烧结矿的固结机理
钢铁冶金学(炼铁部分)

钢铁冶⾦学(炼铁部分)钢铁冶⾦学(炼铁部分)第⼀章概论1、试述3种钢铁⽣产⼯艺的特点。
答:钢铁冶⾦的任务:把铁矿⽯炼成合格的钢。
⼯艺流程:①还原熔化过程(炼铁):铁矿⽯→去脉⽯、杂质和氧→铁;②氧化精炼过程(炼钢):铁→精炼(脱C、Si、P等)→钢。
⾼炉炼铁⼯艺流程:对原料要求⾼,⾯临能源和环保等挑战,但产量⾼,⽬前来说仍占有优势,在钢铁联合企业中发挥这重⼤作⽤。
直接还原和熔融还原炼铁⼯艺流程:适应性⼤,但⽣产规模⼩、产量低,⽽且很多技术问题还有待解决和完善。
2、简述⾼炉冶炼过程的特点及三⼤主要过程。
答:特点:①在逆流(炉料下降及煤⽓上升)过程中,完成复杂的物理化学反应;②在投⼊(装料)及产出(铁、渣、煤⽓)之外,⽆法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持⾼炉顺⾏(保证煤⽓流合理分布及炉料均匀下降)是冶炼过程的关键。
三⼤过程:①还原过程:实现矿⽯中⾦属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的⾦属与脉⽯的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁⽔。
3、画出⾼炉本体图,并在其图上标明四⼤系统。
答:煤⽓系统、上料系统、渣铁系统、送风系统。
4、归纳⾼炉炼铁对铁矿⽯的质量要求。
答:①⾼的含铁品位。
矿⽯品位基本上决定了矿⽯的价格,即冶炼的经济性。
②矿⽯中脉⽯的成分和分布合适。
脉⽯中SiO2和Al2O3要少,CaO多,MgO 含量合适。
③有害元素的含量要少。
S、P、As、Cu对钢铁产品性能有害,K、Na、Zn、Pb、F对炉衬和⾼炉顺⾏有害。
④有益元素要适当。
Mn、Cr、Ni、V、Ti等和稀⼟元素对提⾼钢产品性能有利。
上述元素多时,⾼炉冶炼会出现⼀定的问题,要考虑冶炼的特殊性。
⑤矿⽯的还原性要好。
矿⽯在炉内被煤⽓还原的难易程度称为还原性。
褐铁矿⼤于⾚铁矿⼤于磁铁矿,⼈造富矿⼤于天然铁矿,疏松结构、微⽓孔多的矿⽯还原性好。
⑥冶⾦性能优良。
冷态、热态强度好,软化熔融温度⾼、区间窄。
烧结制备过程的原理

烧结制备过程的原理
烧结是一种通过粉末材料在高温下进行加热压制以形成坚固体的工艺。
烧结过程的原理可以归纳为以下几个方面:
1. 粒子扩散:在烧结过程中,由于高温下原子和分子的热振动,粉末颗粒之间的原子或分子会发生扩散,逐渐形成颗粒间的结合。
这种扩散是烧结中最关键的阶段。
2. 颗粒聚结:当粉末颗粒接触时,由于表面能的存在,两个接触颗粒会发生一定程度的结合。
在烧结过程中,随着温度的升高,这些颗粒间的结合会不断强化,最终形成坚固的结构。
3. 烧结颈部形成:在烧结过程中,颗粒间的结合会产生烧结颗粒之间的颈部。
随着烧结过程的进行,烧结颈部逐渐增长,并最终连接在一起,形成一个连续的块体。
4. 表面张力的作用:在烧结过程中,颗粒间的结合也受到表面张力的影响。
表面张力会使形成的结合处有一定的凹陷,这种凹陷可以促进烧结颈部的形成,从而增强颗粒间的结合。
总的来说,烧结制备过程的原理是靠粒子的扩散、颗粒的聚结以及烧结颈部的形成和表面张力的作用,使得粉末材料在高温下能够形成坚固的物体。
烧结工艺具
有高效、经济、环保等优势,在陶瓷、金属、塑料等领域被广泛应用。
烧结过程的理论基础

烧结过程的理论基础烧结就是将矿粉、熔剂和燃料,按一定比例进行配加,均匀的混合,借助燃料燃烧产生的高温,部分原料熔化或软化,发生一系列物理、化学反应,并形成一定量的液相,在冷却时相互粘结成块的过程。
