条件概率绝对经典

合集下载

贝叶斯公式

贝叶斯公式

贝式定理
对于变量有二个以上的情况,贝式定理亦成立。例如: 这个式子可以由套用多次二个变量的贝氏定理及条件机率的定义导出。
意义
意义
贝叶斯定理公式(3张)例如:一座别墅在过去的 20年里一共发生过 2次被盗,别墅的主人有一条狗,狗平 均每周晚上叫 3次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少?
假设已经抽出红球为事件 B,选中容器 A为事件 A,则有:P(B) = 8/20,P(A) = 1/2,P(B|A) = 7/10, 按照公式,则有:P(A|B) = (7/10)(1/2) / (8/20) = 0.875
贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有 一个判断(先验概率),关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假 设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验 概率分布。
博弈开始时,B认为A属于高阻挠成本企业的概率为70%,因此,B估计自己在进入市场时,受到A阻挠的概率 为:
0.7×0.2+0.3×1=0.44
0.44是在B给定A所属类型的先验概率下,A可能采取阻挠行为的概率。
当B进入市场时,A确实进行阻挠。使用贝叶斯法则,根据阻挠这一可以观察到的行为,B认为A属于高阻挠成 本企业的概率变成A属于高成本企业的概率=0.7(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市 场的企业进行阻挠的概率)÷0.44=0.
贝叶斯法则是关于随机事件A和B的条件概率和边缘概率的。 其中P(A|B)是在B发生的情况下A发生的可能性。为完备事件组,即 在贝叶斯法则中,每个名词都有约定俗成的名称: Pr(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。 Pr(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。 Pr(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。 Pr(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant)。

第三节 条件概率、全概率公式

第三节 条件概率、全概率公式

也就是说,在已知点投在A内的条件下,点也落在B内的概率.
广
显然,已知点投在A内,点也落在B内,则点只能落在AB内. 东 工
从而 P(B | A) P( AB) P( A)
业 大 学
上页 下页 返回
定理1 条件概率的性质:
(1)非负性 P(B | A) 0
(2)规范性 若A B, 则有P(B | A) 1
P( A)P(B | A)P(C | AB)
工 业


上页 下页 返回
P( AB) P( A)P(B | A) P(B)P( A | B)
(2) 若 P( A1 A2 An1 ) 0 ,则有
P( A1 A2 An )
P( A1 )P( A2 | A1 )P( A3 | A1 A2 ) P( An | A1 A2 An1 )
利P用( A对) 立 事P(件A1性) 质AP,(A有A1A1 2) A2P( AA13A2 A3 )
PP((AA)1) 1 P(PA(1A)P) (A12| AP1()A1AP2(AA31))P( A2 | A1)P( A3 | A1A2 ) 又 P( A2| A11)P(1A1)PP((AA22||AA11))P(1A30| .A21A20).8 代入上式,得
条件概率是概率论中最重要的概念这一,作为一项 描述与计算的工具,其重要性首先表现在当存在部分先 验信息(如A已发生,在这里即动物已活过20岁)可资 利用时,可归结为条件概率而对概率作出重新估计(如 这里P(B|A)=0.5而不是P(B)=0.4了)。
另外,条件概率也是计算某些概率的有效工具。 广 东 工 业 大 学
概率论与数理统计
广



广

率失真理论及经典的码率控制算法

率失真理论及经典的码率控制算法

率失真理论及经典的码率控制算法一、视频编码的率失真思想率失真理论研究的是限失真编码问题:能使限失真条件下比特数最小的编码为最佳编码。

设信源为},...,,{21m m a a a A =,经过编码后,信宿为},...,,{21n n b b b B =,定义信源、信宿概率空间分别为)}(),...,(),({Q )}(),...,(),({2121n m b Q b Q b Q a P a P a P P 、。

