5 第三章 弹性力学平面问题的解析解法
合集下载
弹性力学-平面应力-平面应变问题

平面应力问题的求解方法
解析法
实验法
通过数学分析的方法,将问题转化为 数学方程进行求解。适用于简单几何 形状和边界条件的问题。
通过实验测试来测量物体的应力分布, 通常需要制作模型并进行加载测试。 适用于无法通过理论分析求解的问题。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的平衡方程来得到整 个物体的应力分布。适用于复杂几何 形状和边界条件的问题。
弹性力学的基本方程
描述物体在受力后的应力 与应变之间的关系。
描述物体在受力后发生的 位移和应变关系。
描述物体内部力的平衡关 系03
平面应力问题
平面应力问题的定义
平面应力问题是指在弹性力学中,物 体受到的应力作用在某一平面内,且 在该平面上没有作用力的问题。
平面应力问题通常适用于薄板、薄壳 等二维结构,其中应力分量在某一平 面内变化,而垂直于该平面的方向上 ,应力和应变均为零。
THANKS
感谢观看
04
平面应变问题
平面应变问题的定义
平面应变问题是指在弹性力学中,应变和应力都仅发生在某一平面内的现象。在 此情况下,应变和应力分量都与离开平面的距离无关。
平面应变问题通常出现在薄壁结构、板壳结构等二维结构中,其中主要的变形和 应力分布都在一个平面内。
平面应变问题的求解方法
1 2 3
有限元法
通过将问题离散化为有限个小的单元,利用弹性 力学的平衡方程和变形协调方程,求解每个单元 的应力、应变和位移。
跨学科的研究
与其他学科的交叉研究 可能会带来新的思想和 理论。例如,与物理学 、化学、生物学等学科 的交叉可能会为弹性力 学的研究提供新的视角 和思路。
实验与理论的结 合
实验技术的发展将有助 于更好地验证理论的正 确性和实用性。同时, 理论的发展也将为实验 提供更好的指导。因此 ,实验与理论的结合将 是未来研究的一个重要 方向。
03第三章 弹性力学中的平面问题

yx
yx y
dy
xy x dx
x
xy
Q
xy
c
dx
dy
x
x dx x
yx
y
x
o
力平衡
y y
?
1、力矩平衡:Mc=0
( xy dx dx dx) dy L xy dy L x 2 2 xy
z ( x y )
xy 2(1 ) xy
E
三、平面问题的方程组 平衡方程:
x yx f 0 x x y xy y f 0 y x y
?
几何方程:
u x v y y u v xy y x
P
p
S
x 若微平面的法线平行于某坐标轴,例如 Z轴,正应力表示为Z则可将剪应力 沿另两坐标轴分解, 得:zx、zy
o
y
应力正负规定
?
如果截面上的法线方向是沿坐标轴的正方向,则该截面 称为一个正面,截面上的应力以沿坐标轴正方向为正。
y
如果截面上的法线方向是沿坐 标轴的负方向,则该截面称为 一个负面,截面上的应力以沿 坐标轴负方向为正。
yx
y
x
xy
o
x
?
