条件概率的条件概率

合集下载

概率论中的条件概率与全概率公式

概率论中的条件概率与全概率公式

概率论中的条件概率与全概率公式概率论是数学中的一个分支,研究的是随机事件发生的概率及其规律。

在概率论中,条件概率和全概率公式是两个重要的概念和工具,用于计算复杂事件的概率。

本文将详细介绍条件概率与全概率公式的定义和应用。

一、条件概率的定义条件概率是指在某一事件发生的前提下,另一事件发生的概率。

用数学符号表示为P(A|B),读作“事件B发生的条件下事件A发生的概率”。

条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率, P(B)表示事件B发生的概率。

条件概率的计算可以通过实际观测数据或假设条件来进行推导。

例如,某班有30名男生和20名女生,现从中随机抽取一人,假设该人是男生,求其来自某个特定城市的概率。

根据条件概率的定义,我们有:P(来自某个特定城市|男生) = P(来自某个特定城市∩男生) / P(男生)假设该特定城市的男生人数为10,那么有:P(来自某个特定城市|男生) = 10 / 30 = 1/3二、全概率公式的定义和应用全概率公式是一种计算复杂事件概率的方法,它基于对样本空间的划分和对条件概率的累加。

全概率公式的定义如下:对于事件A,若存在一组互不相容的事件B1,B2,…,Bn,并且它们的并集覆盖了样本空间,即B1∪B2∪…∪Bn = S,则有:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + … + P(A|Bn)P(Bn)其中,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率。

全概率公式的应用非常广泛,可以用于解决各种与条件发生相关的概率问题。

例如,在某人可能患有某种疾病的情况下,通过一系列检查可以得到以下信息:检查结果为阳性的人中,有80%实际患有该疾病;检查结果为阴性的人中,有10%实际患有该疾病。

现在假设某人检查结果为阳性,请问他实际上患有该疾病的概率是多少?根据题意,可以将该问题划分为两个互不相容的事件:实际患病(A)和不患病(A'),其中A'表示“不患有该疾病”。

条件概率公式

条件概率公式

条件概率公式条件概率是指在给定一个事件发生的条件下,另一个事件发生的概率。

条件概率公式可以帮助我们计算这种概率。

首先,我们需要明确以下两个概念:1. 事件 A 在事件 B 发生的条件下发生的概率,称为事件 A 在事件 B 的条件下的概率,记为 P(A|B)。

2. 事件 A 与事件 B 同时发生的概率,称为事件 A 与事件 B 的交集的概率,记为 P(A∩B)。

那么,条件概率公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B) 表示事件 A 与事件 B 的交集的概率,而 P(B) 表示事件 B发生的概率。

这个公式可以解释为:在事件 B 发生的条件下,事件 A 发生的概率等于事件 A 与事件 B 同时发生的概率除以事件 B 发生的概率。

例如,假设我们想要计算在一批学生中,男生与喜欢足球的学生的交集的概率。

假设这个批次的总人数为 N,其中男生的人数为 M,喜欢足球的人数为K。

那么,我们可以使用条件概率公式计算:P(男生且喜欢足球) = P(喜欢足球|男生) * P(男生)其中,P(喜欢足球|男生) 表示在已知这些学生是男生的情况下,喜欢足球的学生所占的比例。

而这个比例可以通过在这批学生中数一数同时满足这两个条件的学生数目,并将它除以男生的人数 M 来计算。

即:P(喜欢足球|男生) = K / MP(男生) 表示这些学生中男生所占的比例,即 M / N。

那么,根据条件概率公式,我们得到:P(男生且喜欢足球) = (K / M) * (M / N) = K / N这个结果表示,在这批学生中,男生与喜欢足球的学生的交集的概率等于喜欢足球的学生所占的比例(K / N)。

另外,条件概率公式还可以进一步推广到多个事件的情况。

例如,如果我们想要计算在事件 B 和事件 C 同时发生的条件下,事件 A 发生的概率,可以使用以下公式:P(A|B∩C) = P(A∩B∩C) / P(B∩C)其中,P(A∩B∩C) 表示事件 A、事件 B 和事件 C 的交集的概率,P(B∩C) 表示事件 B 和事件 C 同时发生的概率。

