塔吊矩形板式基础计算书
T6515-8B塔吊矩形板式桩基础计算书15米

矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《预应力混凝土管桩技术标准》JGJ/T406-2017、塔机属性、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算-4承台底标高d1(m)基础布置图承台及其上土的自重荷载标准值:G k=bl(h cγ+h' γ ')=6.5 × 6.5 × (1.4 × 25+0× 19)=1478.75kN承台及其上土的自重荷载设计值:G=1.35G k=1.35 ×1478.75=1996.312kN 桩对角线距离:L=(a b2+a l2)0.5=(4.82+4.82)0.5=6.788m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k'+G k)/n=(558+1478.75)/4=509.188kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k'+G k)/n+(M k'+F Vk 'h)/L=(558+1478.75)/4+(2322+86 1.4×)/6.788=868.987kNQ kmin =(F k'+G k )/n-(M k'+F Vk 'h)/L=(558+1478.75)/4-(2322+86 1.4×)/6.788=149.388kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F'+G)/n+(M'+F v'h)/L=(753.3+1996.312)/4+(3134.7+116.1 1.4)/×6.788=1173.132kNQ min=(F'+G)/n-(M'+F v'h)/L=(753.3+1996.312)/4-(3134.7+116.1 1.4)/6×.788=201.674kN 四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=π d=3.14 × 0.5=1.571mh b/d=1 ×1000/500=2<5λp=0.16h b/d=0.16 2×=0.32空心管桩桩端净面积:A j=π[d2-(d-2t)2]/4=3.14 [×0.52-(0.5-20×.125)2]/4=0.147m2空心管桩敞口面积:A p1=π (d-2t)2/4=3.14 (×0.5-2 0×.125)2/4=0.049m2 承载力计算深度:min(b/2,5)=min(6.5/2,5)=3.25mf ak=(0.55 2×60)/3.25=143/3.25=44kPa承台底净面积:A c=(bl-n(A j+A p1))/n=(6.5 6.×5-4×(0.147+0.049))/4=10.366m2 复合桩基竖向承载力特征值:R a=ψuΣs q ia·l i+q pa·(A j+λp A p1)+ ηc f ak A c=0.8 ×1.571 ×(2.7 ×12+1.5 ×70+6.1 ×40+0.7×80)+3500×(0.147+0.32 0×.049)+0.1 4×4×10.366=1164.715kNQ k=509.188kN ≤R a=1164.715kNQ kmax=868.987kN ≤ 1.2a R=1.2 ×1164.715=1397.658kN 满足要求!2、桩基竖向抗拔承载力计算Q kmin =149.388kN ≥0 不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=15 ×3.142 ×10.72/4=1349mm2 (1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1173.132kN桩身结构竖向承载力设计值:R=1500kNQ=1173.132kN≤1500kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin =149.388kN ≥0 不需要进行轴心受拔桩桩身承载力计算!4、裂缝控制计算Q kmin =149.388kN ≥0不需要进行裂缝控制计算!五、承台计算1、荷载计算承台计算不计承台及上土自重F max=F/n+M/L=753.3/4+3134.7/6.788=650.11kNF min =F/n-M/L=753.3/4-3134.7/6.788=-273.46kN承台底部所受最大弯矩:M x= F max (a b-B)/2=650.11 (4×.8-1.8)/2=975.165kN.mM y= F max (a l-B)/2=650.11 (4×.8-1.8)/2=975.165kN.m承台顶部所受最大弯矩:M'x= F min (a b-B)/2=-273.46 (4×.8-1.8)/2=-410.19kN.mM'y= F min (a l-B)/2=-273.46 (4×.8-1.8)/2=-410.19kN.m计算底部配筋时:承台有效高度:h0=1400-50-22/2=1339mm计算顶部配筋时:承台有效高度:h0=1400-50-22/2=1339mm2、受剪切计算V=F/n+M/L=753.3/4 + 3134.7/6.788=650.11kN 受剪切承载力截面高度影响系数:βhs=(800/1339)1/4=0.879 塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(4.8-1.8-0.5)/2=1.25ma1l=(a l-B-d)/2=(4.8-1.8-0.5)/2=1.25m 剪跨比:λb'=a1b/h0=1250/1339=0.934,取λb=0.934;λl'= a1l/h0=1250/1339=0.934,取λl=0.934;承台剪切系数:αb=1.75/( bλ+1)=1.75/(0.934+1)=0.905αl=1.75/( l+λ1)=1.75/(0.934+1)=0.905βhsαb f t bh0=0.879 ×0.905 ×1.57 ×103×6.5 ×1.339=10873.203kN3βhsαl f t lh0=0.879 ×0.905 ×1.57 ×103×6.5 ×1.339=10873.203kNV=650.11kN≤ min( hβsαb f t bh0,βhsαl f t lh0)=10873.203kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.8+2 ×1.339=4.478ma b=4.8m>B+2h0=4.478m,a l=4.8m>B+2h0=4.478m角桩内边缘至承台外边缘距离:c b=(b-a b+d)/2=(6.5-4.8+0.5)/2=1.1mc l=(l-a l+d)/2=(6.5-4.8+0.5)/2=1.1m 角桩冲跨比::λb''=a1b/h0=1250/1339=0.934,取λb=0.934;λl''= a1l/h0=1250/1339=0.934,取λl=0.934;角桩冲切系数:β1b=0.56/( bλ+0.2)=0.56/(0.934+0.2)=0.494β1l=0.56/( l+λ0.2)=0.56/(0.934+0.2)=0.494[ β1b(c b+a lb/2)+ β1l(c l+a ll/2)] hβp·f t·h0=[0.494 (×1.1+1.25/2)+0.494 (1.1×+1.25/2)]0.9×5 ×1570×1.339=3403.902kNN l=V=650.11kN≤[1βb(c b+a lb/2)+ β1l (c l+a ll /2)] hβp·f t·h0=3403.902kN 满足要求!