以均匀的单向拉伸为例。设P为轴向拉力,F0为横截面积,则法向 与拉伸轴成角的平面上的全应力大小为:
S
P
F0 cos
P cos 0 cos F0
该面的正应力 和平行于该面的剪应力 分别为
S cos 0 cos 2 S sin 0 sin cos
弹性力学__徐芝纶版第三章

4 f
y4
0
4 f 0
一、逆解法和半逆解法 (一)逆解法的基本步骤:
取满足相容方程的 f
求出应力分量 x , y , xy
根据边界条件求出面力
考察能解决什么问题
§3-1 逆解法与半逆解法 多项式解答
(二)半逆解法的基本步骤:
根据问题的特 点设出部分应 力分量
是 结束
否
求出应力函数 f
x
§3-3 位移分量的求出
0 u0 v0 0
y
z
u P x Eh
P x
v P y
Eh
习题
[1]写出边界条件。 解:
x x0,xb g( y h1)
0 xy x0,xb y y0 gh1, xy y0 0
y
P
hE
xy 0
u P x Eh
v P
y Eh
u v 0 y x
u
P Eh
x
f1y
v
P
Eh
y
f2 x
代入第三式得: df1 y df2 x 0
dy
dx
移项得: df1 y df2 x
u yh2 0
v yh2 0
hx1
g
b
h2
bb
y 22
FN gbh1
b
下边的等效应力边界条件: 0 y yh2 dx gbh1
b
0
xy
dx 0
y h2
b 0
y
y h2
5第三章弹性力学平面问题的解析解法讲解

2 X Y 2 x y y 2 x 2 ( x y ) (1 )
(平面应力情形)
(3)边界条件:
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y
x 2 y
2
y 2 x
2
xy
2 xy
(2-28)
(无体力情形)
(3) 再让 x , y , xy满足应力边界条件和位移单值条件 (多连体问题)。
第三章 弹性力学平面问题的 解析解法
第四节 第五节 逆解法与半逆解法—多项式解答 矩形梁的纯弯曲
(2)边界条件: 位移边界条件: 应力边界条件:
(1 )
u s u , vs v
(2)
E u v 1 u v l m X 2 y s 2 y x s 1 x (3 ) v u 1 v u E m l Y 2 1 y x s 2 x y s
4.
按应力求解平面问题的基本方程 说明:
(1)对位移边界问题,不易按应力 求解。
(1)平衡方程
x xy X 0 x y yx y Y 0 x y
(2)相容方程(形变协调方程)
(2)对应力边界问题,且为单连通 问题,满足上述方程的解是唯 一正确解。
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
按应力求解平面问题(X = 常量、Y = 常量)的归结为: (1) 先由方程(2-27)求出应力函数: ( x ,7) 0 4 2 2 4 x x y y x , y , xy (2) 然后将 ( x , y ) 代入式(2-26)求出应力分量:
弹性力学第3章(徐芝纶第五版)

最主要量级q( l )2 h
,和次要量级 q l h
, 在材力
中均已反映,且与弹力相同。
最小量级 ~ q, 在材力中没有:
当lh
时,
仅占主项
M I
y
的1/15
( 6 %) ,
当 l 时h , 量级q 的值很小,可以不计。
弹力与材力的解法比较:
应力比较
弹力严格考虑并满足了A内的平衡微分 方程 ,几何方程和微分方程,以及S上的所有 边界条件(在小边界上尽管应用了圣维南 原理,但只影响小边界附近的局部区域)。
4 楔形体受重力和液体压力 问题
设有楔形体, 左面垂直,顶角为α, 下端无限长,受重 力及齐顶液体压力,
fx 0, f y 1g.
o
α 2g
y
x
n
α
2
1g
用半逆解法求解。
(1)用量纲分析法假设应力: (2)由应力~Φ关系式,Φ应为x,y的三次式,
(3)Φ 满足相容方程 4Φ 0.