条件概率公式

条件概率公式

条件概率公式条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。

条件概率表示为P(A|B),读作“在B条件下A的概率”。

联合概率表示两个事件共同发生的概率。

A与B的联合概率表示为或者或者。

边缘概率是某个事件发生的概率。

边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。

这称为边缘化(marginalization)。

A的边缘概率表示为P (A),B的边缘概率表示为P(B)。

需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。

A可能会先于B发生,也可能相反,也可能二者同时发生。

A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。

例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。

(1)条件概率定义设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A下发生的条件事件B发生的条件概率。

(2)乘法公式设P(A)>0 则有P(AB)=P(B∣A)P(A)(3)全概率公式和贝叶斯公式定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj≠Ф, i≠j, i, j=1, 2, …,n;B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。

定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。

定理设试验俄E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(B|Aj)P(Aj)=P(B|Ai)P(Ai)/P(B)称为贝叶斯公式。

条件概率条件分布条件期望

条件概率条件分布条件期望

(2)无放回抽样
YX
01
02
2
77
12
1
7
7
二、连续型随机变量旳条件分布
条件分布函数 FX Y (x y)
条件分布是指在一个随 机变量取某个确定值 的条件下,另一个随机变量的分布 , 即 FX Y ( x y) P{ X x Y y} .
由于P{Y y}可能为零(连续型时一定为零 ).故直接 用条件概率来定义时 ,会出现分母为零 . 因此,在条件分布中,作为条件的随机变量的 取值是 确定的数.
y}.
定义 设二维随机变量 ( X ,Y ) 的概率密度为
f ( x, y),( X ,Y ) 关于 Y 的边缘概率密度为 fY ( y).若
对于固定的
y,
fY ( y) 0, 则称
f ( x, y) 为在Y fY ( y)
y
的条件下 X 的条件概率密度,记为
f (x, y)
f (x y)
.
XY
fY ( y)
条件分布函数与条件密度函数旳关系
x
x
FX Y ( x y)
fX Y ( x y)d x
[ f (x, y)
fY ( y)]d x.
y
y
FY X ( y x)
fY X ( y x)d y
[ f (x, y)
f X ( x)]d y.
阐明
联合分布、边沿分布、条件分布旳关系如下
联合分布
边沿分布 条件分布
联合分布
例3 设( X ,Y ) 在区域 x2 y2 1 上服从均匀分布,求 件概率密度 fX Y ( x y).
解 由题意知随机变量 ( X ,Y ) 的概率密度为

条件概率

条件概率

全概率公式
设B1,B2,…,Bn是n个互不相容的事
n
件,且 P(Bi)>0 (i=1,2,…,n) ,若 A
则 P ( A) P ( Bi ) P ( A | Bi )
i 1 n


i1
Bi
A AB
1
AB
2
AB
B2
n
B1
A B3
P ( A)
P ( B ) P ( A| B
0 . 02 0 . 3 0 . 01 0 . 5 0 . 01 0 . 2 0 . 013 .
例6 两批相同种类的产品各有十二件和 十件,每批产品中各有一件废品,现在先从 第一批产品中任取一件放入第二批中,然 后再从第二批中任取一件,求这时取到废 品的概率 解: A:“取到废品” B:“从第一批中取到的是废品” 有,
而且,前面对概率所证明的一些重要性质 都适用于条件概率.
P ( A1 A 2
B ) P ( A1 B ) P ( A 2
B ) P ( A1 A 2
B)
P(A
B) 1 P(A B)
P ( A1 A 2
B ) P ( A1 B ) P ( A1 A 2
B)
4. 条件概率的计算 1) 用定义计算:
P ( A | B) P ( AB) P ( B) ,
P(B)>0
掷骰子 2)从加入条件后改变了的情况去算
例:A={掷出2点}, B={掷出偶数点} 1
P(A|B)=
3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
例1 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少? 解: 设A={掷出点数之和不小于10}

条件概率知识点

条件概率知识点

条件概率知识点一、条件概率的定义。

1. 概念。

- 设A、B为两个事件,且P(A)>0,称P(BA)=(P(AB))/(P(A))为在事件A发生的条件下事件B发生的条件概率。

- 例如,扔一个骰子,事件A为“骰子的点数为偶数”,P(A)=(3)/(6)=(1)/(2),事件B为“骰子的点数小于4”,AB表示“骰子的点数为2”,P(AB)=(1)/(6)。

