分方程1. 微分方程的基本概念:微分方程的定义、微分方程的分类、微分方程的初值问题等。
2. 微分方程的解法:可分离变量法、齐次微分方程、常数变易法、一阶线性微分方程等。
3. 高阶微分方程:高阶微分方程的基本概念、高阶微分方程的解法、特解与通解等。
六、级数与收敛1. 级数的概念:无穷级数、收敛级数、发散级数、等比级数、调和级数等。
2. 收敛的判定:级数的收敛判定、级数的比较判别法、级数的积分判别法、级数的根值判别法等。
3. 级数的运算:级数的加法、级数的乘法、级数的分解、级数的换序等。
综上所述,高中微积分的重要知识点包括函数与极限、导数与微分、微分中值定理与应用、不定积分与定积分、微分方程以及级数与收敛等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:如果
具有任意阶导数,则幂级数
在点x=x
称为
在点x
处的泰勒级数。
[1]
=0,得到的级数[2]
在泰勒公式中,取x
称为麦克劳林级数。
函数
的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与
的麦克劳林级数一致。
[3]
注意:如果
的麦克劳林级数在点的某一邻域内收敛,它不一定收敛于f(x)。
因此,如果f(x)在某处有各阶导数,则f(x)的麦克劳林级数虽然能算出来,但这个级数能否在某个区域内收敛,以及是否收敛于f(x)还需要进一步验证。
一些函数无法被展开为泰勒级数,因为那里存在一些奇点。
但是如果变量x是负指数幂的话,仍然可以将其展开为一个级数。
例如
,就可以被展开为一个洛朗级数。
带佩亚诺余项
以下列举一些常用函数的泰勒公式[1]:
定理一
设函数
在
的某个邻域
内具有任意阶导数,则函数
在该邻域内能展开成泰勒级数的充要条件使得泰勒公式中的余项满足[4]
定理二
如果
在区间
能展开成泰勒级数
则右端的幂级数是惟一的。
[
下面给出几个常见函数在x=0处的泰勒级数,即麦克劳林级数。
[2]指数函数:
自然对数:
几何级数:
正弦函数:
余弦函数:
正切函数:。