一、烧结过程的基本原理近代烧结生产是一种抽风烧结过程,将矿粉、燃料、熔剂等配以适量的水分,铺在烧结机的炉篦上,点火后用一定负压抽风,使烧结过程自上而下进行。
通过大量的实验对正在烧结过程的台车进行断面分析,发现沿料层高度由上向下有五个带,分别为烧结矿带、燃烧带、预热带、干燥带和过湿带。
当前国内外广泛采用带式抽风烧结,代表性的生产工艺流程如图3—1所示。
1、烧结五带的特征(1)烧结矿带在点燃后的烧结料中燃料燃烧放出大量热量的作用下,混合料熔融成液相,随着高负压抽风作用和燃烧层的下移,导致冷空气从烧结矿带通过,物料温度逐渐降低,熔融的液相被冷却凝固成网孔状的固体,这就是烧结矿带。
此带主要反应是液相凝结、矿物析晶、预热空气,此带表层强度较差,一般是返矿的主要来源。
(2)燃烧带该带温度可达1350~1600度,此处混合料软化、熔融及液相生成,发生异常复杂的物理化学变化。
该层厚度为15~50mm 。
此高炉灰轧钢皮碎焦无烟煤 石灰石白云石 精矿富矿粉水空气烟道灰返矿排出废气(热烧结矿) 冷烧结矿图3—1 烧结生产一般工艺流程图带对烧结产量及质量影响很大。
该带过宽会影响料层透气性,导致产量低。
该带过窄,烧结温度低,液相量不足,烧结矿粘结不好,导致烧结矿强度低。
燃烧带宽窄主要受物料特性、燃料粒度及抽风量的影响。
(3)预热带该带主要使下部料层加热到燃料的着火温度。
一般温度为400~800度。
该带主要反应是烧结料中的结晶水及部分碳酸盐、硫酸盐分解,磁铁矿进行还原以及组分间的固相反应等。
(4)干燥带烧结料的热废气从预热带进入下层,迅速将烧结料加热到100℃以上,因此该带主要是水分的激烈蒸发。
(5)过湿带从烧结料点火开始,物料中的水分就开始转移到气流中去。
烧结矿作用

烧结矿作用全文共四篇示例,供读者参考第一篇示例:烧结矿作为铁矿石的一种,其在炼铁过程中有着非常重要的作用。
烧结矿是由粗矿粉和细矿粉混合后经过烧结而成的一种铁矿石。
它具有高度的机械性能和热稳定性,可在高温条件下经受热变形和破碎。
烧结矿还具有良好的氧化还原性能,能够与其他矿石和还原剂反应生成高品质的铁精矿。
烧结矿主要由铁矿石、燃料、粘结剂和添加剂组成,其中铁矿石是烧结矿的主要成分,其含铁量通常在60%以上。
燃料主要是焦炭,用于提供热量并促使铁矿石还原反应进行。
粘结剂主要是用来粘合烧结矿颗粒的,以提高其机械强度。
添加剂则是用来改善烧结矿的性能,如增强其还原性能、改善其流动性等。
烧结矿在炼铁过程中的作用主要有以下几个方面:烧结矿作为主要的铁矿石原料,其含铁量高,燃料消耗低,热效率高,可大大降低生铁的成本。
烧结矿中的铁氧化物在高温下与焦炭反应生成还原铁,从而得到高品质的铁水。
烧结矿中的硅、锰、磷等杂质也会在炼铁过程中与其他矿石和还原剂共同剥离,降低了生铁的杂质含量。
烧结矿具有一定的流动性和透气性,有利于高炉内物料的均匀分布和气体的顺利流通。
烧结矿颗粒在高炉内受到高温和气流的作用,逐渐软化和熔融,形成一层坚固的“烧结块”,有助于高炉内的均质化和还原反应进行。
烧结矿颗粒之间的空隙也有利于煤气的传递和反应,提高了高炉内反应的效率。
烧结矿中的粘结剂能够使烧结矿颗粒之间紧密结合,增强烧结块的机械强度和抗压性。
这有利于高炉内矿料的顺利下降和保持高炉的稳定操作。
粘结剂还有助于减少烧结矿颗粒之间的空隙,减少煤气的透过和提高反应效率。
烧结矿中的添加剂能够改善烧结矿的性能,如增强其还原性能、降低烧结温度、改善烧结块的熔融性等。
