第三章 内积空间,正规矩阵,Hermite矩阵
矩阵分析第三章3.1-2综述

x1 x2 xn T A x1 x2 xn ( , )
x11 x22 xnn
Hermite矩阵 : 规定记号:
AH
T
A,
称AH为A的复共轭转置。
复共轭转置有运算性质 : (1)AH ( A)T ; (2)( A B)H AH BH ; (3)(kA)H k AH ; (4)( AB)H BH AH ; (5)( AH )H A; (6)若A可逆,则( AH )1 ( A1 )H .
&3.1 欧氏空间、酉空间
一、概念
定义3.1.1 设V是实数域R上的n维线性空间,
如果对V中任意两个向量、 ,有唯一确定 的实数与之对应,这实数记为(, ),并且满足 下列四个条件,则这实数(, )称为与的
内积:
(1) (, ) ( , ) (2) (k, ) k(, ) (3) ( , ) (, ) ( , ) (4) (, ) 0,当且仅当 0时(, ) 0 其中 , , 是V中任意向量,k R;称定义有这
例3.1.5设n2维空间Rnn中对向量(n阶矩阵)A, B 规定内积为
( A, B) tr( AT B), A, B Rnn , 则Rnn是欧氏空间。
定义3.1.2 : 设V是复数域C上的n维线性空间,
如果对V中 任意两个向量、 ,有唯一确定的
复数与之对应,这复数记为(, )且满足下列四个 条件,则这复数(, )称为与的内积 :
第三章 内积空间、正规矩阵、Hermite矩阵
在线性空间中,向量之间的基本运算只有 加法和数乘运算,向量的度量性质没有反映, 局限了线性空间的应用。现在我们借助内积把 度量概念引入到线性空间中。
第三章 内积空间、正规矩阵、Hermite矩阵分解

(1,2 , , r )正交
1 2 r ( , , , )标准正交 1 2 r
正交基,标准正交基
正交向量组是无关向量组。既然是无关的,那么自然而 然可以想到,拿他们来构成线性空间的一组基,这组基称为 标准正交基。
定义2.1: 设V是n维酉(欧氏)空间,由n个正交向量组 成的基,称为正交基,由n个标准正交向量组成的基,称 为标准正交基。
(3) 将V的标准正交基变为标准正交基 (4) 酉变换(正交变换)在标准正交基下的矩阵表示 是酉矩阵(正交矩阵)
例题3.3.1~3.3.3
第4节幂等矩阵
简单说来就是平方等于 本身的矩阵。
幂等矩阵
定义:设 A C nn,如果 A 满足
A2 A
则称 A 是一个幂等矩阵。
这类矩阵有个特殊的性质,就是其特征值非零即1。 并且与它相关的很多矩阵也具有特殊性质,比如它 的转置,复共轭转置也都是幂等矩阵等。
非负性 齐次性 三角不等式
柯西许瓦兹三角不等式
欧氏空间,酉空间这两类空间之所以被提出,是为了将 度量概念引入线性空间中,所以需要关注度量的基本性 质。
向量的夹角、距离、单位向量
cos( , )
( , )
向量的夹角
d ( , )
向量的距离
1
1
i , i 1,2,, n
因此,可以分析求解内积空间的标准基的问题。
正交基,标准正交基
从线性空间的任何一组基出发,可以采用Gram-Schmidt 正交化方法构造出一个标准正交基。
目的:引入标准正交基的好处是使得度量矩阵 变为单位矩阵,在很多计算问题中可用以简化 运算。
例题:3.2.1~ 3.2.2
内积空间、正规矩阵5-7节

在谱定理的深化方面,可以研究更一般的矩阵类的谱定理,如非正规矩阵、算子矩 阵等,以及其在量子力学、量子计算等领域的应用。
THANKS FOR WATCHING
感谢您的观看
特征值问题的求解方法