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=975.165 1×06/(1 ×16.7 ×6500×13392)=0.005 ζ1=1-(1-2αS1)0.5=1-(1-2 0×.005)0.5=0.005γS1=1-ζ1/2=1-0.005/2=0.997A S1=M y/(γS1h0f y1)=975.165 1×06/(0.997 1×339×300)=2434mm2最小配筋率:ρ=0.15%承台底需要配筋:A 1=max(A S1, ρbh0)=max(2434,0.00156×500×1339)=13056mm2承台底长向实际配筋:A S1'=15824mm2≥A1=13056mm2满足要求!(2)、承台底面短向配筋面积αS2= M x /(α2f c lh02)=975.165 ×106/(1 ×16.7 ×6500×13392)=0.0050.5 0.5ζ2=1-(1-2αS2)0.5=1-(1-2 0×.005)0.5=0.005γS2=1-ζ2/2=1-0.005/2=0.997A S2=M x/(γS2h0f y1)=975.165 1×06/(0.997 1×339×300)=2434mm2最小配筋率:ρ=0.15%承台底需要配筋:A 2=max(A S2, ρlh0)=max(2434,0.00156×500×1339)=13056mm2承台底短向实际配筋:A S2'=15824mm2≥A2=13056mm2满足要求!(3)、承台顶面长向配筋面积αS1= M'y/( α1f c bh02)=410.19 1×06/(1 ×16.7 ×6500×13392)=0.002 ζ1=1-(1-2αS1)0.5=1-(1-2 0×.002)0.5=0.002γS1=1-ζ1/2=1-0.002/2=0.999A S3=M'y/(γS1h0f y1)=410.19 1×06/(0.999 1×339×300)=1023mm2最小配筋率:ρ=0.15%承台顶需要配筋:A3=max(A S3,ρbh0,0.5A S1')=max(1023,0.0015 65×00×1339,0.5 1×5824)=13056mm2承台顶长向实际配筋:A S3'=15824mm2≥A3=13056mm2满足要求!(4)、承台顶面短向配筋面积αS2= M'x/(α2f c lh02)=410.19 1×06/(1 ×16.7 ×6500×13392)=0.002 ζ2=1-(1-2αS2)0.5=1-(1-2 0×.002)0.5=0.002γS2=1-ζ2/2=1-0.002/2=0.999A S4=M'x/(γS2h0f y1)=410.19 1×06/(0.999 1×339×300)=1023mm2最小配筋率:ρ=0.15%承台顶需要配筋:A 4=max(A S4, ρlh0,0.5A S2' )=max(1023,0.0015 650×0×1339,0.5 ×15824)=13056mm2承台顶面短向配筋:A S4'=15824mm2≥A4=13056mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向HPB300 10@500。
塔吊矩形板式基础计算书

塔吊矩形板式基础计算书一、计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011二、塔机属性三、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、基础验算基础布置图基础布置基础长l(m) 6.5 基础宽b(m)6.5基础高度h(m)1.4基础参数基础混凝土强度等级 C35基础混凝土自重γc(kN/m 3)25基础上部覆土厚度h ’(m)0 基础上部覆土的重度19基础及其上土的自重荷载标准值:G k=blhγc=6.5×6.5×1.4×25=1478.75kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1478.75=1996.312kN 荷载效应标准组合时,平行基础边长方向受力:M k''=M k'=2695.1kN·mF vk''=F vk'/1.2=97/1.2=80.833kN荷载效应基本组合时,平行基础边长方向受力:M''=M'=3638.385kN·mF v''=F v'/1.2=130.95/1.2=109.125kN基础长宽比:l/b=6.5/6.5=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=6.5×6.52/6=45.771m3W y=bl2/6=6.5×6.52/6=45.771m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k''b/(b2+l2)0.5=2695.1×6.5/(6.52+6.52)0.5=1905.723kN·mM ky=M k''l/(b2+l2)0.5=2695.1×6.5/(6.52+6.52)0.5=1905.723kN·m1、偏心距验算(1)、偏心位置相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(624.5+1478.75)/42.25-1905.723/45.771-1905.723/45.771=-33.49 1<0偏心荷载合力作用点在核心区外。
中联TC6012-6 QTZ80矩形板式基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性1、塔机传递至基础荷载标准值塔机自重设计值F1(kN) 1.35F k1=1.35×443.9=599.265 起重荷载设计值F Q(kN) 1.35F Qk=1.35×107.2=144.72竖向荷载设计值F(kN) 599.265+144.72=743.985水平荷载设计值F v(kN) 1.35F vk=1.35×19.7=26.595倾覆力矩设计值M(kN·m) 1.35M k=1.35×1545.7=2086.695 非工作状态竖向荷载设计值F'(kN) 1.35F k'=1.35×443.9=599.265 水平荷载设计值F v'(kN) 1.35F vk'=1.35×80.4=108.54倾覆力矩设计值M'(kN·m) 1.35M k=1.35×1677.3=2264.355三、基础验算基础布置图G k=blhγc=5.8×5.8×1.3×25=1093.3kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1093.3=1475.955kN 荷载效应标准组合时,平行基础边长方向受力:M k''=1677.3kN·mF vk''=F vk'/1.2=80.4/1.2=67kN荷载效应基本组合时,平行基础边长方向受力:M''=2264.355kN·mF v''=F v'/1.2=108.54/1.2=90.45kN基础长宽比:l/b=5.8/5.8=1≤1.1,基础计算形式为方形基础。