这些添加剂可以根据不同的原料和工艺要求进行选择,以确保烧结矿在炼铁过程中的正常运行和达到预期的成效。
烧结矿在炼铁过程中起着至关重要的作用,其优良的性能和适宜的成分能够大大提高生铁的质量和产量,降低生产成本,提高生产效率。
2010烧结2-固结

P称为透气性指数, 称为透气性指数, 称为透气性指数 • 层流时: 层流时:
P= 2 5ηs
g 0.62η
0.526 1.58
gε
3
• 紊流时: 紊流时:
P=
ε
0.053 0.579ρ0.474
s
• 从上式可知料层透气性指数P主要决定 于料层的孔隙度ε 于料层的孔隙度ε和料粒的比表面积s。
2、矿物自身的还原性(还原度) 、矿物自身的还原性(还原度)
• 较好:赤铁矿 较好:赤铁矿49.9%, 铁酸一钙 , 铁酸一钙40.1%, , • 铁酸二钙28.5%,磁铁矿 铁酸二钙 ,磁铁矿26.7%
• 较差:玻璃体 较差:玻璃体3.1%,钙铁橄榄石 ,钙铁橄榄石6.6%,铁橄 , • 榄石1.0% 榄石
生产实践
• 在烧结赤铁矿非熔剂性烧结矿时,需要配较高 在烧结赤铁矿非熔剂性烧结矿时, 的碳量, 还原或分解为Fe 的碳量,使Fe2O3还原或分解为 3O4后才能产 生低熔点的铁橄榄石( 生低熔点的铁橄榄石(2FeO.SiO2)。 • 在烧结磁铁矿熔剂性烧结矿时,需低配碳以保 在烧结磁铁矿熔剂性烧结矿时, 持较强的氧化性气氛, 氧化到Fe 持较强的氧化性气氛,使Fe3O4氧化到 2O3, 在固相中才能形成铁酸钙液相。 在固相中才能形成铁酸钙液相。
七、烧结生产指标
1、 台时产量Q(t/h) 、 )
表示带式烧结机的生产率。 表示带式烧结机的生产率。
Q=60•k • B • L • r • C
式中:
(A式) 式
K—成品率,即混合料生产的成品烧结矿比率, 成品率,即混合料生产的成品烧结矿比率, 成品率 一般为0.5--0.7。 一般为 。 B — 烧结机台车宽度,m; 烧结机台车宽度, ; 混合料堆积密度 混合料堆积密度,t/m3; C---- 垂 直 烧 结 速 度 ( 即 燃 烧 层 垂 直 下 移 速 度 ) mm/min; C=H/t H — 料层厚度,m; 料层厚度, ; V — 机速 机速,m/min, v=LC/H (B式) 式
铁矿粉烧结过程基础理论

铁矿粉烧结过程基础理论序言:在学习配料技术之前把烧结的基础理论知识和工艺特点温习一遍。
这是学习烧结配料技术的基础,要完全掌握、理解透彻。
铁矿粉烧结是整个钢铁冶炼长流程的首道综合性生产环节,从工艺生产的角度来讲,钢铁冶炼是从铁矿粉烧结开始的,以下简称烧结。
烧结是生产人造富矿的最主要的方法。
(高碱度烧结矿+酸性球团矿是现今我国最流行的高炉冶炼方法。
)将铁精粉(国内磁铁贫矿经过破碎、浮选和磁选)、富矿粉、钢铁冶炼生产中回收的含铁较高的粉末类副产品(高炉和转炉炉尘、轧钢铁皮、高品位钢渣粉等)、熔剂(白云石、菱镁石、石灰石和生石灰等)和燃料(焦粉和无烟煤),按一定比例配料,加水混合制成具有一定粒度的混合料,均匀平铺在烧结台车上,经过点火抽风烧结成块。
再经过破碎、筛分,加工成具有一定强度和粒度组成的人造富矿的过程叫做-烧结。
一、烧结生产的意义1、烧结生产是一种人造富矿的制作方法,这种方法使地壳中大量的低品位铁矿加工成人造富铁矿,用以满足高炉冶炼优质、高产、低耗的冶炼需要。
2、烧结生产中可以应用转炉炉尘、高炉炉尘、轧钢皮、钢渣等钢铁冶炼副产品和硫酸渣等化工副产品,这些废料在烧结过程中得到充分地再利用,做到变废为宝,为企业带来节能环保和降低原料成本的双重效益。