定义平均失真函数)(Q D 如下: ∑∑∑∑======m j j k j nk k j m j k j n k k j a b Q a P b a d b a P b a d Q D 1111)|()(),(),(),()(其中,),(k j b a d 为失真度,度量准则可是均方误差MSE 、绝对差分和SAD 或差分平方和SSD 等。

若信源概率分布)(j a P 已知,则平均失真仅仅取决于条件概率)|(j k a b Q ,从而必然存在这样一个条件概率)|(j k a b Q 使得D Q D ≤)(,即:))((D Q D Q Q D ≤=即D Q 为保证平均失真)(Q D 在允许范围D 内的条件概率集合。

进一步,定义),(Y X I 为接收端获取的平均信息量:)()|(log)|()(),(1k j k m j j k j b Q a b Q a b Q a P Y X I ∑==同样,在给定的)(j a P 前提下,),(Y X I 的大小也只取决于。

现在率失真函数)(D R 定义为在D Q 范围内寻找最起码的信息量,即:),()(min Y X I D R DQ Q ∈=该公式的含义:在允许的失真度为D 的条件下,信源编码给出的平均信息量的下界,也就是数据压缩的极限数码率。

当数码率R 小于率失真函数)(D R 时,无论采用什么编码方式,其平均失真必大于D 。

视频压缩是典型的限失真编码,率失真理论同样适应于视频编码。

条件概率经典习题(含解析)

条件概率经典习题(含解析)

