stata中级计量经济学 假设检验

合集下载

使用Stata进行经济学和统计分析

使用Stata进行经济学和统计分析

使用Stata进行经济学和统计分析在当今的经济学研究和数据分析领域,Stata 凭借其强大的功能和易用性,成为了众多学者和研究人员的得力工具。

Stata 是一款专门用于数据管理、统计分析和绘图的软件,它为我们解决各种经济和统计问题提供了高效而可靠的途径。

Stata 的一个显著优势在于其丰富的数据管理功能。

在进行经济研究时,我们常常需要处理大量的数据,这些数据可能来自不同的来源,格式也各不相同。

Stata 能够轻松地读取和导入各种常见的数据格式,如 Excel、CSV 等,并且可以对数据进行清理、转换和合并等操作。

例如,我们可以使用`drop` 命令删除不需要的变量,使用`generate`命令创建新的变量,使用`merge` 命令将多个数据集合并在一起。

通过这些操作,我们能够将原始数据整理成适合分析的形式,为后续的研究工作打下坚实的基础。

在统计分析方面,Stata 提供了广泛而全面的统计方法。

无论是描述性统计、推断统计,还是复杂的计量经济学模型,Stata 都能应对自如。

比如,我们可以使用`summarize` 命令快速获取数据的均值、标准差、最小值和最大值等描述性统计量,从而对数据的基本特征有一个直观的了解。

对于假设检验,Stata 提供了`ttest` 命令用于均值比较,`chi2test` 命令用于独立性检验等。

在计量经济学领域,Stata 支持线性回归、Logit 模型、Probit 模型、面板数据模型等多种模型的估计和检验。

以线性回归为例,我们可以使用`regress` 命令来估计回归方程,并通过查看输出结果中的系数估计值、标准误、t 值和 p 值等信息来评估模型的拟合效果和变量的显著性。

除了基本的统计分析,Stata 还在处理时间序列数据方面表现出色。

时间序列数据在经济学中非常常见,如股票价格、通货膨胀率等。

Stata 提供了一系列专门用于时间序列分析的命令和函数,如`arima` 命令用于拟合自回归移动平均模型(ARIMA),`forecast` 命令用于进行预测。

stata中级计量经济学 假设检验

stata中级计量经济学 假设检验
假设检验
2015/7/31
1
主要内容
• 线性假设检验
– Wald检验:单系数t和一般性线性检验 – 基于约束最小二乘的检验(LR检验) – LM检验
• 非线性假设检验 • 结构突变的建模和检验:邹检验 • 设定性检验和模型选择
– 主要参考鲍姆第4章和Greene第5、6、7章部分内容
2015/7/31 2
2015/7/31
每一行都有许多0.
15
约束R = q 的例子
1.一个系数为0, j 0, R 0 0 ... 1 0 ...0 , q 0 2.两个系数相等, k j R 0 0 1 ... -1 ...0 , q 0 3.一组系数和为1, 2 3 4 1 R 0 1 1 1 0 ... , q 1 4.系数的一个子集为0,1 0, 2 0, 3 0 1 0 0 0 ... 0 0 , q 0 R 0 1 0 0 ... 0 0 0 0 1 0 ... 0 5.几个线性约束, 2 3 1, 4 6 0, 5 6 0 0 1 1 0 0 0 1 , q 0 R 0 0 0 1 0 1 2015/7/31 0 0 0 0 1 1 0
庭的犹太人,反对这种限制,他的建议是让狗儿自由的跑,看它会不会有不
良表现。 Rao 则看到过Calutta街上许多令人讨厌的流浪狗,不喜欢任由它们 跑来跑去,建议将狗儿一直关在笼子里,观察它在里面抓挠笼子的程度。如
果咆哮抓挠的太厉害,说明还需要进一步训练。那天晚上当 Rao 回到在剑桥
的公寓,他突然意识到 Neyman 和 Wald 的建议与Neyman-Pearson LR 检验与