(4)由 Φ求应力, (5)考察边界条件——本题只有两个大边 界,均应严格满足应力边界条件:
o
M
y
h/2
h/2
x
M
l
( l >>h)
半逆解法
3.半逆解法 步骤:
⑴ 假设应力的函数形式 (根据受力情况, 边界条件等);
⑵ 由应力(d)式,推测 的Φ 函数形式;
⑶ 代入 4Φ,解0 出 ; Φ
半逆解法
⑷ 由式(d),求出应力;
⑸ 校核全部应力边界条件(对于多连体, 还须满足位移单值条件). 如能满足,则为正确解答;否则修改假 设,重新求解。
为b,如图,水的密
度为 2 ,试求
西南交通大学杨帆XXXSB弹性力学第三章

平面应力问题的几何方程和位移
空间几何方程
w u w v w zx 0 zy 0 z ( x, y ) x z y z z u v v u x ( x, y ) y ( x, y ) xy ( x, y ) x y x y
平面应力问题的应力
板面的力学边界条件
t z : 2
Tx 0 Ty 0 Tz 0
zx 0 zy 0 z 0
因为板很薄,假设:板面的零应力在板内部也为零,非零 应力沿板厚不变化 t t zx zy z 0
2 z 2 :
x x ( x, y ), y y ( x, y ), xy xy ( x, y )
x
w 0 x w u zx 0 x z w v yz 0 y z
z
独立位移和应变 u ( x, y ), v( x, y ), x ( x, y ), y ( x, y ), xy ( x, y ) 独立几何方程
平面应变问题的物理方程和应力
2
1 2 独立物理方程 x E
xy 2(1 ) xy xy E
平面应变问题的平衡方程
x ( x, y ) yx ( x, y ) zx 2 u ( x, y ) Fx x y z t 2 xy ( x, y ) y ( x, y ) zy 2 v ( x, y ) Fy x y z t 2 xz yz z ( x, y ) 2w Fz 2 x y z t
平面应变问题的位移、应变和几何方程
所有横截面都是对称平面 对称面的法向位移为零 w 0
弹性力学平面问题的直坐标系解答

物理方程描述了应力与应变之 间的关系,它是通过材料的弹 性常数建立的。在直坐标系中 ,物理方程可以表示为
03
直坐标系中的弹性力学平面问题
直坐标系中的平衡方程
80%
平衡方程概述
在直坐标系中,弹性力学平面问 题的平衡方程描述了物体在受力 作用下的静力平衡状态。
100%
平衡方程的推导
通过分析物体的受力情况,结合 牛顿第二定律,可以推导出平衡 方程的具体形式。
弹性力学的基本概念
应力和应变
在弹性力学中,物体在外力作用下会发生形变,这 种形变程度可以用应力和应变来描述。
胡克定律
胡克定律指出,在弹性范围内,物体的应力和应变 之间存在线性关系,即应力与应变成正比。
边界条件和初始条件
在弹性力学问题中,物体边界上的条件和问题开始 前的初始状态对于确定物体的应力和应变是必要的 。
总结词
考虑弹性体在平面内受拉伸的情况, 分析其应力分布和变形。
详细描述
在直坐标系中,设弹性体受到沿x轴方 向的拉伸力作用,根据弹性力学基本 方程,可以求出弹性体内各点的应力 和应变分布,以及位移场。
圆盘受压问题
总结词
研究圆盘在受到垂直向下的均匀 压力作用下的应力分布和变形。
详细描述
在直坐标系中,设圆盘中心位于 原点,半径为R。根据弹性力学基 本方程,可以求出圆盘内各点的 应力和应变分布,以及位移场。
弹性力学平面问题的直坐标系 解答
目
CONTENCT
录
• 引言 • 弹性力学平面问题的基本方程 • 直坐标系中的弹性力学平面问题 • 解法举例 • 结论
01
引言
主题简介
弹性力学平面问题
在弹性力学中,平面问题指的是应变和应力分量在空间中仅随两 个坐标变量变化的情形。
弹性力学中的平面问题

设任意点P的位移为:
u ( x, v( x,
y) y)
点A的位移为:uv((xx,,
dx
xy
xy
x
dx
x
x x
dx
yx y
o
x
平衡方程
?
平面问题的静力平衡方程:
x
x
yx
y
fx
0
xy
x
y
y
fy
0
注:未知数三个:x 、y 、xy=yx
?
§3.5 平面问题的几何方程
目标:建立形变分量与位移分量之间的关系
物体内任意一点P,沿x和y轴方向取微小长度PA=dx、PB=dy,变形后点P、A、 B移动到P’、A’、B’,
x
dx
x
x
x
dx
o
x
力平衡
?