常见的求解方法包括幂法、反幂法、QR算法等。这些方法各有优缺点,适用于不同类型的问题 。
幂法与反幂法求解特征值问题
幂法
幂法与反幂法的优缺点
通过迭代计算矩阵的幂来逼近最大特 征值和对应的特征向量。适用于求解 主特征值和特征向量。
幂法收敛速度快,但可能受到初始向 量的影响;反幂法收敛速度较慢,但 精度较高。
06 课程总结与展望
课程重点内容回顾
内积空间的基本概念与性质
包括内积的定义、性质,以及由内积导出的范数和距离等 概念。
正规矩阵的定义与性质
介绍了正规矩阵的定义,以及其与自共轭矩阵、酉矩阵等的关系,探讨了 正规矩阵的性质,如可对角化、特征值的模长等于矩阵的范数等。
谱定理
详细阐述了谱定理的内容,包括复正规矩阵的谱分解、实对称矩阵的 特征值分解等,以及其在矩阵分析和量子力学等领域的应用。
PageRank算法的应用
PageRank算法广泛应用于搜索引擎中,用于对网页进行 排名和推荐。此外,它还可以应用于社交网络、推荐系统 等领域。
03
PageRank算法与特征值问题的关系
PageRank算法可以转化为求解转移矩阵的特征值和特征 向量问题。通过计算转移矩阵的主特征值和对应的特征向 量,可以得到网页的PageRank值排名。
课程学习成果展示
掌握了内积空间的基本概念和性 质,能够熟练运用内积、范数和 距离等概念进行向量和矩阵的分
矩阵分析第三章

例 1:在Rn中, ∀α = ( a1 , a2 ,L , an )T , β = (b1 , b2 ,L , bn )T, 定义
(α , β ) = α β = β α = ∑i =1 ai bi
T T n
则(α, β)是Rn上的一个内积,从而Rn成为一个欧氏空间。 如果定义
(α , β ) = α T Aβ = β T Aα , 其中A ∈ R n×n > 0 容易验证: 以上定义的(α, β)也是Rn上的一个内积,从而在
则C[a,b]成为欧氏空间。
定义:设 定义 :设V是C上的n维线性空间,若∀α, β∈V, 都有一个按照 都有一个按照 某一确定法则对应的被称为内积 某一确定法则对应的被称为内积的复数,记为 内积的复数,记为(α, β),并满 足下列四条性质: (1) (α, β) = ( β , α ) , ∀α, β∈V (2) (kα, β) = k(α, β), ∀α, β∈V, ∀k∈C (3) (α+β, ν) = (α, ν) + (β, ν), ∀α, β, ν∈V (4) (α, α) ≥ 0, 当且仅当α = 0时, (α, α) = 0, ∀α∈V 则称V是n维复欧氏空间、简称为 复欧氏空间、简称为酉空间 、简称为酉空间。 酉空间。 • 定义了内积的复线性空间,称为酉空间 例 4: 在Cn中, ∀α = ( a1 , a2 ,L , an )T , β = (b1 , b2 ,L , bn )T , 定义
(α , β ) 取k= ,则 (β , β )
⇒
(α , β )( β , α ) | (α , β ) |2 2 0 ≤ (α , α ) − = α − (β , β ) || β ||2 |(α, β)| ≤ ||α|| ⋅ ||β||
矩阵论——内积空间基本概念

第三章 内积空间基本概念在几何分析时,向量的长度、夹角是基本的度量。
§3.1 内积空间基本概念定义 1.1 设V 为数域()C 或R F 上线性空间,若有一法则使V 任两向量βα,确定F 中唯一的数,记为〉〈βα,,且〉〈βα,满足:(1)〉〈=〉〈βααβ,,,V ∈∀βα,;(共轭对称) (2)〉〈+〉〈=〉+〈γβγαγβα,,,,V ∈∀γβα,,; (3),,,〉〈=〉〈βαβαk k F k ∈∀,V ∈∀βα,; (4)0,≥〉〈αα,且等号成立当且仅当θα=。
