六年级上册数学复习资料整理归纳

合集下载

小学数学六年级上册复习重点知识点归纳

小学数学六年级上册复习重点知识点归纳

小学数学六年级上册复习重点知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。

六年级上册数学概念归纳与整理(人教版)

六年级上册数学概念归纳与整理(人教版)

六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:〔7,9〕表示第七列第九行。

4、两个数对,前一个数一样,说明它们所表示物体位置在同一列上。

如:〔2,4〕和〔2,7〕都在第2列上。

5、两个数对,后一个数一样,说明它们所表示物体位置在同一行上。

如:〔3,6〕和〔1,6〕都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法〔一〕、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

〔二〕、分数乘法的计算法那么:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、分数大小的比拟:1、一个数〔0除外〕乘以一个真分数,所得的积小于它本身。

一个数〔0除外〕乘以一个假分数,所得的积等于或大于它本身。

一个数〔0除外〕乘以一个带分数,所得的积大于它本身。

2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

〔四〕、解决实际问题。

1分数应用题一般解题步行骤。

〔1〕找出含有分率的关键句。

六年级数学上册知识点归纳复习

六年级数学上册知识点归纳复习

北师大版六年级上册数学知识点复习归纳第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

9.圆的周长:围成圆的曲线的长度叫做圆的周长。

或者,圆一周的长度就是圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C圆=πd =2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13、圆所占平面的大小叫圆的面积。

把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。

如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr214.圆的面积公式:S=πr2 或者S=π(d÷2)2 或者S=π(C÷π÷2)2 15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理一、整数与正负数的基本概念及运算整数的概念:整数由正整数、负整数和0组成。