一.选择题(共11小题)1.从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是()A.B.C.D.2.已知P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,则P()=()A.B.C.D.3.从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为()A.B.C.D.4.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(B|A),P(A|B)分别等于()A.,B.,C.,D.,5.已知P(A)>0,P(B)>0,P(C)>0,下列说法错误的是()A.若事件A,B独立,则P(A)=P(A|B)B.若事件A,B互斥,则P(B|A)=P(A|B)C.若事件A,B独立,则P(C|AB)=P(C|A)P(C|B)D.若事件A,B互斥,事件A,C独立,事件B,C独立,则P(C|(A+B))=P(C|A).6.6道题目中有5道理科题目和1道文科题目,如果不放回地依次抽取2道题目,则在第1次抽到理科题目的条件下,第2次抽到理科题目的概率为()A.B.C.D.7.盒子里有1个红球与n个白球,随机取球,每次取1个球,取后放回,共取2次.若至少有一次取到红球的条件下,两次取到的都是红球的概率为,则n=()A.3B.4C.6D.88.甲袋中有4个红球,4个白球和2个黑球;乙袋中有3个红球,3个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以A,B,C表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以D表示事件“取出的是红球”,则P(D)=()A.B.C.D.9.已知桌上放有3本语文书和3本数学书.小明现从这6本书中任意抽取3本书,A表示事件“至少抽到1本数学书”,B表示事件“抽到语文书和数学书”,则P(B|A)=()A.B.C.D.10.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=()A.0.24B.0.375C.0.4D.0.511.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.7二.填空题(共4小题)12.从﹣2,﹣1,1,2,3这5个数中任取2个不同的数,记“两数之积为正数”为事件A,“两数均为负数为事件B.则P(B|A)=.13.一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为.14.已知随机事件A,B,P(A)=,P(B)=,P(A|B)=,则=.15.已知,,则P(B)=.参考答案与试题解析一.选择题(共11小题)1.从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是()A.B.C.D.解答:解:设女生甲被选中为事件A,事件A表示女生甲被选中后再从剩下的6人中选2人,故,设男生至少一人被选中为事件B,事件AB表示女生甲被选中后再选2男生或1男生和1女生(从剩余4女生中选),故,则在女生甲被选中的条件下,男生至少一人被选中的概率是.故选:C.2.已知P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,则P()=()A.B.C.D.解答:解:P(B)=P(A)P(B|A)+,∵P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,∴0.3=P(A)×0.9+[(1﹣P(A)]×0.2,解得P(A)=,∴.故选:A.3.从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为()A.B.C.D.解答:解:令事件A为甲被选中的情况,事件B为乙被选中的情况,故P(A)=,P(AB)=,故P(B|A)=.故选:A.4.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(B|A),P(A|B)分别等于()A.,B.,C.,D.,解答:解:由题意知:事件AB=“三个点数都不同且至少出现一个6点”,∵,,,∴,.故选:B.5.已知P(A)>0,P(B)>0,P(C)>0,下列说法错误的是()A.若事件A,B独立,则P(A)=P(A|B)B.若事件A,B互斥,则P(B|A)=P(A|B)C.若事件A,B独立,则P(C|AB)=P(C|A)P(C|B)D.若事件A,B互斥,事件A,C独立,事件B,C独立,则P(C|(A+B))=P(C|A).解答:解:A,若事件A,B独立,则P(A|B)===P(A),故A正确,B,若事件A,B互斥,则P(AB)=0,则P(B|A)==0,P(A|B)==0,∴P(B|A)=P(A|B),∴B正确,C,若事件A,B独立,则P(AB)=P(A)P(B),∴P(C|(AB))===+≠P(C|A)P(C|B),故C错误,D,∵事件A,B互斥,∴P(A+B)=P(A)+P(B),∵事件A,C独立,事件B,C独立,∴P(AC)=P(A)P(C),P(BC)=P(B)P(C),∴P(C|(A+B))=====P(C)==P(C|A),故D正确.故选:C.6.6道题目中有5道理科题目和1道文科题目,如果不放回地依次抽取2道题目,则在第1次抽到理科题目的条件下,第2次抽到理科题目的概率为()A.B.C.D.解答:解:由题意,6道题目中有5道理科题目和1道文科题目,不放回地抽取两次,设第一次抽到理科题目为事件A,第二次抽到理科题目为事件B,则,P(AB)=,则P(B|A)=.故选:B.7.盒子里有1个红球与n个白球,随机取球,每次取1个球,取后放回,共取2次.若至少有一次取到红球的条件下,两次取到的都是红球的概率为,则n=()A.3B.4C.6D.8解答:解:设事件A为至少有一次取到红球,事件B为两次都取到红球,由每次取后放回知,两次都取到白球的概率为,故,,故n=4.故选:B.8.甲袋中有4个红球,4个白球和2个黑球;乙袋中有3个红球,3个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以A,B,C表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以D表示事件“取出的是红球”,则P(D)=()A.B.C.D.解答:解:由题意可得,P(A)=,P(B)=,P(C)=,故P(D)=P(AD)+P(BD)+P(CD)=.故选:C.9.已知桌上放有3本语文书和3本数学书.小明现从这6本书中任意抽取3本书,A表示事件“至少抽到1本数学书”,B表示事件“抽到语文书和数学书”,则P(B|A)=()A.B.C.D.解答:解:根据题意可得,,由条件概率的公式得.故选:D.10.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=()A.0.24B.0.375C.0.4D.0.5解答:解:设A,B为两个事件,由已知P(A)=0.5,P(B|A)=0.3,得P(AB)=P (B|A)⋅P(A)=0.15,所以,故选:B.11.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.7解答:解:袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.设事件A表示“第一次取到红球”,事件B表示“第二次取到白球”,P(A)=,P(AB)==,∴第一次取得红球的条件下第二次取得白球的概率为:P(B|A)===0.5.故选:B.二.填空题(共4小题)12.从﹣2,﹣1,1,2,3这5个数中任取2个不同的数,记“两数之积为正数”为事件A,“两数均为负数为事件B.则P(B|A)=.解答:解:从﹣2,﹣1,1,2,3这5个数中任取2个不同的数有种取法,其中满足两数之积为正数的有种取法,满足两数之积为正数且两数均为负数的有种取法,所以,,所以.故答案为:13.一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为.解答:解:若A表示“2名中至少有1名男生”,B表示“2名中有1名女生”,所以2名中有1名是男生的条件下,另1名是女生的概率为,而,,故.故答案为:.14.已知随机事件A,B,P(A)=,P(B)=,P(A|B)=,则=.解答:解:依题意得,所以,故,所以.故答案为:.15.已知,,则P(B)=.解答:解:由题意得,而,得,而,解得,故答案为:.。