1、力矩平衡:Mc=0
( xy
xy
x
dx) dy
dx 2
L xy
dy
dx 2
L
y
x
(
yx
yx
y
dy) dx
dy 2
L
yx
dx
dy 2
L
0
xy
Q
o
xy
1 2
xy
x
dx
yx
1 2
yx
y
dy
y
y
y
dy
yx
yx
y
dy
c dy
dx
xy
xy
Q
F
V p
体力的量纲是[力][长度]-3
o
y
x
?
2、面力: 是分布在物体表面上的力。如流体力、接触力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将式 (d) 代入 (c) 中第三式,得:
M 2 f 2 ( x) x x v0 EI
将上式代入式(d),得
f1 ( y) y u0
M x f1( y ) f 2( x) 0 EI
平衡方程:
E 2u 1 2u 1 2 v 2 X 0 2 2 2 y 2 xy 1 x 2 2 2 E v 1 v 1 u 2 Y 0 2 2 2 x 2 xy 1 y
上下边界: X Y 0
Y xy 0 Y xy 0
2b x
对应于矩形板左右端面均匀拉伸(b>0) 或均匀压缩(b<0)。(包括轴向拉压)
y
(2)
cx
2
2
应力分量: y 2c 2
x
x xy 0
2c
x
对应于矩形板上下端面均匀拉伸(b>0) 或均匀压缩(b<0)。(包括轴向拉压)
4
多项式次数 n 越高,则系数间需满足的条件越多。 (2) 一次多项式,对应于无体力和无应力状态;任意应力函数φ(x,y)上加 上或减去一个一次多项式,对应力无影响。 (3) 二次多项式,对应均匀应力状态,即全部应力为常量;三次多项式, 对应于线性分布应力。 (4) 用多项式构造应力函数φ(x,y) 的方法 —— 逆解法(只能解决简单直 线应力边界问题)。
第六节 位移分量的求出
第四节 逆解法与半逆解法—多项式解答
(1) 逆解法
(1)根据问题的条件(几何形状、受力特点、边界条件等),
假设各种满足应力函数表示相容方程的φ(x,y) 的形式;
(2)然后利用应力分量计算式求出
x , y , xy(具有待定系数);
(3)再利用应力边界条件式,来考察这些应力函数φ(x,y) 对应什么样 的边界面力问题,从而得知所设应力函数φ(x,y) 可以求解什么问 题。 —— 主要适用于简单边界条件的问题。
为四阶偏微分方程
三阶及以下的多项式作为应力函数,必定满足相容 方程,不论其系数如何。
应力函数表示的相容方程
4 4 4 2 2 2 4 0 4 x x y y
为四阶偏微分方程
三阶及以下的多项式作为应力函数,必定满足相容 方程,不论其系数如何。
1. 一次式
a bx cy
2 X Y 2 x y y 2 x 2 ( x y ) (1 )
(平面应力情形)
(3)边界条件:
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y
问题:
按应力求解平面问题,其基本未知量为: 如何由
x , y , xy
求出形变分量、位移分量?
x
, y , xy
,本节说明
第六节 位移分量的求出 以纯弯曲梁为例,说明如何由 , , 求出形变分量、位移分量? x y xy
1. 形变分量与位移分量
(1)形变分量
由前节可知,其应力分量为:
x 2 Xx y 2 Yy xy (2-26) y x 再让 x , y , xy 满足应力边界条件和位移单值条件 (3)
2
2
2 xy
(多连体问题)。
应力函数表示的相容方程
4 4 4 2 2 2 4 0 4 x x y y
3.