正整数可以表示为+1、+2、+3……,负整数可以表示为-1、-2、-3……,0是最小的非负整数。

正负数的比较:两个数的绝对值相同时,较大的数的符号与绝对值无关。

绝对值大的数较大。

整数的加减法:同号相加,不同号相减。

相同符号的数之和的符号不变,绝对值是两个数的绝对值之和。

不同符号的数相减,要先把减数取相反数,再按同号相加的原则进行运算。

整数的乘法:同号相乘得正,异号相乘得负。

整数的除法:同号相除得正,异号相除得负。

绝对值的运算:正数的绝对值是它本身,负数的绝对值是它的相反数。

二、分数的基本概念与运算分数的概念:分数由分子和分母组成,分子表示被分成的份数,分母表示整体被分成的份数。

分数的约分与化简:将一个分数的分子和分母都除以一个相同的数,使其变为最简分数。

分数的比较:分母相同时,分子大的数大;分母不相同时,将分数通分后,分子大的数大。

分数的加减法:先通分,然后按照相同分母或者相同分子的规则进行运算。

分数的乘法:把两个分数的分子相乘得到新分数的分子,分母相乘得到新分数的分母。

分数的除法:把除数的分子与被除数的分母相乘得到新分数的分子,把除数的分母与被除数的分子相乘得到新分数的分母。

三、小数的基本概念与运算小数的概念:小数是指分数的分母是10的倍数或者某个倍数的分数。

小数的读写:小数点前面是整数部分,小数点后面是小数部分,读作整数部分和小数部分的合称。

小数的比较:分别比较小数点前后的数,先比较整数部分的大小,再比较小数部分的大小。

小数的加减法:先将小数点对齐,然后按照整数加减法的规则进行运算。

小数的乘除法:先去掉小数点,按照整数乘除法的规则进行运算,最后再加上小数点,小数点的位数等于被除数的小数点位数与除数的小数点位数之和。

四、长度、面积与容量的单位换算长度的单位换算:1千米(km)= 1000米(m),1米(m)= 100厘米(cm),1厘米(cm)= 10毫米(mm)。

小学版六年级数学上册知识点整理归纳

小学版六年级数学上册知识点整理归纳

小学版六年级数学上册知识点整理归纳一. 整数1. 整数的概念整数是由正整数、0、负整数组成,用...-3,-2,-1,0,1,2,3...表示。

2. 整数的大小比较如果两个整数的绝对值相等,则正数大于负数;否则,绝对值大的整数大。

3. 相反数对于整数a,-a叫做a的相反数。

4. 绝对值对于整数a,|a|代表a的绝对值。

二. 小数1. 小数的概念在数轴上,以1为整体分成的10个等分,每个等分再以1为整体分成10等分,这些等分就构成了小数部分。

例如0.8,就是整数部分0和小数部分0.8的和。

2. 小数的读法例如0.25可以读作“零点二五”。

3. 小数与分数小数可以转化为分数。

例如0.6可以转化为6/10,再化简为3/5。

三. 分数1. 分数的概念分数是表示一部分与总数的比例的数。

2. 分数的组成部分分数由分子和分母两部分组成,例如3/5,其中3为分子,5为分母。

3. 分数的大小比较如果两个分数的分母相同,则分子大的分数大;否则,分数化为相同分母,再比较分子的大小。

4. 分数的约分与通分分数可以化简为最简分数,称为约分。

分数化为相同分母的过程,称为通分。

四. 几何图形1. 三角形三角形是由三条线段围成的图形。

2. 直角三角形直角三角形是其中一条角为直角的三角形。

3. 面积平面图形的面积是指该图形的空间范围大小。

4. 周长平面图形周长是指该图形边缘线段的长度之和。

五. 时间1. 时间的概念时间可以用来表示事件发生的先后顺序和持续的时间长度。

2. 时间的单位常用的时间单位有年、月、日、小时、分钟、秒。

3. 时间的读法例如8:30可以读作“八点半”。

4. 时间的换算60秒=1分钟,60分钟=1小时,24小时=1天,365天=1年。

六年级数学上册知识点归纳与整理

六年级数学上册知识点归纳与整理

六年级数学上册知识点归纳与整理第一单元 分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

例如:512 ×6,表示:6个512 相加是多少,还表示512 的6倍是多少。

2、一个数(小数、分数、整数)乘分数:是表示求一个数的几分之几是多少。

例如:18×512,表示:18的512是多少。

98×43,表示:求98的43是多少? 3、理解打折的含义。

例如:九折,是指现价是原价的十分之九。

现价=原价×910(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

(整数和分母约分)2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

注意:1)、能约分的先约分,然后再计算,得数必须是最简分数。

2)、当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、比较分数相乘的积与每一个乘数的大小规律: 规律1:(1)一个数(0除外)乘以大于1的数,积大于这个数。

(2)一个数(0除外)乘以小于1的数(0除外),积小于这个数。

(3)一个数(0除外)乘以1,积等于这个数。

规律2:(1)真分数相乘积小于任何一个乘数。

(2)真分数与假分数相乘积大于真分数小于假分数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

先算乘除,后算加减,有括号先算括号里面的。

(五)、分数乘法定律(同整数乘法):乘法交换律:a b b a ⨯=⨯乘法结合律:()()a b c a b c ⨯⨯=⨯⨯乘法分配律:()a b c ac bc +⨯=+ ()ac bc a b c +=+⨯(六)、分数乘法积的变化规律同整数乘法积的变化规律(1)、两个数相乘,其中一个乘数不变,另一个剩数扩大到原来的(0)m m ≠倍(或缩小到原来的()0,0n m n m ≠≠),积也相应地扩大到原来的m 倍(或缩小到原来的n m)。

六年级上册数学1-4单元知识点整理汇总复习

六年级上册数学1-4单元知识点整理汇总复习

六年级上册数学1-4单元知识点整理汇总第一单元《分数乘法》1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律:a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c 6.一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

7.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

(4)根据线段图写出等量关系式:标准量×对应分率=比较量。

求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ =”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量(5)根据已知条件和问题列式解答。