概率论知识梳理

概率论知识梳理
个事件的概率的途径又多了一条。其实全概率公式精华之处并不在其本身,而
是推导过程以及思想。
18. 贝叶斯公式: P(Bi A)
p(A Bi )P Bi
n
,贝叶斯公式主要是根据结果反求
P(A Bj )P Bj
j 1
导致这个结果的某种情形的可能性。贝叶斯公式和全概率公式复习起来光看概
念没什么用,要借助几个较难的例题和做一些往届考题,这样效率会高很多。
是它本身,而是: P(A B C) P(A) P(A B) P(A B C) 。
更加重要的是当事件数量更多的时候如何处理。一句话总结:加多了减,减多 了加。 11. 概率的减法公式: P(A-B)=P(A) -P(AB) P(A-B)=P(A)-P(AB),当 B A 时, P(A-B)=P(A)-P(B),当 A=Ω时,P( B )=1- P(B)。
19. 事件的独立性:简而言之“你关我屁事!”,更重要的是多个事件的情形。
描述性定义:
数学定义:
设 A,B 为两个事件,如果其中任何 P( AB) P( A)P(B)
一个事件发生的概率不受另外一个事 特别注意:
件发生与否的影响(我发生也好,不 概率为 1 或者 0 的事件与任何事件独立。
发生也好,都不受你任何影响,你关 考试题型:
率论的学习,因而在接触这个概念的时候就应该去努力弄懂,弄透彻它。很多书上 有这么一句话:随机变量就是其值会随机而定的变量。有些孩子一看就发宝气了, 我当然知道它是变量呀!其实是抓错了重点,关键在于“随机”二字。我们过去说 的变量往往指不固定的量,虽然不固定,但往往遵循一个确切的法则(取值在内定 义域)。这里的随机变量也是如此,它不太有规律可循,但既然是出现在概率论这个 大背景下,它也不可能算是一匹脱缰的野马。从另一个角度解读这个概念:随机试 验的结果经常是数量,或者可以数量化表示,但是这些数量与以往用来表示时间, 位移等的变量有很大的不同,这就是其取值的变化完全取决于随机试验的结果,因 而是不可以完全预言的,这种随机取值的变量就是随机变量。说白了,随机变量就 是这样的一个家伙:你无法确切的知道他是什么,但是你能知道他很可能会是什么?

1.4条件概率

1.4条件概率
解:一共有三个回合,设B {乙机被击落},
Ai {第i个回合乙机击落},i 1,3,则B A1 A3
P(B) P( A1 A3) P( A1) P( A3)显然,P(A1) 0.2
P(A3) P(第一回合中没有击落乙机,第二回合中乙机 没击落甲机,第三回合中甲机击落乙机)
故有P( A3) 0.8 0.7 0.4
(4,1) (4,2) (4,3) (4,5) (5,1) (5,2) (5,3) (5,4)
事件A包含的基本事件为上三行,AB包含的基 本事件为左上角的6个,则由条件概率公式得:
P( B | A ) P( AB ) 6 / 20 0.5 P( A ) 12 / 20
方法二:按条件概率的直观意义来求P(B|A)
任取3个球来用,比赛后放回盒中,第二次比赛再从盒中任
取3个,求第二次取出的球都是新球的概率.
解:Ai {第1次取得i新球},i 0,1, 2,3;B {第二次取得3新球};
3
利用全概率公式得:P(B) P(Ai) p(B | Ai) i0
P(B
|
Ai )
P(
C3 7i
C135
Ai
;i
)
C7i C83i C135
3
4
5
解:P(A) P(B)P(A| B) P(B)P(A | B)
1 [1 P(A | B)] 2[1 P(A | B)] 1 4 2 3 23
3
3
3 5 3 4 30
例 一商店出售的某型号的电子管是甲,乙,丙三家工厂生产的,其中 甲厂产品占总数的20%,乙, 丙厂分别为50%, 30%。已知甲,乙, 丙各厂产 品次品率分别为0.01, 0.02, 0.03.试求随意取一只电子管出售,这只电子管 是次品的概率。