徐工QTZ100(XGT125)矩形板式基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性1、塔机传递至基础荷载标准值塔机自重设计值F1(kN) 1.35F k1=1.35×593=800.55 起重荷载设计值F Q(kN) 1.35F Qk=1.35×13=17.55竖向荷载设计值F(kN) 800.55+17.55=818.1水平荷载设计值F v(kN) 1.35F vk=1.35×29.7=40.095 倾覆力矩设计值M(kN·m) 1.35M k=1.35×2025=2733.75 非工作状态竖向荷载设计值F'(kN) 1.35F k'=1.35×593=800.55 水平荷载设计值F v'(kN) 1.35F vk'=1.35×114=153.9倾覆力矩设计值M'(kN·m) 1.35M k=1.35×2815=3800.25基础布置图G k=blhγc=6.7×6.7×1.4×25=1571.15kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1571.15=2121.052kN 荷载效应标准组合时,平行基础边长方向受力:M k''=2815kN·mF vk''=F vk'/1.2=114/1.2=95kN荷载效应基本组合时,平行基础边长方向受力:M''=3800.25kN·mF v''=F v'/1.2=153.9/1.2=128.25kN基础长宽比:l/b=6.7/6.7=1≤1.1,基础计算形式为方形基础。
80塔吊矩形板式基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算矩形板式基础布置图基础及其上土的自重荷载标准值:G k=blhγc=4.5×4.5×1.25×25=632.81kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×632.81=759.38kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=42×22+3.8×11.5-19.8×6.3-128×11.8+0.9×(690+0.5×19.02×43/1.2)=260.26kN·mF vk''=F vk/1.2=19.02/1.2=15.85kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×42×22+3.8×11.5-19.8×6.3-128×11.8)+1.4×0.9×(690+0.5×19.02×43/1.2) =497.85kN·mF v''=F v/1.2=26.63/1.2=22.19kN基础长宽比:l/b=4.5/4.5=1≤1.1,基础计算形式为方形基础。
5710矩形板式基础计算书

3#5710矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机竖向荷载简图1、塔机自身荷载标准值k矩形板式基础布置图G k=blhγc=5.5×5.5×1.25×25=945.31kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×945.31=1134.38kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1-G3R G3-G4R G4+0.5F vk'H/1.2=32.8×20.8-17.6×5.6-135×10.6+0.5×85.97×43/1.2=692.98kN·mF vk''=F vk'/1.2=85.97/1.2=71.64kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1-G3R G3-G4R G4)+1.4×0.5F vk'H/1.2=1.2×(32.8×20.8-17.6×5.6-135×10.6)+1.4×0.5×85.97×43/1.2=1139.63kN·mF v''=F v'/1.2=120.36/1.2=100.3kN基础长宽比:l/b=5.5/5.5=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=5.5×5.52/6=27.73m3W y=bl2/6=5.5×5.52/6=27.73m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=1001.04×5.5/(5.52+5.52)0.5=707.84kN·mM ky=M k l/(b2+l2)0.5=1001.04×5.5/(5.52+5.52)0.5=707.84kN·m1、偏心距验算(1)、偏心位置相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(454.2+945.31)/30.25-707.84/27.73-707.84/27.73=-4.79<0偏心荷载合力作用点在核心区外。
塔吊基础计算书典范
一、QTZ5013塔吊天然基础的计算书1、地基承载力计算1.1塔基在独立状态时,作用于基础的荷载应包括塔机作用于基础顶的竖向荷载标准值(F k)、水平荷载标准值(F vk)、倾覆力矩(包括塔机自重、起重荷载、风荷载等引起的力矩)荷载标准值(M k)、扭矩荷载标准值(T k),以及基础及其上土的自重荷载标准值(G k)。
1.2矩形基础地基承载力计算应符合下列规定:1、基础底面压力应符合:1)、当轴心荷载作用时:p k≤f a=200kpa式中:p k ------相当于荷载效应便准组合时,基础底面处的平均压力值;f a -------修正后的地基承载力特征值。
2)、当偏心荷载作用时,除符合上式外,尚应符合下列要求:p kmax≤1.2 f a=1.2*200=240 kpa 式中:p kmax -------相应于荷载效应标准组合时,基础底面边缘的最大压力值。
2、基础底面的压力可按下列公式确定:1)当轴心荷载作用时:p k=(F k+G k)/bl=(842.4+1108.404)/(5*5)=78.03216 kn/m2≤240 kpa 故,符合要求。