则称><βα,为βα,的内积,V 为内积空间。
特别C F =时称()C V 为酉空间,R F =时称()R V 为欧氏空间。
注 (1)〉〈+〉〈=〉+〈γαβαγβα,,,;〉+〈=〉+〈αγβγβα,, 〉〈+〉〈=αγαβ,, 〉〈+〉〈=αγαβ,,〉〈+〉〈=γαβα,,;(2)〉〈=〉〈βαβα,,k k ; (3)0,,=〉〈=〉〈αθθα。
例1 在n R 中定义,,X Y Y X T =〉〈n R 为欧氏空间。
例2 在n R 中定义,,AX Y Y X T =〉〈其中A 为n 阶正定矩。
例3在n R 中定义,,X Y Y X T =〉〈,n C 为酉空间。
例4 n n C ⨯中TH H B B trAB B A =>=<,,。
例5 ()b a R V ,)(=上一切连续函数的集合),(b a C ,()(),,dx x g x f g f ba ⎰>=<()()V x g x f ∈∀,,()R V 是欧氏空间。
定义1.2 设n ααα,,,21 为内积空间V 的一组基,记,,ij j i g x x =〉〈()n j i ,,2,1, =,则称n 阶矩阵ij g G =,故G G H =。
定理1.1 设内积空间V 的一组基{}ni 1α的度量矩阵为G ,V 中向量βα与在该基下坐标向量分别为Y X ,,则X G Y Y G X T H T =>=<βα,。
《矩阵分析》课程教案

讨 论
练 习
作 业
作业:第3章练习题中任选5题
教学要求
熟练掌握线性空间与线性变换,矩阵的Jordan标准型,内积空间,正规矩阵,Hermite矩阵,二次型,矩阵分解,特征值的估计与计算,矩阵的扰动问题,向量范数与矩阵范数,矩阵序列和级数,广义逆矩阵,矩阵函数等基本概念和基本方法。
教学方法
课堂讲述+实验演示+实际动手操作+作业+研究报告
教学手段
多媒体课件+案例+理论推导+编程实现
考核方式
结合课堂所学写一篇论文/开卷考试二者选一
教学参考资料
[1]《矩阵分析》,史荣昌,魏丰编著,北京理工大学出版社,2010.6,第3版
[2]《Matrix Methods in Data Mining and Pattern Recognition》,Lars Eldén,The SIAM series on Fundamentals of Algorithms,2007.2
本课程针对计算机应用技术专业研究生的知识结构背景,在其本科阶段所学的《线性代数》的基础之上,进一步深化和提高矩阵理论的相关知识,并着重培养学生运用矩阵分析的知识和方法解决计算机应用领域相关问题的能力。通过本课程的学习,使学生掌握矩阵理论的基本概念,基本理论和基本方法,全面了解和掌握矩阵的标准形、特征值与特征向量、矩阵分解、范数与矩阵函数等重点内容,了解近代矩阵理论中十分活跃的若干分支,为今后的进一步学习和研究打下扎实的基础。
山西财经大学研究生课程教案
课程名称
矩阵分析
课程编码
第三章 内积空间、正规矩阵、Hermite矩阵1

(α1 ,α 2 , , α n ) L
设:1α1 +k2α 2 +L +knα n=0 k
(α j , k1α1 +k2α 2 +L +knα n )=(α j , 0) =0
k j (α j , α j )=0
k j=0, 即k j=0, j = 1, 2,L , n) (
正交向量组线性无关 那么线性无关向量组是否正交呢? 那么线性无关向量组是否正交呢?