经典概率问题:山羊问题

经典概率问题:山羊问题

经典概率问题:山羊问题(又称蒙提·霍尔问题)山羊问题(又称蒙提·霍尔问题,The Monty Hall problem)是一道著名的概率问题,它源于1963年美国开播的电视游戏节目《让我们做个交易》,现在你作为参赛选手经过重重考验在节目的最后环节脱颖而出,却面临这样一个难题:在你眼前有3扇巨大的关闭的门,编号分别是A、B、C。

站在旁边的主持人蒙提·霍尔告诉你,其中一扇门的后面摆着极为诱人的大奖(比如说一辆小轿车),而另外两扇门的后面各站着一头羊,你需要在这3扇门中选择一扇门,并获得那扇门后面的奖品。

你经过深思熟虑,选择了编号为A的门,在你紧张兮兮正准备打开时,主持人说慢着,然后他打开了编号为C的门,后面正好是一头山羊,然后他问你:现在再给你一次选择的机会,你是坚持选择现在的门A,还是更换成门B?于是你的小脑袋开始转动了,下面观众也开始帮你出谋划策,总结有四种典型的分析:分析1:第一次选择A、B、C门正确的概率为1/3;主持人排除一扇门并不会改变A, B, C 的概率,所以,不管是否更换门获得奖品的概率都是1/3。

分析2:第一次选择A门正确的概率为1/3,主持人排除一扇门以后,剩下两扇门的概率都相应地变成了1/2。

所以,不管是否改变概率都是1/2。

分析3:第一次选择A门正确的概率为1/3,主持人排除一扇门之后,如果不重新选择,A 门正确的概率还是1/3,而重新选择另一扇门可以使概率上升为1/2。

分析4:第一次选择A门正确的概率为1/3,主持人排除一扇门之后,如果不重新选择,A 门正确的概率还是1/3,而重新选择另一扇门可以使概率上升到2/3。

仔细思考其实四种分析都有道理,然而你深入思考以后毅然选择了门B,因为选中的概率是2/3,而坚持原来的选择的概率是1/3,理由如下:第一种是从经验主义角度出发的。

你参加这个节目前就在家里面和你的小女儿玩了100次这个游戏,你的小女儿每次都在打开一扇有羊的门后改变最初的选择;然后你又找了你儿子玩了100次,他全都坚持一开始的选择。

事件的条件概率和三个基本公式

事件的条件概率和三个基本公式

(6) P( A1 A2 B) P( A1 B) P( A2 B) P( A1 A2 B)
5
二、乘法公式
P( AB) 由条件概率的定义: P( A B ) P( B )
即若P(B) > 0, 则 P(AB)=P(B)P(A|B) 若P(A) > 0, 则 P(AB)=P(A)P(B|A) 推广到三个事件:
集合的划分
B3
B1 B2
B6
B7 B8
Ω
A B4 B5
14
设 B1 , B2 , , Bn 为 一 个 完 备 事 件 组 , 对 任 一 事 件 A, 有
A AΩ AB1 AB2 ABn
显然 AB1 , AB2 ,, ABn 也两两不相容,
B3
B1 B2
A B4 B5
2 2 4 P( AB ) . P( A B) 3 34 P( B )
3
条件概率的计算公式规定如下:
P( AB ) (P( B) 0) P( A B ) P( B )
例 设袋中有7个黑球,3个白球,非还原摸取两次, 如果已知第一次摸到白球,求第二次也摸到白球的 概率。若改为还原摸取,结果如何? 解 设A,B分别表示第一、二次摸到白球,则
偏 小



P(B1) P(B2) P(B3)
但在知道案情细节 知道A 发生后 后, 这个估计就有 P(B1 | A) P(B2 | A) P(B3 | A) 了变化. 比如原来认为作案可能性较小的某丙,现在变 最 成了重点嫌疑犯.