式中:F k -----塔机作用于基础顶面的竖向荷载标准值;G k -----基础及其上土的自重标准值;b-------矩形基础底面的短边长度;l--------矩形基础底面的长边长度。
2)当偏心荷载作用时:p kmax=(F k+G k)/bl+(M k+F vk•h)/W=(842.4+1108.404)/(5*5)+(882+4*1.35)/20.83=78.03216+42.6=120.63 kn/m2≤1.2 f a 符合要求。
式中:M k-------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;F vk-------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载值;h-------基础的高度;W--------基础底面的抵抗矩。
矩形格构式基础计算书
矩形格构式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《钢结构设计规范》GB50017-20036、《建筑结构荷载规范》GB50009-2012一、塔机属性塔机竖向荷载简图1、塔机自身荷载标准值k三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4×4×(1.35×25+0×19)=540kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×540=648kN桩对角线距离:L=(a b2+a l2)0.5=(2.42+2.42)0.5=3.394m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(521.1+540+20)/4=270.275kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk(H0-h r+h/2))/L=(521.1+540+20)/4+(673.718+18.542×(1.35+9-3.8-1.35/2))/3.394=500.866kN Q kmin=(F k+G k+G p2)/n-(M k+F Vk(H0-h r+h/2))/L=(521.1+540+20)/4-(673.718+18.542×(1.35+9-3.8-1.35/2))/3.394=39.684kN 2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+1.35×G p2)/n+(M+F v(H0-h r+h/2))/L=(637.32+648+1.35×20)/4+(993.619+25.959×(1.35+9-3.8-1.35/2))/3.394=665.761kN Q min=(F+G+1.35×G p2)/n-(M+F v(H0-h r+h/2))/L=(637.32+648+1.35×20)/4-(993.619+25.959×(1.35+9-3.8-1.35/2))/3.394=-9.601kN 四、格构柱计算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[514.65+27.37×(47.00/2-3.82)2]=44460.467cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=900/(44460.467/(4×27.37))0.5=44.66分肢长细比:λ1=l01/i y0=45.00/2.78=16.187分肢毛截面积之和:A=4A0=4×27.37×102=10948mm2格构式钢柱绕两主轴的换算长细比:λ0 =(λx2+λ12)0.5=(44.662+16.1872)0.5=47.503maxλ0max=47.503≤[λ]=150满足要求!2、格构式钢柱分肢的长细比验算λ1=16.187≤min(0.5λ0max,40)=min(0.5×50,40)=25满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=50×(235/235)0.5=50查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:υ=0.856Q max/(υA)=665.761×103/(0.856×10948)=71.041N/mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=10948×215×10-3×(235/235)0.5/85=27.692kN 格构柱相邻缀板轴线距离:l1=l01+27=45.00+27=72cm作用在一侧缀板上的弯矩:M0=Vl1/4=27.692×0.72/4=4.985kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.47-2×0.0382=0.394m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=27.692×0.72/(2×0.394)=25.328kN σ= M0/(bh2/6)=4.985×106/(10×2702/6)=41.025N/mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3×25.328×103/(2×10×270)=14.071N/mm2≤τ=125N/mm2满足要求!角焊缝面积:A f=0.7h f l f=0.8×10×550=3850mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×10×5502/6=352917mm3垂直于角焊缝长度方向应力:σf=M0/W f=4.985×106/352917=14N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=25.328×103/3850=7N/mm2((σf /1.22)2+τf2)0.5=((14/1.22)2+72)0.5=13N/mm2≤f tw=160N/mm2满足要求!根据缀板的构造要求缀板高度:270mm≥2/3 b1=2/3×0.394×1000=262mm满足要求!缀板厚度:10mm≥max[1/40b1,6]= max[1/40×0.394×1000,6]=10mm满足要求!缀板间距:l1=720mm≤2b1=2×0.394×1000=787mm满足要求!线刚度:∑缀板/分肢=4×10×2703/(12×(470-2×38.2))/(514.65×104/720)=23.32≥6满足要求!