按位移求解平面问题的基本方程
E 2u 1 2u 1 2 v 2 X 0 2 2 1 x 2 y 2 xy (1)平衡方程: 2 2 2 E v 1 v 1 u 2 Y 0 2 2 2 x 2 xy 1 y
G
将式(a)代入得:
x 1 ( x y)
My u 1 x x E I My v y y E I xy u v 0 y x
(c)
(2)位移分量
u 1 My x x E I v My y y E I u v xy 0 y x
M x f 2( x) f1( y ) 整理得: EI
要使上式成立,须有 (c)
(仅为 x 的函数) (仅为 y 的函数)
f1( y)
M x f 2( x) EI
(e)
将式(c)前两式积分,得:
式中:ω为常数。 积分上式,得
M u xy f1 ( y ) (d) EI M 2 v y f 2 ( x) 2 EI 式中: f1 ( y), f 2 ( x) 为待定函数。
4.
按应力求解平面问题的基本方程 说明:
(1)对位移边界问题,不易按应力 求解。
(1)平衡方程
x xy X 0 x y yx y Y 0 x y
(2)相容方程(形变协调方程)
(2)对应力边界问题,且为单连通 问题,满足上述方程的解是唯 一正确解。
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
梁截面的惯性矩是 故
2 M x 2 y y I
1 h I 12
3
同一个应力函数由于所给出的坐标轴不同,可解 决不同的问题
例:
fy
3
2 应力分量: y 2 6 fy x
x xy 0
左、右边界: X x 6 fy 上下边界: X Y 0
x 2 y
2
y 2 x
2
xy
2 xy
(2-28)
(无体力情形)
(3) 再让 x , y , xy满足应力边界条件和位移单值条件 (多连体问题)。
第三章 弹性力学平面问题的 解析解法
第四节 逆解法与半逆解法—多项式解答 第五节 矩形梁的纯弯曲
M
l
M y
x
1
h
y 0 xy 0
My M x y 3 I h / 12
(a)
1 My My xy 0 x y E I E I
(b)
(2)位移分量
将式(b)代入几何方程得:
平面应力情况下的物理方程:
E y 1 ( y x) E xy xy
按应力求解平面问题(X = 常量、Y = 常量)的归结为: (1) 先由方程(2-27)求出应力函数: ( x , y )
4 4 4 4 2 0 (2-27) 0 4 2 2 4 x x y y x , y , xy (2) 然后将 ( x , y ) 代入式(2-26)求出应力分量:
上节课内容回顾:
1. 弹性力学问题的求解方法 (1)按位移求解(位移法、刚度法) 以u、v 为基本未知函数,将平衡方程和边界条件都用u、v 表示, 并求出u、v ,再由几何方程、物理方程求出应力与形变分量。 (2)按应力求解(力法,柔度法) 以应力分量 为基本未知函数,将所有方程都用应力分量表示,并 求出应力分量 ,再由几何方程、物理方程求出形变分量与位移。 (3)混合求解 以部分位移分量 和部分应力分量 为基本未知函数,将,并求出这 些未知量,再求出其余未知量。 2. 按位移求解平面问题的基本方程
(2 )
axy
2
y
a 应力分量: x y 0 xy xy
对应于矩形板纯剪切状态
a
a>0
3. 三次式
fy
3
2 x 2 6 fy 应力分量: y
y xy 0
Y xy 0
左、右边界: X x 6 fy
(2)边界条件: 位移边界条件: 应力边界条件:
Байду номын сангаас
(1 )
u s u , vs v
(2)
E u v 1 u v l m X 2 y s 2 y x s 1 x (3 ) v u 1 v u E m l Y 2 1 y x s 2 x y s
5.
相容方程的应力函数表示
4 4 4 2 2 2 4 0 4 x x y y
—— 应力函数表示的相容方程
按应力求解平面问题(X = 常量、Y = 常量)的归结为: ( x, y ) (1) 先由方程(2-27)求出应力函数:
4 4 4 4 (3-11) 2 0 0 4 2 2 4 x x y y (2) 然后将 3-9)求出应力分量: ( x , y代入式( ) x , y , xy 2 2 2 x 2 Xx y 2 Yy xy (2-26) xy y x
Y xy 0
如图坐标位置,可解矩形梁偏心拉伸问题 问:坐标位置如右图,
fy 3 可解何问题?