3、烧结生产的烧结矿和天然富矿块相比,更适合高炉冶炼的需要。
主要表现在:成分稳定、粒度适中、低温还原粉化率低、炉内的热强度和整体还原度良好、造渣流动性好。
这些特性使得高炉冶炼更容易调节炉况、稳定生产、提高产量和降低焦比。
4、烧结过程可以除去原燃料中90%以上的硫化物和80%以上的氟化物等钢铁冶炼的有害杂质,大大地简化了后续钢铁冶炼流程中脱硫脱氟等去杂质的工艺,不仅调升了产品质量,而且也极大地降低了钢铁冶炼成本。
二、烧结生产过程1、烧结工艺流程大多数人开始学习烧结工艺的时候,首先学习的就是工艺流程图,我们去某个地方参观或者学习时,也必先熟悉那里的工艺流程图。
铁矿粉烧结理论

烧结速度/mm/min
21 20 19 18 17 16 15 14 1.6 1.5 1.4 1.3 1.2 1.1 1.0 29 28 27 26 25 24 23 22 21 4.1 4.0 3.9 3.8 3.7 3.6 3.5 4.0 4.5 5.0 5.5 6.0 6.5 3.5 4.0 4.5 5.0 5.5 6.0 6.5
一般来说,碳的燃烧在较低温度和氧含量较高的条件下,以生成CO2为主;在较高 温度和氧含量较低的条件下,以生成CO为主。烧结废气中,碳的氧化物是以CO2为 主,只含少量的CO。
图4-2 在烧结试验过程测得废气中的 氧气、二氧化碳和一氧化碳的变化
(试验所用燃料量为7%)
通常用燃烧比(CO/CO+CO2)来衡量烧结过程中碳的化学能利用程度,用废气成分 来衡量烧结过程的气氛。燃烧比大则碳的利用差,还原性气氛较强,反之碳的利用 好,氧化气氛较强。还原性气氛较强时,CO可以将Fe2O3还原为Fe3O4,因此,烧结 混合料中配碳量越过,烧结矿亚铁含量越高。 影响燃烧比的因素有: a.燃料粒度 (图4-3) b.混合料中燃料含量 (图4-4) c.烧结负压 (图4-5) d.料层高度 (图4-6) e.返矿量 (图4-7)
R
当扩散速率与化学反应同步,即 = 时,整个反应稳定进行, 则碳粒燃烧的总速度为:
V VR KD KR S CO2 KCO2 KD KR
VD
VR
K K K ≈ ,此时,过程的总速度取决于化学 在低温下, K ﹤﹤ , 反应速度,称燃烧处于“动力学燃烧区”。
R D R
在高温下, ﹤﹤ , ≈ ,此时,过程的总速度取决于氧的 扩散速度,称燃烧处于“扩散燃烧区”。 当燃烧处于动力燃烧区时,燃烧速度受温度影响较大,随温 度升高而增加,而不受气流速度、压力和固体燃料粒度的影响。 当燃烧处于扩散燃烧区时,燃烧速度取决于气体的扩散速度, 而温度的改变影响不大。 烧结过程在点火后不到一分钟,料层温度升高到1200℃~ 1350℃,故其燃烧反应基本上是在扩散区内进行,因此,一切 能够增加扩散速度的因素,如减小燃料粒度、增加气流速度 (改善料层透气性、增加风机风量)和气流中的氧含量,都能 提高燃烧反应速度,强化烧结过程。
烧结原理

烧结机烧结原理从成球工段送来的生料球,经导料槽分散丁台车上,随着台车的前进。
挡料板将料层刮平,保持一定的料层厚度,继而料层进入点火器下方。
点火温度为1150 N1300℃。
因料球内含有炭分,上层料球很快点着并燃烧,形成12(J0~1300℃的灼烧层。
台车离点火器后继续前进,灼烧层也逐渐向下推进。
空气从料层表面被吸入,自上而下温度逐渐提高,通过灼烧层并预热下部生料球,最后进入吸风箱,被通风机抽出。
这样,料球从表皮到球心,料层从上层到下层不断烧结,如图3-3所示图3-3烧结机料层焙烧示意图在烧结过程中,料球进行复杂的物理化学反应。