五、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=ψuΣq sia·l i+q pa·A p=0.8×2.513×(1.7×33.8+12.3×10.85+1.8×62.83+2.4×114.35)+2.51×0.503=1164.303kN Q k=270.275kN≤R a=1164.303kNQ kmax=500.866kN≤1.2R a=1.2×1164.303=1397.164kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=39.684kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=14×3.142×222/4=5322mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=665.761kNψc f c A p+0.9f y'A s'=(0.75×11.9×0.503×106 + 0.9×(360×5321.858))×10-3=6213.557kN Q=665.761kN≤ψc f c A p+0.9f y'A s'=6213.557kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=39.684kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(5321.858/(0.503×106))×100%=1.058%≥0.45%满足要求!5、裂缝控制计算Q kmin=39.684kN≥0不需要进行裂缝控制计算!六、承台计算承台有效高度:h0=1350-50-22/2=1289mmM=(Q max+Q min)L/2=(665.761+(-9.601))×3.394/2=1113.54kN·mX方向:M x=Ma b/L=1113.54×2.4/3.394=787.392kN·mY方向:M y=Ma l/L=1113.54×2.4/3.394=787.392kN·m2、受剪切计算V=F/n+M/L=637.32/4 + 993.619/3.394=452.078kN受剪切承载力截面高度影响系数:βhs=(800/1289)1/4=0.888塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(2.4-1.6-0.8)/2=0ma1l=(a l-B-d)/2=(2.4-1.6-0.8)/2=0m 剪跨比:λb'=a1b/h0=0/1289=0,取λb=0.25;λl'= a1l/h0=0/1289=0,取λl=0.25;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.25+1)=1.4αl=1.75/(λl+1)=1.75/(0.25+1)=1.4βhsαb f t bh0=0.888×1.4×1.57×103×4×1.289=10058.885kNβhsαl f t lh0=0.888×1.4×1.57×103×4×1.289=10058.885kNV=452.078kN≤min(βhsαb f t bh0,βhsαl f t lh0)=10058.885kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.289=4.178ma b=2.4m≤B+2h0=4.178m,a l=2.4m≤B+2h0=4.178m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=787.392×106/(1.03×16.7×4000×12892)=0.007δ1=1-(1-2αS1)0.5=1-(1-2×0.007)0.5=0.007γS1=1-δ1/2=1-0.007/2=0.997A S1=M y/(γS1h0f y1)=787.392×106/(0.997×1289×360)=1703mm2最小配筋率:ρ=0.15%承台底需要配筋:A1=max(A S1, ρbh0)=max(1703,0.0015×4000×1289)=7734mm2 承台底长向实际配筋:A S1'=9884mm2≥A1=7734mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=787.392×106/(1.03×16.7×4000×12892)=0.007δ2=1-(1-2αS2)0.5=1-(1-2×0.007)0.5=0.007γS2=1-δ2/2=1-0.007/2=0.997A S2=M x/(γS2h0f y1)=787.392×106/(0.997×1289×360)=1703mm2最小配筋率:ρ=0.15%承台底需要配筋:A2=max(1703, ρlh0)=max(1703,0.0015×4000×1289)=7734mm2 承台底短向实际配筋:A S2'=9884mm2≥A2=7734mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=9884mm2≥0.5A S1'=0.5×9884=4942mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=9884mm2≥0.5A S2'=0.5×9884=4942mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
T6515-8B塔吊矩形板式桩基础计算书15米
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《预应力混凝土管桩技术标准》JGJ/T406-2017一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算承台底标高d1(m) -4基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=6.5×6.5×(1.4×25+0×19)=1478.75kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×1478.75=1996.312kN 桩对角线距离:L=(a b2+a l2)0.5=(4.82+4.82)0.5=6.788m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k'+G k)/n=(558+1478.75)/4=509.188kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k'+G k)/n+(M k'+F Vk'h)/L=(558+1478.75)/4+(2322+86×1.4)/6.788=868.987kNQ kmin=(F k'+G k)/n-(M k'+F Vk'h)/L=(558+1478.75)/4-(2322+86×1.4)/6.788=149.388kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F'+G)/n+(M'+F v'h)/L=(753.3+1996.312)/4+(3134.7+116.1×1.4)/6.788=1173.132kN Q min=(F'+G)/n-(M'+F