总结: (多项式应力函数 的性质)
(1) 多项式次数 n < 4 时,则系数可以任意选取,总可满足 多项式次数
0 。 n ≥ 4 时,则系数须满足一定条件,才能满足 4 0。
上下边界: X Y 0 左、右端面受线性分布面力作用;面力合力
R X d y 6 fyd y 0 M
h 2 h 2 h 2 h 2
h 2 h 2
yX d y
h 2 h 2
1 3 6 fy d y fh 2
2
对应纯弯曲
M
M 2 f 2 ( x) x x v0 EI
将上式代入式(d),得
f1 ( y) y u0
M x f1( y ) f 2( x) 0 EI
平衡方程:
E 2u 1 2u 1 2 v 2 X 0 2 2 2 y 2 xy 1 x 2 2 2 E v 1 v 1 u 2 Y 0 2 2 2 x 2 xy 1 y
上下边界: X Y 0
Y xy 0 Y xy 0
2b x
对应于矩形板左右端面均匀拉伸(b>0) 或均匀压缩(b<0)。(包括轴向拉压)
y
(2)
cx
2
2
应力分量: y 2c 2
x
x xy 0
2c
x
对应于矩形板上下端面均匀拉伸(b>0) 或均匀压缩(b<0)。(包括轴向拉压)
4
多项式次数 n 越高,则系数间需满足的条件越多。 (2) 一次多项式,对应于无体力和无应力状态;任意应力函数φ(x,y)上加 上或减去一个一次多项式,对应力无影响。 (3) 二次多项式,对应均匀应力状态,即全部应力为常量;三次多项式, 对应于线性分布应力。 (4) 用多项式构造应力函数φ(x,y) 的方法 —— 逆解法(只能解决简单直 线应力边界问题)。
第六节 位移分量的求出
第四节 逆解法与半逆解法—多项式解答
(1) 逆解法
(1)根据问题的条件(几何形状、受力特点、边界条件等),
假设各种满足应力函数表示相容方程的φ(x,y) 的形式;
(2)然后利用应力分量计算式求出
x , y , xy(具有待定系数);
(3)再利用应力边界条件式,来考察这些应力函数φ(x,y) 对应什么样 的边界面力问题,从而得知所设应力函数φ(x,y) 可以求解什么问 题。 —— 主要适用于简单边界条件的问题。
为四阶偏微分方程
三阶及以下的多项式作为应力函数,必定满足相容 方程,不论其系数如何。
应力函数表示的相容方程
4 4 4 2 2 2 4 0 4 x x y y
为四阶偏微分方程
三阶及以下的多项式作为应力函数,必定满足相容 方程,不论其系数如何。
1. 一次式
a bx cy
2 X Y 2 x y y 2 x 2 ( x y ) (1 )
(平面应力情形)
(3)边界条件:
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y
问题:
按应力求解平面问题,其基本未知量为: 如何由
x , y , xy
求出形变分量、位移分量?
x
, y , xy
,本节说明
第六节 位移分量的求出 以纯弯曲梁为例,说明如何由 , , 求出形变分量、位移分量? x y xy
1. 形变分量与位移分量
(1)形变分量
由前节可知,其应力分量为:
x 2 Xx y 2 Yy xy (2-26) y x 再让 x , y , xy 满足应力边界条件和位移单值条件 (3)
2
2
2 xy
(多连体问题)。
应力函数表示的相容方程
4 4 4 2 2 2 4 0 4 x x y y
3.