定义4.3: 子空间, 定义 : 设 S , T 是C n 的(或 R n )子空间,若对任意的 x ∈ S 和 y ∈ T 都有
( x, y ) = 0
是正交的, 则称 S 和 T 是正交的,记为 S ⊥ T
定理4.6: 两个正交子空间, 定理 :设 S , T 是 C n 的(或 R n )两个正交子空间,那么 (1)S I T = {0} ) (2)dim( S + T ) = dim( S ) + dim(T ) )
α1 , α 2 ,L , α n
′ ′ α1′, α 2 ,L , α n
度量矩阵 度量矩阵
A B
′ ′ (α1′, α 2 ,L , α n ) = (α1 , α 2 ,L , α n ) P
B = PT AP or
BT = P H AT P
定义1.5: 定义
设V是酉(欧氏)空间,定义 ∀α ∈ V 长度为
(1), A−1 = AH
(2), det A = 1
(3), A ∈ U
T n×n
(1), A = A
−1
T
(2), det A = ±1
(4), if B ∈ U n×n , then AB, BA ∈U
第三章 内积空间,正规矩阵与H-矩阵

(1)
A (A )
H T H H H H H H H
(2 ) ( A B ) A B (3) ( kA ) k A
H
(4 ) ( A B ) B A
(5) (6) (7 ) (8 )
(A ) (A )
k H H
k
(A ) A
H
H
A A (A )
nn
H 1
( A 1 ) H
酉空间。
内积空间的基本性质:
欧氏空间的性质:
(1) ( , k ) k ( , ) ( 2 ) ( , ) ( , ) ( , ) ( 3) (4) ( k i i , )
i 1 t
k (
i i 1 t i i 1
t
i
n n
(, ) ( x , y ) x ( , ) i i i i iy j i j
i 1 j 1 ij , 1
令
g (, ) ,i , j 1 , 2 ,, n i j i j
g 11 g 21 G g n1
例1 设 C
n
是
n 维复向量空间,任取
( a , a ,,) a , ( b , b ,, b ) ( , ) : ( ) a b a b a b ( , )
1 2 n 1 2 n
规定
T
1 12 2
n n
容易验证 是 C n 上的一个内积,从 n 而C 成为一个酉空间。 例2 设 C [ a , b ] 表示闭区间 [ a , b ] 上的所有 连续复值函数组成的线性空间,定义
, )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复矩阵(向量)的4个一元运算
()∀A=(a ij )∈C m ×n ,
复矩阵(向量)的一元运算的性质
11221122k A k A k A k A +=+ ;
T
T T A k A k A k A k 22112211)(+=+方阵A=(a ij )∈C n ×n 的迹定义为其所有对角元之和:
行列式的性质
方阵乘积的行列式公式
重要特殊矩阵
A=(a ij )∈C n ×n 称为对角矩阵,如果∀i ≠j,a ij =0;
A称为上(下)三角矩阵,如果∀i>(<)j,a =0.
特征值,特征向量
λ∈C称为A=(a
ij
)∈C n×n的一个特征值,如果存在0≠x∈C n,使得Ax=λx.此时,x称为A的特征向量.
特征值、特征向量续
三角矩阵A的所有对角元组成A的谱:
σ(A)={a,…,a}.
线性相关与线性无关
定义1.1.3 (p.5): F上线性空间V中的向量组{α,…,α}是线性相关的充要条件是:在数域F
线性映射与线性变换
关于线性映射与线性变换的定义,请看教本第24页§3.1: 欧式空间,酉空间
§3.2: 标准正交基,Schmidt方法
第三章内积空间,正规矩阵,Hermite矩阵
§3.1: 欧式空间,酉空间
从解析几何知二平面向量
内积的概念
定义3.1.1:设V是实数域R 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着欧式空间的概念
例3.1.1:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈R n ,定义标准内积:(α,β)=a b +…+a b ,
欧氏空间例1
例3.1.2:∀α=(a 1,a 2)T ,β=(b 1,b 2)T ∈R 2,定义内积(R 2×R 2到R的映射):
欧氏空间例2
在R 2中至少可定义两个不同的内积.
今后讨论R n 时都用例3.1.1中定义的内积.