v'h)/L=(753.3+1996.312)/4-(3134.7+116.1×1.4)/6.788=201.674kN 四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.5=1.571mh b/d=1×1000/500=2<5λp=0.16h b/d=0.16×2=0.32空心管桩桩端净面积:A j=π[d2-(d-2t)2]/4=3.14×[0.52-(0.5-2×0.125)2]/4=0.147m2 空心管桩敞口面积:A p1=π(d-2t)2/4=3.14×(0.5-2×0.125)2/4=0.049m2承载力计算深度:min(b/2,5)=min(6.5/2,5)=3.25mf ak=(0.55×260)/3.25=143/3.25=44kPa承台底净面积:A c=(bl-n(A j+A p1))/n=(6.5×6.5-4×(0.147+0.049))/4=10.366m2复合桩基竖向承载力特征值:R a=ψuΣq sia·l i+q pa·(A j+λp A p1)+ηc f ak A c=0.8×1.571×(2.7×12+1.5×70+6.1×40+0.7×80)+350 0×(0.147+0.32×0.049)+0.1×44×10.366=1164.715kNQ k=509.188kN≤R a=1164.715kNQ kmax=868.987kN≤1.2R a=1.2×1164.715=1397.658kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=149.388kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=15×3.142×10.72/4=1349mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1173.132kN 桩身结构竖向承载力设计值:R=1500kNQ=1173.132kN≤1500kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=149.388kN≥0不需要进行轴心受拔桩桩身承载力计算!4、裂缝控制计算Q kmin=149.388kN≥0不需要进行裂缝控制计算!五、承台计算1、荷载计算承台计算不计承台及上土自重:F max=F/n+M/L=753.3/4+3134.7/6.788=650.11kNF min=F/n-M/L=753.3/4-3134.7/6.788=-273.46kN承台底部所受最大弯矩:M x= F max (a b-B)/2=650.11×(4.8-1.8)/2=975.165kN.mM y= F max (a l-B)/2=650.11×(4.8-1.8)/2=975.165kN.m承台顶部所受最大弯矩:M'x= F min (a b-B)/2=-273.46×(4.8-1.8)/2=-410.19kN.mM'y= F min (a l-B)/2=-273.46×(4.8-1.8)/2=-410.19kN.m计算底部配筋时:承台有效高度:h0=1400-50-22/2=1339mm计算顶部配筋时:承台有效高度:h0=1400-50-22/2=1339mm2、受剪切计算V=F/n+M/L=753.3/4 + 3134.7/6.788=650.11kN受剪切承载力截面高度影响系数:βhs=(800/1339)1/4=0.879塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(4.8-1.8-0.5)/2=1.25ma1l=(a l-B-d)/2=(4.8-1.8-0.5)/2=1.25m剪跨比:λb'=a1b/h0=1250/1339=0.934,取λb=0.934;λl'= a1l/h0=1250/1339=0.934,取λl=0.934;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.934+1)=0.905αl=1.75/(λl+1)=1.75/(0.934+1)=0.905βhsαb f t bh0=0.879×0.905×1.57×103×6.5×1.339=10873.203kNβhsαl f t lh0=0.879×0.905×1.57×103×6.5×1.339=10873.203kNV=650.11kN≤min(βhsαb f t bh0,βhsαl f t lh0)=10873.203kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.8+2×1.339=4.478ma b=4.8m>B+2h0=4.478m,a l=4.8m>B+2h0=4.478m角桩内边缘至承台外边缘距离:c b=(b-a b+d)/2=(6.5-4.8+0.5)/2=1.1mc l=(l-a l+d)/2=(6.5-4.8+0.5)/2=1.1m角桩冲跨比::λb''=a1b/h0=1250/1339=0.934,取λb=0.934;λl''= a1l/h0=1250/1339=0.934,取λl=0.934;角桩冲切系数:β1b=0.56/(λb+0.2)=0.56/(0.934+0.2)=0.494β1l=0.56/(λl+0.2)=0.56/(0.934+0.2)=0.494[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=[0.494×(1.1+1.25/2)+0.494×(1.1+1.25/2)]×0.95×157 0×1.339=3403.902kNN l=V=650.11kN≤[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=3403.902kN满足要求!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=975.165×106/(1×16.7×6500×13392)=0.005ζ1=1-(1-2αS1)0.5=1-(1-2×0.005)0.5=0.005γS1=1-ζ1/2=1-0.005/2=0.997A S1=M y/(γS1h0f y1)=975.165×106/(0.997×1339×300)=2434mm2最小配筋率:ρ=0.15%承台底需要配筋:A1=max(A S1, ρbh0)=max(2434,0.0015×6500×1339)=13056mm2 承台底长向实际配筋:A S1'=15824mm2≥A1=13056mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c lh02)=975.165×106/(1×16.7×6500×13392)=0.005ζ2=1-(1-2αS2)0.5=1-(1-2×0.005)0.5=0.005γS2=1-ζ2/2=1-0.005/2=0.997A S2=M x/(γS2h0f y1)=975.165×106/(0.997×1339×300)=2434mm2最小配筋率:ρ=0.15%承台底需要配筋:A2=max(A S2, ρlh0)=max(2434,0.0015×6500×1339)=13056mm2 承台底短向实际配筋:A S2'=15824mm2≥A2=13056mm2满足要求!