计量经济学第6章假设检验

计量经济学第6章假设检验
E S S 6 0 2 7 0 8 . 6 / 1 1 1 F 3 9 9 . 0 9 9 9 9 R S S 4 0 1 5 8 . 0 7 1 / 1 0 ( n 2 )
i1
n
或直接取自输出结果2.2.1中的方差分析部分“回归分析(行) F(列)”(399.09999)。(见表2.4.4)
有时S(回归系数的标准差,有时也记为 S e )也可不写;t统计 量右上角*的表示显著性水平的大小,**一般表示在显著性水平 1%下显著,*一般表示在显著性水平5%下显著,无*表示5%下 不显著。
b1
L xx L yy
n
( x x ) ( y y ) 其 中 x y
i 1
L
n
L xx
L
yy

n
i 1
( xi x )2
i 1
( yi y )2
为x与y的简单线性相关系数,简称相关系数。它表示x和y的线 性相 关关系的密切程度。其取值范围为|r| 1,即-1 r 1。 当r=-1时,表示x与y之间完全负相关; 当r=1时,表示x与y之间完全正相关; 当r=0时,表示x与y之间无线性相关关系,即说明x与y可 能无相关关系或x与y之间存在非线性相关关系。 5、四种检验的关系 前面介绍了t检验、拟合优度( )检验、 F检验和相关 R 2 系数(r)检验,对于一元线性回归方程来说,可以证 明,这四种检验:
第二步:计算F统计量 因为ESS=1602708.6 (计算过程见表2.4.3) 或直接取自输出结果 2.2.1中的方差分析部分“回归分析(行) SS(列)”(1602708.6)。
ˆ= RSS ( yi y )2 40158.071 (计算过程见计算表2.3.3) 或直接取

第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验的Stata实现本章用到的Stata命令有例5-1 随机抽取某地25名正常成年男子,测得其血红蛋白含量如下:146 7 125 142 7 128 1401 7 144 151 117 118该样本的均数为137.32g/L,标准差为10.63g/L,求该地正常成年男子血红蛋白含量总体均数的95%可信区间。

数据格式为计算95%可信区间的Stata命令为:结果为该地正常成年男子血红蛋白含量总体均数的95%可信区间为(132.93~141.71)例5-2 某市2005年120名7岁男童的身高X=123.62(cm),标准差s=4.75(cm),计算该市7岁男童总体均数90%的可信区间。

在Stata中有即时命令可以直接计算仅给出均数和标准差时的可信区间。

结果为:该市7岁男童总体均数90%的可信区间(122.90~124.34)。

例5-3 为研究铅暴露对儿童智商(IQ)的影响,某研究调查了78名铅暴露(其血铅水平≥40 g/100ml)的6岁儿童,测得其平均IQ为88.02,标准差为12.21;同时选择了78名铅非暴露的6岁儿童作为对照,测得其平均IQ为92.89,标准差为13.34。

试估计铅暴露的儿童智商IQ的平均水平与铅非暴露儿童相差多少,并估计两个人群IQ的总体均数之差的95%可信区间。

本题也可以应用Stata的即时命令:结果:差值为4.86,差值的可信区间为0.81~8.90。

例5-4 为研究肿瘤标志物癌胚抗原(CEA)对肺癌的灵敏度,随机抽取140例确诊为肺癌患者,用CEA进行检测,结果呈阳性反应者共62人,试估计肺癌人群中CEA的阳性率。

Stata即时命令为结果为肺癌人群中CEA的阳性率为44.28%,可信区间为35.90%~52.82%。

例5-5 某医生用A药物治疗幽门螺旋杆菌感染者10人,其中9人转阴,试估计该药物治疗幽门螺旋杆菌感染者人群的转阴率。

Stata即时命令为结果为例5-6 某市区某年12个月发生恶性交通事故的次数分别为:5, 4, 6, 12, 7, 8, 10, 7, 6, 11, 3, 5假设每个月恶性交通事故的次数服从Poisson分布,试估计该市平均每个月恶性交通事故的次数的95%可信区间。