随着可燃质烧尽,烧结的料层又自上而下逐渐冷却。
台车行至尾端沿导轨滚动滑落,已烧结并初步冷却的陶粒自动翻落卸出,空台车进入下部导轨又渐渐向传动装置方向移动,开始新的工作循环。
由于烧结机环行导轨上的台车紧密排列,形成一个封闭的联动带,从而使陶粒焙烧得以不间断地连续进行。
料球在焙烧过程中,产生部分软化和液相,特别在料球表面液相较多。
整个料球进行复杂的固相反应和液相反应,形成晶体矿物和较多的玻璃体。
主要的晶体矿物有莫来石(3AI203.2S102)、n—Sioz等。
莫来石和玻璃体具有较高的强度,在陶粒表面,以玻璃体为主形成一层坚硬的外壳(厚度0. 5mm左右),使焙烧后的粉煤灰陶粒具有较高的强度。
烧结粉煤灰陶粒内部形成许多细微孔,因而堆积密度小。
关于气孔形成的原因,国内外说法不一。
但多数认为主要是焙烧时料球内部产生气体而引起的。
焙烧时料球内部产生气体的原因大致有以下几种:①料球内的水分气化,产生水蒸气;②料球内炭粒燃烧和挥发分产生C02、c0、S03等气体}③料球内盐类(如碳酸盐、硫酸盐、含水硅酸盐等)分解,产生C02、S03、Hz0等气体;④料球内由于氧气不足,焙烧时使氧化铁还原成氧化亚铁放出C02等气体。
除了产生气体而形成的气孔外,还有其他一些原因造成气孔。
如成球时的机械作用形成部分孔隙,粉煤灰颗粒的玻璃质内原有的部分气iL等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烧结矿的固结机理
烧结矿是钢铁工业中不可或缺的原材料之一,其生产过程中涉及到多种工艺和机理。
烧结矿的固结机理是其中最重要的一个方面,本文将介绍烧结矿的固结机理及其影响因素。
一、烧结矿的固结机理
烧结矿的固结机理主要包括以下几个方面:
1. 结晶生长机理:烧结矿是通过在高温条件下将铁矿石经过还原反应后进行结晶形成。
这一过程中,铁原子会逐渐沉积并发生结晶生长,最终形成颗粒状的烧结矿。
不同粒径的矿粉可能在烧结过程中发生不同的结晶生长机理。
2. 破碎强度机理:烧结矿团粒状的矿物颗粒之间存在着一定的间隙,这些间隙对于团粒的强度影响较大。
在将烧结矿投入到高温环境中进行固结时,团粒矿物颗粒之间的间隙会变得更加紧密,从而提高烧结矿的破碎强度。
3. 烧结结构机理:烧结矿团具有比较特殊的结构,其主要是由铁矿石、金属铁、熔渣、孔隙和其他杂质组成。
在在高温条件下,矿物颗粒相互间的吸附力和表面活性增加,形成相互连接的结构。
二、影响固结机理的因素
烧结矿固结机理受到多种因素的影响,主要包括以下几个方面:
1. 矿石成分:矿石的成分会显著影响烧结矿的固结机理。
在不同的还原反应条件下,矿石的不同成分在烧结过程中发挥着不同的作用。
2. 烧结温度:烧结温度是烧结矿固结机理中最为重要的因素之一。
不同的矿粉在不同的烧结温度下会发生不同的固结反应,形成不同的团粒结构。
3. 气氛控制:在固结过程中,气氛的控制也是十分重要的。
氧气、水蒸气、二氧化碳等气体的含量都有可能对烧结团粒的形成产生影响。
4. 压力控制:固结过程中的压力控制也十分关键。
烧结矿的压力会影响其团粒结构的形成和稳定性。
5. 冷却方式:在固结后的冷却过程中,冷却速率和方式都有可能对烧结团粒的微观结构和力学性能产生影响。
三、结论
烧结矿固结机理是复杂的,受到多种因素的影响。
在烧结矿的生产过程中,需要综合考虑多方面因素的影响,并采取相应的措施来进行优化和调控。
通过研究烧结矿的固结机理,可以更好地掌握其生产过程和性能特征,对于提高钢铁生产的效率和质量都具有重要意义。