(3)、承台顶面长向配筋面积αS1= M'y/(α1f c bh02)=410.19×106/(1×16.7×6500×13392)=0.002ζ1=1-(1-2αS1)0.5=1-(1-2×0.002)0.5=0.002γS1=1-ζ1/2=1-0.002/2=0.999A S3=M'y/(γS1h0f y1)=410.19×106/(0.999×1339×300)=1023mm2最小配筋率:ρ=0.15%承台顶需要配筋:A3=max(A S3,ρbh0,0.5A S1')=max(1023,0.0015×6500×1339,0.5×15824)=13056mm2 承台顶长向实际配筋:A S3'=15824mm2≥A3=13056mm2满足要求!(4)、承台顶面短向配筋面积αS2= M'x/(α2f c lh02)=410.19×106/(1×16.7×6500×13392)=0.002ζ2=1-(1-2αS2)0.5=1-(1-2×0.002)0.5=0.002γS2=1-ζ2/2=1-0.002/2=0.999A S4=M'x/(γS2h0f y1)=410.19×106/(0.999×1339×300)=1023mm2最小配筋率:ρ=0.15%承台顶需要配筋:A4=max(A S4, ρlh0,0.5A S2' )=max(1023,0.0015×6500×1339,0.5 ×15824)=13056mm2承台顶面短向配筋:A S4'=15824mm2≥A4=13056mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向HPB300 10@500。
QTZ63 (ZJ5311)矩形板式基础计算书.
QTZ63 (ZJ5311)矩形板式基础计算书一、塔机属性塔机型号QTZ63 (ZJ5311)塔机独立状态的最大起吊高度H0(m) 40塔机独立状态的计算高度H(m) 43塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 251起重臂自重G1(kN) 37.4起重臂重心至塔身中心距离R G1(m) 222、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(37.4×22-19.8×6.3-89.4×11.8)+1.4×0.5×45.27×43=934.4 三、基础验算矩形板式基础布置图基础布置基础长l(m) 5.3 基础宽b(m) 5.3 基础高度h(m) 1.25基础参数基础混凝土强度等级C25 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)40地基参数地基承载力特征值f ak(kPa) 150 基础宽度的地基承载力修正系数ηb0.3基础及其上土的自重荷载标准值:G k=blhγc=5.3×5.3×1.25×25=877.81kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×877.81=1053.38kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(690+0.5×19.02×43/1.2)=614.54kN·mF vk''=F vk/1.2=19.02/1.2=15.85kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(690+0.5×19.02×43/1.2) =922.98kN·mF v''=F v/1.2=26.63/1.2=22.19kN基础长宽比:l/b=5.3/5.3=1≤1.1,基础计算形式为方形基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形板式基础计算书一、塔机属性
二、塔机荷载
塔机竖向荷载简图
1、塔机自身荷载标准值
2、风荷载标准值ωk(kN/m2)
3、塔机传递至基础荷载标准值
4、塔机传递至基础荷载设计值
三、基础验算
矩形板式基础布置图
基础及其上土的自重荷载标准值:
G k=blhγc=5×5×1.35×25=843.75kN
基础及其上土的自重荷载设计值:G=1.2G k=1.2×843.75=1012.5kN
荷载效应标准组合时,平行基础边长方向受力:
M k''=G1R G1-G3R G3-G4R G4+0.5F vk'H/1.2
=37.4×22-19.8×6.3-89.4×11.8+0.5×42.1×42/1.2
=379.89kN·m
F vk''=F vk'/1.2=42.1/1.2=35.08kN
荷载效应基本组合时,平行基础边长方向受力:
M''=1.2×(G1R G1-G3R G3-G4R G4)+1.4×0.5F vk'H/1.2
=1.2×(37.4×22-19.8×6.3-89.4×11.8)+1.4×0.5×42.1×42/1.2
=603.22kN·m
F v''=F v'/1.2=58.94/1.2=49.12kN
基础长宽比:l/b=5/5=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=5×52/6=20.83m3
W y=bl2/6=5×52/6=20.83m3
相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=527.24×5/(52+52)0.5=372.81kN·m
M ky=M k l/(b2+l2)0.5=527.24×5/(52+52)0.5=372.81kN·m
1、偏心距验算
相应于荷载效应标准组合时,基础边缘的最小压力值:
P kmin=(F k+G k)/A-M kx/W x-M ky/W y
=(401.4+843.75)/25-372.81/20.83-372.81/20.83=14.02kPa≥0
偏心荷载合力作用点在核心区内。
2、基础底面压力计算
P kmin=14.02kPa
P kmax=(F k+G k)/A+M kx/W x+M ky/W y
=(401.4+843.75)/25+372.81/20.83+372.81/20.83=85.6kPa
3、基础轴心荷载作用应力
P k=(F k+G k)/(lb)=(401.4+843.75)/(5×5)=49.81kN/m2
4、基础底面压力验算
(1)、修正后地基承载力特征值
f a=f ak+εbγ(b-3)+εdγm(d-0.5)
=150.00+0.00×19.00×(5.00-3)+1.60×19.00×(1.60-0.5)=183.44kPa (2)、轴心作用时地基承载力验算
P k=49.81kPa≤f a=183.44kPa
满足要求!