计量经济学stata操作指南

计量经济学stata操作指南

计量经济学stata操作(实验课)第一章stata基本知识1、stata窗口介绍2、基本操作(1)窗口锁定:Edit-preferences-general preferences-windowing-lock splitter (2)数据导入(3)打开文件:use E:\example.dta,clear(4)日期数据导入:gen newvar=date(varname, “ymd”)format newvar %td 年度数据gen newvar=monthly(varname, “ym”)format newvar %tm 月度数据gen newvar=quarterly(varname, “yq”)format newvar %tq 季度数据(5)变量标签Label variable tc ` “total output” ’(6)审视数据describelist x1 x2list x1 x2 in 1/5list x1 x2 if q>=1000drop if q>=1000keep if q>=1000(6)考察变量的统计特征summarize x1su x1 if q>=10000su q,detailsutabulate x1correlate x1 x2 x3 x4 x5 x6(7)画图histogram x1, width(1000) frequencykdensity x1scatter x1 x2twoway (scatter x1 x2) (lfit x1 x2)twoway (scatter x1 x2) (qfit x1 x2)(8)生成新变量gen lnx1=log(x1)gen q2=q^2gen lnx1lnx2=lnx1*lnx2gen larg=(x1>=10000)rename larg largeg large=(q>=6000)replace large=(q>=6000)drop ln*(8)计算功能display log(2)(9)线性回归分析regress y1 x1 x2 x3 x4vce #显示估计系数的协方差矩阵reg y1 x1 x2 x3 x4,noc #不要常数项reg y1 x1 x2 x3 x4 if q>=6000reg y1 x1 x2 x3 x4 if largereg y1 x1 x2 x3 x4 if large==0reg y1 x1 x2 x3 x4 if ~largepredict yhatpredict e1,residualdisplay 1/_b[x1]test x1=1 # F检验,变量x1的系数等于1test (x1=1) (x2+x3+x4=1) # F联合假设检验test x1 x2 #系数显著性的联合检验testnl _b[x1]= _b[x2]^2(10)约束回归constraint def 1 x1+x2+x3=1cnsreg y1 x1 x2 x3 x4,c(1)cons def 2 x4=1cnsreg y1 x1 x2 x3 x4,c(1-2)(11)stata的日志File-log-begin-输入文件名log off 暂时关闭log on 恢复使用log close 彻底退出(12)stata命令库更新Update allhelp command第二章有关大样本ols的stata命令及实例(1)ols估计的稳健标准差reg y x1 x2 x3,robust(2)实例use example.dta,clearreg y1 x1 x2 x3 x4test x1=1reg y1 x1 x2 x3 x4,rtestnl _b[x1]=_b[x2]^2第三章最大似然估计法的stata命令及实例(1)最大似然估计help ml(2)LR检验lrtest #对面板数据中的异方差进行检验(3)正态分布检验sysuse auto #调用系统数据集auto.dtahist mpg,normalkdensity mpg,normalqnorm mpg*手工计算JB统计量sum mpg,detaildi (r(N)/6)*((r(skewness)^2)+[(1/4)*(r(kurtosis)-3)^2])di chi2tail(自由度,上一步计算值)*下载非官方程序ssc install jb6jb6 mpg*正态分布的三个检验sktest mpgswilk mpgsfrancia mpg*取对数后再检验gen lnmpg=log(mpg)kdensity lnmpg, normaljb6 lnmpgsktest lnmpg第四章处理异方差的stata命令及实例(1)画残差图rvfplotrvfplot varname*例题use example.dta,clearreg y x1 x2 x3 x4rvfplot # 与拟合值的散点图rvfplot x1 # 画残差与解释变量的散点图(2)怀特检验estat imtest,white*下载非官方软件ssc install whitetst(3)BP检验estat hettest #默认设置为使用拟合值estat hettest,rhs #使用方程右边的解释变量estat hettest [varlist] #指定使用某些解释变量estat hettest,iidestat hettest,rhs iidestat hettest [varlist],iid(4)WLSreg y x1 x2 x3 x4 [aw=1/var]*例题quietly reg y x1 x2 x3 x4predict e1,resgen e2=e1^2gen lne2=log(e2)reg lne2 x2,nocpredict lne2fgen e2f=exp(lne2f)reg y x1 x2 x3 x4 [aw=1/e2f](5)stata命令的批处理(写程序)Window-do-file editor-new do-file#WLS for examplelog using E:\wls_example.smcl,replaceset more offuse E:\example.dta,clearreg y x1 x2 x3 x4predict e1,resgen e2=e1^2g lne2=log(e2)reg lne2 x2,nocpredict lne2fg e2f=exp(lne2f)*wls regressionreg y x1 x2 x3 x4 [aw=1/e2f]log closeexit第五章处理自相关的stata命令及实例(1)滞后算子/差分算子tsset yearl.l2.D.D2.LD.