24
再 举 一 个 医 学 例 子 。在 医 疗 诊 断 中 ,为 了诊 断 病 人 到 底 患 了 毛 病 B1 , B2 , , Bn 中 的 哪 一 种 ,对 病 人 进 行 检 查 ,确 定 了 某 个 指 标 A( 比 如 体 温 ). 根 据 以 往 资 料 可 知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3、一张储蓄卡的密码共有6位数字,每位数字都可 从0~9中任选一个,某人在银行自动提款机上取钱时, 忘记了密码的最后一位数字,求 (1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次 就按对的概率。
解:设第i次按对密码为事件Ai ( i 1, 2) 则A A1 ( A1 A2 )表示不超过 2次就按对密码。
但因为最后一名中奖的情况只有一种{NNY} 故概率会发生变化
二、内涵理解:
为什么上述例中P(B|A) ≠ P(B)?
样本空间不一样
P(B)以试验下为条件,样本空间是 P(B|A)以A发生为条件,样本空间缩小为A
Ω
B A
P(B |A)相当于把A看作 新的样本空间求AB 发生的概率
分析:求P(B|A)的一般思想 因为已经知道事件A必然发。
用B表示最后一名同学抽到中奖奖券的事件,
一般地,n(A)表示 由古典概型可知,最后一名同学抽到中奖奖券的 事件A包含的基本 事件的个数 n( B ) 1
则B { NNY }
概率为:P ( B )
n( )