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理六年级上册数学知识点主要包括以下内容:
1. 整数
- 整数的概念和性质
- 整数的加减法运算
- 整数的乘法运算
- 整数的除法运算与余数的概念
2. 分数
- 分数的概念和性质
- 分数的加减法运算
- 分数的乘除法运算
- 分数的比较与大小关系
3. 小数
- 小数的概念和性质
- 小数的加减法运算
- 小数的乘除法运算
- 小数的比较与大小关系
- 小数的读法和写法
4. 平面图形
- 点、线、线段、射线、角的概念
- 三角形、四边形、平行四边形、正方形、矩形、菱形和梯形的性质和判断方法
5. 数据与图表
- 数据的收集和整理
- 统计图表(条形图、折线图、饼图)的读取和分析
6. 相似与全等
- 图形的相似和全等的概念
- 相似与全等的判定条件
- 相似与全等的性质和定理
7. 量与单位
- 长度、质量、时间和容量的基本单位和换算
- 用不同单位测量长度、质量、时间和容量
8. 时钟与日历
- 时钟的读写和表示时间的方法
- 日历的读写和计算日期的方法
9. 几何体
- 立体图形的概念和性质(长方体、正方体、圆柱体、圆锥体、圆台和球体)- 立体图形的视图和展开图
以上是六年级上册数学的主要知识点归纳整理,希望能对你有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册数学复习资料整理归纳新知识学习后,过一段时间就会忘记,这都是因为条件反射会消退,所以,我们的知识想要掌握的牢固必须要勤复习。

下面是小编为大家整理的关于六年级上册数学复习资料整理,希望对您有所帮助!小学六年级上册数学的复习一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。

3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)求带分数的倒数:把带分数化为假分数,再求倒数。

(4)求小数的倒数:把小数化为分数,再求倒数。

3、因为1×1=1,1的倒数是1;因为找不到与0相乘得1的数0没有倒数。

4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

(二)分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、“[ ] ”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

(三)分数除法解决问题(详细见重难点分解)(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。

)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:用方程解答)(1)方程:根据数量关系式设未知量为x,用方程解答。

(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就用一个数÷另一个数4、求一个数比另一个数多(少)几分之几:① 求多几分之几:大数÷小数– 1② 求少几分之几: 1 - 小数÷大数或①求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数(四)比和比的应用1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。

例如15 :10 = 15÷10=1.5∶ ∶ ∶ ∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(五)比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:(1)用比的基本性质化简①用比的前项和后项同时除以它们的公因数。

②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。

注意: 最后结果要写成比的形式。

5.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如:已知两个量之比为,则设这两个量分别为。

6、路程一定,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)三、百分数(一)百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

2、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。

(2)区别:①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。

3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

(二)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。

(三)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(四)常见的分数与小数、百分数之间的互化六年级上册数学复习资料1位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。

以谁为参照物,就以谁为观测点。

2东偏北30。

也可说成北偏东60。

,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。

3确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。

4根据方向和距离确定物体位置的方法:(1)确定好方向并用量角器测量出被测物体所在的方向(角度);(2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离;(3)根据方向(角度)和距离准确判断或描述被测物体的位置。

5要标出物体的位置必须先确定方向,再确定在这一方向上的距离。

6绘制平面图时,要根据实际距离确定好单位长度,即代表多长距离。

7在平面图上标出物体位置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后找出物体的具体位置,标上名称。

8描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。

两地的位置具有相对性,方向相反(其夹角度数不变),距离相同。

9两地的位置关系具有相对性,以这;两个不同地点为观测点描述对方所在的方向时,方向正好相反(甲在乙东偏南30°100米,则乙在甲西偏北30°100米)10描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。

11在平面图上确定物体的位置与方向关键要做到三点:(1)确定好观测点及单位长度;(2)找准方向;(3)线段上每一段的长度要与单位长度统一。

12以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离13绘制路线图的步骤①画出↑北,确定方向标和单位长度比例尺()②确定起点的位置。

③根据描述,从起点出发,找好方向和距离,一段一段地画。

画每一段都要以每一段新的起点为观测点④以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。

⑤标出数据、名称、角度。

六年级数学上册知识的复习分数乘法所以:圆的面积 = 圆周长的一半× 圆的`半径常用单位换算长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:135781012月小月(30天)的有:46911月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒。

相关文档
最新文档