(2)画残差图scatter e1 l.e1ac e1pac e1(3)BG检验estat bgodfrey(默认p=1)estat bgodfrey,lags(p)estat bgodfrey,nomiss0(使用不添加0的BG检验)(4)Ljung-Box Q检验reg y x1 x2 x3 x4predict e1,residwntestq e1wntestq e1,lags(p)* wntestq指的是“white noise test Q”,因为白噪声没有自相关(5)DW检验做完OLS回归后,使用estat dwatson(6)HAC稳健标准差newey y x1 x2 x3 x4,lag(p)reg y x1 x2 x3 x4,cluster(varname)(7)处理一阶自相关的FGLSprais y x1 x2 x3 x4 (使用默认的PW估计方法)prais y x1 x2 x3 x4,corc (使用CO估计法)(8)实例use icecream.dta, cleartsset timegraph twoway connect consumption temp100 time, msymbol(circle) msymbol(triangle) reg consumption temp price incomepredict e1, resg e2=l.e1twoway (scatter e1 e2) (lfit e1 e2)ac e1pac e1estat bgodfreywntestq e1estat dwatsonnewey consumption temp price income, lag (3)prais consumption temp price income, corcprais consumption temp price income, nologreg consumption temp l.temp price incomeestat bgodfreyestat dwatson第六章模型设定与数据问题(1)解释变量的选择reg y x1 x2 x3estat ic*例题use icecream.dta, clearreg consumption temp price incomeestat icreg consumption temp l.temp price incomeestat ic(2)对函数形式的检验(reset检验)reg y x1 x2 x3estat ovtest (使用被解释变量的2、3、4次方作为非线性项)estat ovtest, rhs (使用解释变量的幂作为非线性项,ovtest-omitted variable test)*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat ovtestg lnq2=lnq^2reg lntc lnq lnq2 lnpl lnpk lnpfestat ovtest(3)多重共线性estat vif*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat vif(4)极端数据reg y x1 x2 x3predict lev, leverage (列出所有解释变量的lev值)gsort –levsum levlist lev in 1/3*例题use nerlove.dta, clearquietly reg lntc lnq lnpl lnpk lnpfpredict lev, leveragesum levgsort –levlist lev in 1/3(5)虚拟变量gen d=(year>=1978)tabulate province, generate (pr)reg y x1 x2 x3 pr2-pr30(6)经济结构变动的检验方法1:use consumption_china.dta, cleargraph twoway connect c y year, msymbol(circle) msymbol(triangle)reg c yreg c y if year<1992reg c y if year>=1992计算F统计量方法2:gen d=(year>1991)gen yd=y*dreg c y d ydtest d yd第七章工具变量法的stata命令及实例(1)2SLS的stata命令ivregress 2sls depvar [varlist1] (varlist2=instlist)如:ivregress 2sls y x1 (x2=z1 z2)ivregress 2sls y x1 (x2 x3=z1 z2 z3 z4) ,r firstestat firststage,all forcenonrobust (检验弱工具变量的命令)ivregress liml depvar [varlist 1] (varlist2=instlist)estat overid (过度识别检验的命令)*对解释变量内生性的检验(hausman test),缺点:不适合于异方差的情形reg y x1 x2estimates store olsivregress 2sls y x1 (x2=z1 z2)estimates store ivhausman iv ols, constant sigmamore*DWH检验estat endogenous*GMM的过度识别检验ivregress gmm y x1 (x2=z1 z2) (两步GMM)ivregress gmm y x1 (x2=z1 z2),igmm (迭代GMM)estat overid*使用异方差自相关稳健的标准差GMM命令ivregress gmm y x1 (x2=z1 z2), vce (hac nwest[#])(2)实例use grilic.dta,clearsumcorr iq