(3)、偏心作用时地基承载力验算
P kmax=85.6kPa≤1.2f a=1.2×183.44=220.13kPa
满足要求!
基础有效高度:h0=h-δ=1350-(40+22/2)=1299mm
X轴方向净反力:
P xmin=γ(F k/A-(M k''+F vk''h)/W x)=1.35×(401.400/25.000-(379.890+35.083×1.350)/20.833)=-6.0 10kN/m2
P xmax=γ(F k/A+(M k''+F vk''h)/W x)=1.35×(401.400/25.000+(379.890+35.083×1.350)/20.833)=49 .362kN/m2
假设P xmin=0,偏心安全,得
P1x=((b+B)/2)P xmax/b=((5.000+1.600)/2)×49.362/5.000=32.579kN/m2
Y轴方向净反力:
P ymin=γ(F k/A-(M k''+F vk''h)/W y)=1.35×(401.400/25.000-(379.890+35.083×1.350)/20.833)=-6.0 10kN/m2
P ymax=γ(F k/A+(M k''+F vk''h)/W y)=1.35×(401.400/25.000+(379.890+35.083×1.350)/20.833)=49 .362kN/m2
假设P ymin=0,偏心安全,得
P1y=((l+B)/2)P ymax/l=((5.000+1.600)/2)×49.362/5.000=32.579kN/m2
基底平均压力设计值:
p x=(P xmax+P1x)/2=(49.36+32.58)/2=40.97kN/m2
p y=(P ymax+P1y)/2=(49.36+32.58)/2=40.97kPa
V x=|p x|(b-B)l/2=40.97×(5-1.6)×5/2=348.25kN
V y=|p y|(l-B)b/2=40.97×(5-1.6)×5/2=348.25kN
X轴方向抗剪:
h0/l=1299/5000=0.26≤4
0.25βc f c lh0=0.25×1×14.3×5000×1299=23219.62kN≥V x=348.25kN
满足要求!
Y轴方向抗剪:
h0/b=1299/5000=0.26≤4
0.25βc f c bh0=0.25×1×14.3×5000×1299=23219.62kN≥V y=348.25kN
满足要求!
6、地基变形验算
倾斜率:tanζ=|S1-S2|/b'=|20-20|/5300=0≤0.001
满足要求!
四、基础配筋验算
1、基础弯距计算
基础X向弯矩:
MⅠ=(b-B)2p x l/8=(5-1.6)2×40.97×5/8=296.01kN·m
基础Y向弯矩:
MⅡ=(l-B)2p y b/8=(5-1.6)2×40.97×5/8=296.01kN·m
2、基础配筋计算
(1)、底面长向配筋面积
αS1=|MⅡ|/(α1f c bh02)=296.01×106/(1×14.3×5000×12992)=0.002
δ1=1-(1-2αS1)0.5=1-(1-2×0.002)0.5=0.002
γS1=1-δ1/2=1-0.002/2=0.999
A S1=|MⅡ|/(γS1h0f y1)=296.01×106/(0.999×1299×300)=761mm2
基础底需要配筋:A1=max(761,ρbh0)=max(761,0.0015×5000×1299)=9742mm2
基础底长向实际配筋:A s1'=10934mm2≥A1=9742mm2
满足要求!
(2)、底面短向配筋面积
αS2=|MⅠ|/(α1f c lh02)=296.01×106/(1×14.3×5000×12992)=0.002
δ2=1-(1-2αS2)0.5=1-(1-2×0.002)0.5=0.002
γS2=1-δ2/2=1-0.002/2=0.999
A S2=|MⅠ|/(γS2h0f y2)=296.01×106/(0.999×1299×300)=761mm2
基础底需要配筋:A2=max(761,ρlh0)=max(761,0.0015×5000×1299)=9742mm2 基础底短向实际配筋:A S2'=10934mm2≥A2=9742mm2
满足要求!
(3)、顶面长向配筋面积
基础顶长向实际配筋:A S3'=9878mm2≥0.5A S1'=0.5×10934=5467mm2
满足要求!
(4)、顶面短向配筋面积
基础顶短向实际配筋:A S4'=9878mm2≥0.5A S2'=0.5×10934=5467mm2
满足要求!
(5)、基础竖向连接筋配筋面积
基础竖向连接筋为双向Φ10@500。
五、配筋示意图
矩形板式基础配筋图。