关于例1和例2的注
例3.1.3:R m ×n ={(a ij )|a ij ∈R,i=1,…m,j=1,…,n}中任取A,B,定义内积:(A,B)=tr(A T B)=ΣΣa b .欧氏空间例3
定义3.1.1:设V是复数域C 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着酉空间的概念
欧氏空间是酉空间的特例.
关于欧式空间和酉空间的注
酉空间例1
例3.1.6:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈C n ,酉空间例2
例3.1.7:C m ×n ={(a ij )|a ij ∈C,i=1,…,m,j=1,…,n}
§3.2: 标准正交基,Schmidt 方法
欧氏空间中的C-S不等式推出:-1 ≤(α,β)/‖α‖‖β‖≤1
正交的概念
(,)
1αβαβ≤
§3.3: 酉变换,正交变换
§3.6: 正规矩阵,Schur引理
§3.8: Hermite矩阵,Hermite二次齐式
§3.9: 正定二次齐式,正定Hermite矩阵
证:设A∈H n×n,A(i
1,…,i
k
)为A的第i
1
,…,i
k
行,列组成
的k阶主子矩阵,易见:A(i,…,i)∈H n×n.
(半)正定矩阵的任何主子矩阵仍为(半)正定
证:因为
(半)正定矩阵A的任何主子式都是(0或)正的
定理:A ∈H n ×n 为正定⇔A的n个顺序主子式全为正:
用主子式刻画(半)正定矩阵
命题:A ∈H n ×n 为负定⇔-A为正定
定理3.9.1:对任意A ∈H n ×n ,下列各条相互等价:定理3.9.3:对任意A ∈H n ×n ,下列各条相互等价:
(1) A半正定:∀x ∈C n ,x *Ax ≥0半正定矩阵的基本定理
命题:A ∈H n ×n 为半正定⇔∀ε>0,A+εE 为正定半正定矩阵是正定矩阵序列的极限
命题:对任意A ∈H n ×n ,下列两条相互等价:半正定矩阵是正定矩阵序列的极限(续)
(1) A ∈C n ×n 为(半)正定
(半)正定矩阵的补充结果
定理(3.9.4):每个(半)正定Hermite矩阵A都有唯下证唯一性.
如果还有正定矩阵M=Wdiag(µ,…,µ)W *,使
∀i,j,(√λi v ij )=(√λj v ij ) 每个(半)正定矩阵有唯一(半)正定平方根续
再证与A可交换的矩阵X(XA=AX)必与B可交换.若XUdiag(λ,…,λ)U *=Udiag(λ,…,λ)U *X 每个(半)正定矩阵有唯一(半)正定平方根续
试证:A,B ∈H n ×n 且A为正定⇒AB的特征值全为实数.应用举例
例3.9.1:若A,B为同阶正定Hermite矩阵,
应用举例
命题:A,B ∈H n ×n 且B正定,则det(λB-A)=0的根全为实数.证明: B正定⇒有可逆矩阵P使P *BP=E;
定理3.10.1:若A,B ∈H n ×n 且B为正定,则有T ∈C n n ×n 使二矩阵经复相合变换同时对角化
易见: µ1,…,µn 是det(λE-T 1*AT 1)=0的根.二矩阵经复相合变换同时对角化
定理3.10.4:若A,B ∈H n ×n 且B为正定,则有行列式等二矩阵经复相合变换同时对角化续
定义3.11.1:由Hermite矩阵A定义的从C n –{0}到R 的下列函数:R(x)=x *Ax/x *x 称为矩阵A的Rayleigh商.§3.11: Rayleigh商
(1)R(x)为x的齐次函数:∀0≠k ∈R ,R(kx)=R(x)
(3)min x ≠0R(x)=λ1=min{λ1, …,λn };
max R(x)=λ=max{λ, …,λ}.注:由(1)和(3)推出min x ≠0R(x)=min ‖x‖=1x *Ax,
Rayleigh 商性质的注
设M ∈H n ×n ,用λmin ,λmax 分别记M的最小,大特征值,则λ=min x *Ax,λ=max x *Ax.一个推论。