sreg lw s expr tenure rns smsa,rreg lw s iq expr tenure rns smsa,rivregress 2sls lw s expr tenure rns smsa (iq=med kww mrt age),restat overidivregress 2sls lw s expr tenure rns smsa (iq=med kww),r firstestat overidestat firststage, all forcenonrobust (检验工具变量与内生变量的相关性)ivregress liml lw s expr tenure rns smsa (iq=med kww),r*内生解释变量检验quietly reg lw s iq expr tenure rns smsaestimates store olsquietly ivregress 2sls lw s expr tenure rns smsa (iq=med kww)estimates store ivhausman iv ols, constant sigmamoreestat endogenous (存在异方差的情形)*存在异方差情形下,GMM比2sls更有效率ivregress gmm lw s expr tenure rns smsa (iq=med kww)estat overidivregress gmm lw s expr tenure rns smsa (iq=med kww),igmm*将各种估计方法的结果存储在一张表中quietly ivregress gmm lw s expr tenure rns smsa (iq=med kww)estimates store gmmquietly ivregress gmm lw s expr tenure rns smsa (iq=med kww),igmmestimates store igmmestimates table gmm igmm第八章短面板的stata命令及实例(1)面板数据的设定xtset panelvar timevarencode country,gen(cntry) (将字符型变量转化为数字型变量)xtdesxtsumxttab varnamextline varname,overlay*实例use traffic.dta,clearxtset state yearxtdesxtsum fatal beertax unrate state yearxtline fatal(2)混合回归reg y x1 x2 x3,vce(cluster id)如:reg fatal beertax unrate perinck,vce(cluster state)estimates store ols对比:reg fatal beertax unrate perinck(3)固定效应xtreg y x1 x2 x3,fe vce(cluster id)xi:reg y x1 x2 x3 i.id,vce(cluster id) (LSDV法)xtserial y x1 x2 x3,output (一阶差分法,同时报告面板一阶自相关)estimates store FD*双向固定效应模型tab year, gen (year)xtreg fatal beertax unrate perinck year2-year7, fe vce (cluster state)estimates store FE_TWtest year2 year3 year4 year5 year6 year7(4)随机效应xtreg y x1 x2 x3,re vce(cluster id) (随机效应FGLS)xtreg y x1 x2 x3,mle (随机效应MLE)xttest0 (在执行命令xtreg, re 后执行,进行LM检验)(5)组间估计量xtreg y x1 x2 x3,be(6)固定效应还是随机效应:hausman testxtreg y x1 x2 x3,feestimates store fextreg y x1 x2 x3,reestimates store rehausman fe re,constant sigmamore (若使用了vce(cluster id),则无法直接使用该命令,解决办法详见P163)estimates table ols fe_robust fe_tw re be, b se (将主要回归结果列表比较)第九章长面板与动态面板(1)仅解决组内自相关的FGLSxtpcse y x1 x2 x3 ,corr(ar1) (具有共同的自相关系数)xtpcse y x1 x2 x3 ,corr(psar1) (允许每个面板个体有自身的相关系数)例题:use mus08cigar.dta,cleartab state,gen(state)gen t=year-62reg lnc lnp lnpmin lny state2-state10 t,vce(cluster state)estimates store OLSxtpcse lnc lnp lnpmin lny state2-state10 t,corr(ar1) (考虑存在组内自相关,且各组回归系数相同)estimates store AR1xtpcse lnc lnp lnpmin lny state2-state10 t,corr(psar1) (考虑存在组内自相关,且各组回归系数不相同)estimates store PSAR1xtpcse lnc lnp lnpmin lny state2-state10 t, hetonly (仅考虑不同个体扰动性存在异方差,忽略自相关)estimates store HETONL Yestimates table OLS AR1 PSAR1 HETONL Y, b se(2)同时处理组内自相关与组间同期相关的FGLSxtgls y x1 x2 x3,panels (option/iid/het/cor) corr(option/ar1/psar1) igls注:执行上述xtpcse、xtgls命令时,如果没有个体虚拟变量,则为随机效应模型;如果加上个体虚拟变量,则为固定效应模型。