那么在A发生的条件下B发生的条件概率P(BA)=(P(AB))/(P(A))=(frac{1)/(6)}{(1)/(2)}=(1)/(3)。

2. 性质。

- 非负性:对于任意事件B,A(P(A)>0),有P(BA)≥slant0。

- 规范性:P(ΩA) = 1,这里Ω是样本空间。

- 可列可加性:如果B_1,B_2,·s是两两互不相容的事件,则P(bigcup_i =1^∞B_iA)=∑_i = 1^∞P(B_iA)。

二、条件概率的计算方法。

1. 公式法。

- 直接根据定义P(BA)=(P(AB))/(P(A))计算。

- 例如,有一批产品共100件,其中次品10件,从中不放回地抽取两次,每次取一件。

设事件A为“第一次取到次品”,P(A)=(10)/(100)=(1)/(10);事件B为“第二次取到次品”。

AB表示“第一次和第二次都取到次品”,P(AB)=(10)/(100)×(9)/(99)=(1)/(110)。

那么P(BA)=(P(AB))/(P(A))=(frac{1)/(110)}{(1)/(10)}=(1)/(11)。

2. 缩减样本空间法。

- 当直接计算P(AB)和P(A)比较复杂时,可以考虑缩减样本空间。

- 还是以上面抽取产品的例子,在A发生的条件下,即第一次已经取到了次品,此时样本空间就缩减为99件产品,其中次品还有9件,所以P(BA)=(9)/(99)=(1)/(11)。

三、条件概率的乘法公式。

1. 公式。

- 由P(BA)=(P(AB))/(P(A))可得P(AB)=P(A)P(BA)(P(A)>0)。

概率论基础3——条件概率

概率论基础3——条件概率

一、条件概率生活中很多概率都是在某些特殊条件下的概率。

比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。

只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。

基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。

韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。

我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。

所以也很容易理解,分子是A和B的和事件(交集)的概率。

性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。

(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。

那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。

上面两个式子在实际计算中要根据问题灵活选择。

我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。

《条件概率》课件

《条件概率》课件

在机器学习中的应用
01
分类器设例如,朴素贝
叶斯分类器就是基于条件概率的分类器之一,它可以根据已知特征的概
率分布来预测未知样本的类别。
02
聚类分析
在聚类分析中,条件概率可以帮助我们确定不同数据点之间的相似性或
差异性。例如,基于密度的聚类算法可以利用条件概率密度函数来评估
数据点之间的相似性或差异性。
03
强化学习
在强化学习中,条件概率可以帮助我们确定在不同状态下采取不同行动
的概率。例如,Q-learning算法可以利用条件概率来评估在不同状态下
采取不同行动的期望回报。
04 条件概率的实例分析
抛硬币实验的条件概率分析
总结词:直观理解
详细描述:通过抛硬币实验,理解条件概率的概念。假设硬币是均匀的,那么正 面朝上的概率是0.5。在硬币已经连续出现几次正面朝上的情况下,下一次抛掷 仍然是正面朝上的概率仍然是0.5,即条件概率不变。
全概率公式与贝叶斯公式
总结词
全概率公式和贝叶斯公式是条件概率的 两个重要公式,全概率公式用于计算一 个事件的概率,而贝叶斯公式则用于更 新一个事件的概率。
VS
详细描述
全概率公式将一个事件的概率分解为若干 个互斥事件的概率之和,而贝叶斯公式则 是在已知先验概率和新信息的情况下,更 新一个事件的概率。这两个公式在统计学 、机器学习和数据分析等领域有着广泛的 应用。
B
题目2答案与解析
出现一个正面和一个反面的概率为0.75。解 析:出现一个正面和一个反面意味着出现 HH、HT、TH、TT四种情况中的三种,其
D
概率为C(2,1) / C(2,2) * C(2,1) / C(2,2) =
3/4。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率的条件概率
条件概率的条件概率是指在已知一个条件概率的前提下,再加上另一个条件,计算得到的新的条件概率。

具体地说,设事件A和事件B是两个随机事件,已知P(B)>0,那么在事件B发生的条件下,事件A发生的条件概率记作P(A|B),它的计算公式如下:
P(A|B) = P(A∩B) / P(B)
其中,P(A∩B)表示事件A和事件B同时发生的概率,这个概率可以由乘法公式计算得到。

因此,条件概率的条件概率可以看作是乘法公式的一个特例,它描述了在一个已知条件下,另一个条件发生的概率。

- 1 -。

相关文档
最新文档