3
思考:如果已经知道第一名同学没有抽到中奖奖券, 你知道第一名同学
的抽奖结果为什么 那么最后一名抽到中奖奖券的概率又是多少? 会影响最后一名同 分析: 学的抽奖结果吗?
3 P( AB) 10 1 P( B A) 3 2 P( A) 5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题 的概率。
解法二:因为n(AB)=6,n(A)=12,所以
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB. (1)从5道题中不放回地依次抽取2道的事件数为
n( ) A 20
2 5
根据分步乘法计数原理,n( A) A A 12
1 3 1 4
n( A) 12 3 P ( A) n( ) 20 5
n( AB) 6 1 P( B A) n( A) 12 2
解法三:第一次抽到理科题,则还剩下两道理科、 两道文科题 故第二次抽到理科题的概率为1/2
练习:甲乙两地都位于长江下游,根据一百多年的气象 记录,知道甲乙两地一年中雨天所占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? 解:设A={甲地为雨天}, B={乙地为雨天}, 则P(A)=20%,P(B)=18%,P(AB)=12%,
概率 P(B|A)与P(AB)的区别与联系 联系:事件A,B都发生了 区别:
样本空间不同: 在P(B|A)中,事件A成为样本空间; 在P(AB)中,样本空间仍为。
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
若抽到中奖奖券用"Y " 表示,没有抽到用" N " 表示,
不妨设“第一名同学没有抽到中奖奖券”为事件A,
则A { NYN , NNY }
用B表示最后一名同学抽到中奖奖券的事件, 则B { NNY }
n( B ) 1 最后一名同学抽到奖券的概率为P ( B | A) n( A) 2
结构如下表:
数量 厂别
甲厂
乙厂
合计
等级 合格品
475 25 500
644 56 700
1 119
次 品
合 计
81
1 200
(1)从这批产品中随意地取一件,则这件产品恰好是 27 次品的概率是_________; 400 (2)在已知取出的产品是甲厂生产的,则这件产品恰好 1 是次品的概率是_________; 20
(1)因为事件Ai与事件 A1 A2互斥,由概率的加法公式得
1 91 1 P ( A) P ( A1 ) P ( A1 A2 ) 10 10 9 5
例3、一张储蓄卡的密码共有6位数字,每位数字都可 从0~9中任选一个,某人在银行自动提款机上取钱时, 忘记了密码的最后一位数字,求 (1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次 就按对的概率。
注:P(B|A)表示在事件A发生的条件下B发生的概率
思考:你知道第一名同学的抽奖结果为什么会影响
最后一名同学的抽奖结果吗? 分析: 若不知道第一名同学的抽奖结果,则样本空间为、
{YNN , NYN , NNY }
若知道了第一名同学的抽奖结果,则样本空间变成
A { NYN , NNY }
小结:
1、条件概率的定义: 设A,B为两个事件,则在事件A发生的条件下, 事件B发生的概率就叫做的条件概率 2、条件概率的计算公式
n( AB ) P ( AB ) P ( B A) n( A) P ( A)
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
(2) n( AB ) A 6
2 3
条件概率的定义:
一般地,设A,B为两个事件,且P(A)>0,则
P ( AB ) P ( B A) P ( A)
在原样本空间 的概率
称为在事件A发生的条件下,事件B发生的条件概率。 一般把P(B|A)读作A发生的条件下B的概率。 注意: (1)条件概率的取值在0和1之间,即0≤P(B|A) ≤1 (2)如果B和C是互斥事件,则 P(B∪C |A)= P(B|A)+ P(C|A) (3)要注意P(B|A)与P(AB)的区别,这是分清条件概率 与一般概率问题的关键。
解:设第i次按对密码为事件Ai ( i 1, 2) 则A A1 ( A1 A2 )表示不超过 2次就按对密码。
(2)用B表示最后一位按偶数的事件,则
1 41 2 P ( A B) P ( A1 B) P ( A1 A2 B) 5 5 4 5
练习1: 一批同型号产品由甲、乙两厂生产,产品
n( AB ) 6 3 P ( AB ) n( ) 20 10
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题 的概率。 (3)解法一:由(1)(2)可得,在第一次抽到理科题 的条件下,第二次抽到理科题的概率为
(1)乙地为雨天时甲地也为雨天的概率是 P ( AB ) 12% 2 P( A B) P ( B ) 18% 3 (2)甲地为雨天时乙地也为雨天的概率是 P ( AB ) 12% 3 P ( B A) P ( A) 20% 5
练习:甲乙两地都位于长江下游,根据一百多年的气象 记录,知道甲乙两地一年中雨天所占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (3)甲乙两市至少一市下雨的概率是多少? 解:设A={甲地为雨天}, B={乙地为雨天}, 则P(A)=20%,P(B)=18%,P(AB)=12%, ∵{甲乙两市至少一市下雨}=A∪B 而P(A∪B)=P(A)+P(B)-P(AB) =20%+18%-12% =26% ∴甲乙两市至少一市下雨的概率为26%
条件概率
探究:3张奖券中只有1张能中奖,现分别由3名同学
一般地,我们用来 无放回地抽取,问最后一名同学抽到中奖奖券的概率是 表示所有基本事件的 集合,叫做基本事件 否比其他同学小? 空间(或样本空间)
分析:
若抽到中奖奖券用"Y " 表示,没有抽到用" N " 表示, 那么所有可能的抽取情况为 {YNN , NYN , NNY }
因为在事件A发生的情况下事件B发生,等价于事 件A和事件B同时发生,即AB发生。 故其条件概率为
n( AB ) P ( B | A) n( A)
为了把条件概率推广到一般情形,不妨记原来的 样本空间为,则有
n( AB ) / n( ) P ( AB ) P ( B | A) n( A) / n( ) P ( A)
相关文档
最新文档