计量经济学stata实验报告

计量经济学stata实验报告

计量经济学stata实验报告摘要:本文利用stata软件对某公司2019年的销售数据进行了回归分析。

通过对线性回归模型和离散选择模型的实验,我们发现XXX 因素对销售的影响不显著,而YYY因素和ZZZ因素对销售的影响较大。

并且我们还通过F检验和log likelihood比较等方法验证了模型的有效性,得出了稳健、可靠的结论。

关键词:计量经济学,stata,回归分析引言:计量经济学是经济学的一个重要分支,其本质是通过数学和统计方法来解决经济学中的问题。

而stata则是计量经济学中一个常用的统计软件,具有对数据分析的强大能力。

本文旨在通过对销售数据的实验分析,探究stata在计量经济学中的应用。

正文:一、变量的定义和检验分析前,我们首先对所得数据进行变量的定义和检验。

我们将销售额定义为因变量Y,而将广告费用、人均收入和天气等因素定义为自变量X1、X2、X3等。

接着,我们对数据做了描述性统计分析,包括平均数、标准差、最大值、最小值、偏度等,并利用t检验和F检验对各变量的显著性进行了检验。

二、回归模型的建立基于上述数据的定义和检验结果,我们建立了一个多元线性回归模型。

模型的公式为:Y = β0 + β1 X1 + β2 X2 + β3 X3 + ε 。

其中,β0是截距,β的系数是各自变量的回归系数,ε是随机误差项。

接着,我们利用stata软件进行回归分析,并在结果中得到了各自变量的回归系数、t值、p值等。

通过对各因素的系数和显著性情况进行分析,我们发现XXX因素对销售的影响不显著,而YYY因素和ZZZ因素对销售的影响较大。

三、离散选择模型的实验在线性回归模型的基础上,我们还进行了离散选择模型的实验分析。

模型的公式为:Pr(Y=1|X) = Φ(β0 + β1 X1 + β2 X2 + β3 X3)。

其中Φ为标准正态分布函数。

我们通过统计实验得出了各自变量的系数,并利用log likelihood比较等方法比较了线性回归模型和离散选择模型的可靠性。

计量经济学实验报告stata

计量经济学实验报告stata

计量经济学实验报告stata计量经济学实验报告导言计量经济学是经济学中的一个重要分支,通过运用统计学和数学工具来研究经济现象和经济理论的有效性。

其中,实证研究是计量经济学的核心内容之一,而stata作为一款强大的统计分析软件,被广泛应用于计量经济学实证研究中。

本文将结合实例,介绍如何使用stata进行计量经济学实验研究。

实证研究的背景和目的实证研究是通过收集实际数据,运用统计学方法对经济理论进行检验和验证的过程。

实证研究的目的在于揭示经济现象的本质规律,为政策制定和经济决策提供科学依据。

在本次实证研究中,我们将以某国家的GDP增长率作为主要研究对象,探讨GDP增长率与人口增长率、投资率以及出口增长率之间的关系。

数据收集和处理首先,我们需要收集相关数据,包括GDP增长率、人口增长率、投资率和出口增长率。

这些数据可以从国家统计局或其他相关机构获取。

在收集到数据后,我们需要对数据进行处理,确保数据的准确性和一致性。

在stata中,可以使用命令load或import将数据导入软件中,并利用命令describe对数据进行描述性统计。

模型设定和估计在数据处理完成后,我们需要建立经济模型,并对模型进行估计。

在本次实证研究中,我们将采用多元线性回归模型来探究GDP增长率与人口增长率、投资率和出口增长率之间的关系。

模型设定如下:GDP增长率= β0 + β1 * 人口增长率+ β2 * 投资率+ β3 * 出口增长率+ ε其中,β0、β1、β2和β3为待估参数,ε为误差项。

在stata中,可以使用命令regress来进行回归分析,估计模型中的参数。

同时,还可以使用命令summary 对回归结果进行统计学检验,判断模型的显著性和拟合优度。

结果分析和讨论在完成模型估计后,我们需要对结果进行分析和讨论。

首先,可以通过回归结果中的系数估计值来判断变量之间的关系。

如果系数为正,表示变量之间存在正向关系;如果系数为负,表示变量之间存在负向关系。

两个系数相等的假设检验的stata命令

两个系数相等的假设检验的stata命令

一、概述假设检验是统计学中一种常用的方法,用于判断统计数据是否支持某一假设。

在实际应用中,我们经常会遇到需要判断两个系数是否相等的情况。

在本文中,我们将探讨如何使用stata软件进行两个系数相等的假设检验,并介绍具体的stata命令。

二、背景知识在统计学中,两个系数相等的假设检验通常使用t检验或者F检验进行。

t检验适用于两组独立样本,用于判断两组样本均值是否相等;F检验适用于多组样本,用于判断多组样本均值是否相等。

在stata软件中,我们可以使用特定的命令来进行这些假设检验。

三、使用stata进行两个系数相等的假设检验在stata中,我们可以使用test命令来进行两个系数相等的假设检验。

具体步骤如下:1. 加载数据:我们需要加载我们要进行假设检验的数据集。

2. 进行回归分析:使用regress命令进行回归分析,得到我们要比较的系数的估计值和标准误差。

3. 使用test命令进行假设检验:在回归分析的结果中,使用test命令进行两个系数相等的假设检验。

具体命令为:test coef1 = coef2其中,coef1和coef2分别为我们要比较的两个系数。

执行该命令后,stata将给出相应的假设检验结果,包括t统计量、p值等。

四、示例为了更好地理解如何使用stata进行两个系数相等的假设检验,以下给出一个简单的示例:假设我们有一组数据,其中y为因变量,x1和x2为自变量。

我们想比较x1和x2对y的影响是否相等。

具体步骤如下:1. 加载数据:我们需要加载我们的数据集,假设为mydata。

2. 进行回归分析:使用regress命令进行回归分析,得到x1和x2对y的系数估计值和标准误差。

3. 使用test命令进行假设检验:在回归分析结果中,使用test命令进行两个系数相等的假设检验。

具体命令为:test _b[x1] = _b[x2]其中,_b[x1]和_b[x2]分别为x1和x2的系数估计值。

执行该命令后,stata将给出假设检验结果,我们可以根据p值判断x1和x2对y的影响是否相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16
问: K 4时,联合检验: 1 1;
2 3 2。R和q矩阵如何表示?
2015/7/31
17
三种检验方法:
• 瓦尔德检验(Wald Test) • 拉格朗日乘子检验(Lagrange Multiplier Test) • 似然比检验(Likelihood Ratio Test)
假设检验
2015/7/31
1
主要内容
• 线性假设检验
– Wald检验:单系数t和一般性线性检验 – 基于约束最小二乘的检验(LR检验) – LM检验
• 非线性假设检验 • 结构突变的建模和检验:邹检验 • 设定性检验和模型选择
– 主要参考鲍姆第4章和Greene第5、6、7章部分内容
2015/7/31 2
.3
-2
t2 t40
0 x
t10 N(0,1)
2
4
随着自由度的增加,越来越接近于标准正态分布
2015/7/31 9
t检验的判断
10个自由度时 95%水平的接 受域拒绝域拒绝域-4-2.2280
2.228
4
2015/7/31
10
利用p值
p Prob t tk 2 注意:stata默认的是双侧建议的p值
如果 i 服从正态分布, i ~ N[0,2 ], 那么 b | X = A 其中 ~ N[0,2I] , A = ( XX ) 1 X . b | X ~ N[, A2IA] N[, 2 ( XX ) 1 ]..
2015/7/31
6
单个系数的t检验
bk k / se bk ~ t n K
2015/7/31
Wald检验之间的关系。”
19
2.3.1 Wald准则
如果原假设正确,Rβ – q=0,有 E[Rb – q] = 0.而m=Rb – q这 个差一般不会恰好等于0。如果m接近0,原因可能是抽样 误差;如果m很大,就不可能仅是抽样误差的影响,就成 为拒绝原假设的证据。 如何判断统计量是否足够大?需要一个“原假设”。如果 原假设是正确的,统计量服从一定的分布,而“大值”是 不大可能出现的。如果观察到的统计量过大,结论就是原 假设可能不正确,应当拒绝接受原假设。
2015/7/31
11
应用:OLS估计返回的结果
模型 基本 诊断 部分
方差 分析 部分
回归标准误:s
OLS结 果部分
参数值95%(默 认)置信区间
2015/7/31
系 数
标 准 误
t 和p 值
12
一般性t检验
bk k / se bk ~ t n K
ln G /Pop 1 2 lnPG 3 ln Income /Pop 4 lnPnc 5 lnPuc H0 : 3 1;H1 : 3 1
2015/7/31
18

Bera and Permaratne (2001, p. 58) 讲述了一段精彩的故事,能够让我们理解三 种检验间的关系: “大约在1946年某天,Ronald Fisher 邀请 Jerzy Neyman, Abraham Wald, 和 C.R. Rao 到他那喝下午茶. 在交谈的过程中,Fisher说他的狗 刚参加了一个“顺从学校”,他想知道怎么才能判断有没有效果。 Neyman 很 快提出了一个想法:让狗自由的跑一段时间,然后关在它的笼子里,如果它 行为没有较大差别,就认为训练是卓有成效的。 Wald是一个在集中营失去家
2015/7/31 4
假设检验程序
• • • • 形成原假设和备择假设 定义 “拒绝域” = 拒绝原假设的样本证据. 收集证据=计算恰当的统计量 判断统计量是否落入拒绝域
2015/7/31
5
2.2 正态分布假设与单系数t检验
假设理论要求约束条件:β=1,尽管OLS估计量是无偏的,但在给定 样本情况下的估计值b 可能(绝大多数情况下)不等于1。显然,我 们不能仅仅因为它不等于1而断定约束条件是错误的。为检验样本误 差 b-1 是否大到怀疑约束条件的正确性,需要利用抽样误差构造统计 量,即在约束条件正确时,检验统计量的概率分布为已知的。
• 从线性回归模型出发: y = X + • 考虑如下形式的一组线性约束
r111 r12 2
r1K K q1
r211 r22 2 rJ 11 rJ 2 2
r2 K K q2 rJK K qJ Rβ = q
每一行表示一个约束。这些可以写成一个方程 R是J K 矩阵。 J K ,一般R只有有限几行且
庭的犹太人,反对这种限制,他的建议是让狗儿自由的跑,看它会不会有不
良表现。 Rao 则看到过Calutta街上许多令人讨厌的流浪狗,不喜欢任由它们 跑来跑去,建议将狗儿一直关在笼子里,观察它在里面抓挠笼子的程度。如
果咆哮抓挠的太厉害,说明还需要进一步训练。那天晚上当 Rao 回到在剑桥
的公寓,他突然意识到 Neyman 和 Wald 的建议与Neyman-Pearson LR 检验与
2015/7/31
3
假设检验的类型
• 嵌套模型(Nested Models): 对一特定模型的 参数施加约束 y = 1 + 2x + 3z + , 3 = 0 • 非嵌套模型: 如, 不同的 解释变量 yt = 1 + 2xt + 3xt-1 + t yt = 1 + 2xt + 3yt-1 + wt • 其他设定检验:如正态性检验、Hausman检 验、异方差检验等。
22
t分布和F分布间关系
F 2J / J
2 nK
/ (n K)
. 如果 J = 1, 即, 检验一个约束
(N[0,1]) 2 F 2 2 n K / (n K) n K / (n K) N[0,1] 2 = t[1] 2 / (n K) nK
2.1 约束与假设
• 检验一个假设的常见方法是,用公式表述一个统计模型, 并把假设作为对其中参数的一种约束。如果一个理论具有 “可检验含义”如果它对模型施加了某种可以检验的约束。
• 原假设 • 备择假设
ln Wage 1 2 educ 3 age 4 age 2 H 0 : 2 0 H1 : 2 0
2015/7/31
每一行都有许多0.
15
约束R = q 的例子
1.一个系数为0, j 0, R 0 0 ... 1 0 ...0 , q 0 2.两个系数相等, k j R 0 0 1 ... -1 ...0 , q 0 3.一组系数和为1, 2 3 4 1 R 0 1 1 1 0 ... , q 1 4.系数的一个子集为0,1 0, 2 0, 3 0 1 0 0 0 ... 0 0 , q 0 R 0 1 0 0 ... 0 0 0 0 1 0 ... 0 5.几个线性约束, 2 3 1, 4 6 0, 5 6 0 0 1 1 0 0 0 1 , q 0 R 0 0 0 1 0 1 2015/7/31 0 0 0 0 1 1 0
注:Wald统计量: W = (q - q0 )'[Var(q - q0 )]-1 (q - q0 )
0 服从2 分布。 q 为q的期望值。回忆下卡方分布的定义 J
2015/7/31
21
F检验的判定法则
F>c,在选定的显著性水平上拒绝H0而支持H1。
面积=0.95
面积=0.05
0
1
2 x
3
4
5
2015/7/31
Wald检验是使用最为普遍的检验,一般软件均提供实现方法。
不过有一个缺点,当本质相同的原假设仅表达形式不同时, 检验的结果可能会存在相当大差异。
Wald准则
• Wald 准则: W=m(Var[m])-1m . 其中, Var[m] = R[2(X’X)-1]R.
使用s2 替换2后 1 W Rb - q R s 2 XX R


1
Rb - q
• 除以J,得到F检验统计量:
1 F J , n K 1/ J Rb - q R s 2 XX R 见Greene 5 6


1
Rb - q
注:该统计量只需要进行无约束回归 在只有1个约束的时候,t统计量的平方服从F(1,n-K)
Std. Err. 86.15604 .6413538 3597.05
[99% Conf. Interval] -277.5555 .0489833 -7574.83 178.531 3.444135 11466.97
2015/7/31
8
不同自由度的t分布
不同自由度的t分布
.4 0
-4
.1
密度 .2
t bk 0 se bk
Pr t1 /2 b / se b t1 /2 1 Prob bk t1 /2 se bk k bk t1 /2 se bk 1
也可以用置信区间进行假设检验: 如果原假设中待检验的值不在置信区间内,则拒绝原假设
t=(1.0959-1)/0.0777=1.234 5%水平上47个自由度的t分布临界值为2.012 2015/7/31
13
疑问:不显著怎么办?
• 魏刚,2000,高级管理层激励与上市公司 经营绩效,经济研究,第3期。
– 另外,里面有一些概念性错误。
相关文档
最新文档