按位移求解平面问题的基本方程
E 2u 1 2u 1 2 v 2 X 0 2 2 1 x 2 y 2 xy (1)平衡方程: 2 2 2 E v 1 v 1 u 2 Y 0 2 2 2 x 2 xy 1 y
G
将式(a)代入得:
x 1 ( x y)
My u 1 x x E I My v y y E I xy u v 0 y x
(c)
(2)位移分量
u 1 My x x E I v My y y E I u v xy 0 y x
M x f 2( x) f1( y ) 整理得: EI
要使上式成立,须有 (c)
(仅为 x 的函数) (仅为 y 的函数)
f1( y)
M x f 2( x) EI
(e)
将式(c)前两式积分,得:
式中:ω为常数。 积分上式,得
M u xy f1 ( y ) (d) EI M 2 v y f 2 ( x) 2 EI 式中: f1 ( y), f 2 ( x) 为待定函数。
4.
按应力求解平面问题的基本方程 说明:
(1)对位移边界问题,不易按应力 求解。
(1)平衡方程
x xy X 0 x y yx y Y 0 x y
(2)相容方程(形变协调方程)
(2)对应力边界问题,且为单连通 问题,满足上述方程的解是唯 一正确解。
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
梁截面的惯性矩是 故
2 M x 2 y y I
1 h I 12
3
同一个应力函数由于所给出的坐标轴不同,可解 决不同的问题
例:
fy
3
2 应力分量: y 2 6 fy x
x xy 0
左、右边界: X x 6 fy 上下边界: X Y 0
x 2 y
2
y 2 x
2
xy
2 xy
(2-28)
(无体力情形)
(3) 再让 x , y , xy满足应力边界条件和位移单值条件 (多连体问题)。
第三章 弹性力学平面问题的 解析解法
第四节 逆解法与半逆解法—多项式解答 第五节 矩形梁的纯弯曲
M
l
M y
x
1
h
y 0 xy 0
My M x y 3 I h / 12
(a)
1 My My xy 0 x y E I E I
(b)
(2)位移分量
将式(b)代入几何方程得:
平面应力情况下的物理方程:
E y 1 ( y x) E xy xy
按应力求解平面问题(X = 常量、Y = 常量)的归结为: (1) 先由方程(2-27)求出应力函数: ( x , y )
4 4 4 4 2 0 (2-27) 0 4 2 2 4 x x y y x , y , xy (2) 然后将 ( x , y ) 代入式(2-26)求出应力分量:
上节课内容回顾:
1. 弹性力学问题的求解方法 (1)按位移求解(位移法、刚度法) 以u、v 为基本未知函数,将平衡方程和边界条件都用u、v 表示, 并求出u、v ,再由几何方程、物理方程求出应力与形变分量。 (2)按应力求解(力法,柔度法) 以应力分量 为基本未知函数,将所有方程都用应力分量表示,并 求出应力分量 ,再由几何方程、物理方程求出形变分量与位移。 (3)混合求解 以部分位移分量 和部分应力分量 为基本未知函数,将,并求出这 些未知量,再求出其余未知量。 2. 按位移求解平面问题的基本方程
(2 )
axy
2
y
a 应力分量: x y 0 xy xy
对应于矩形板纯剪切状态
a
a>0
3. 三次式
fy
3
2 x 2 6 fy 应力分量: y
y xy 0
Y xy 0
左、右边界: X x 6 fy
(2)边界条件: 位移边界条件: 应力边界条件:
Байду номын сангаас
(1 )
u s u , vs v
(2)
E u v 1 u v l m X 2 y s 2 y x s 1 x (3 ) v u 1 v u E m l Y 2 1 y x s 2 x y s
5.
相容方程的应力函数表示
4 4 4 2 2 2 4 0 4 x x y y
—— 应力函数表示的相容方程
按应力求解平面问题(X = 常量、Y = 常量)的归结为: ( x, y ) (1) 先由方程(2-27)求出应力函数:
4 4 4 4 (3-11) 2 0 0 4 2 2 4 x x y y (2) 然后将 3-9)求出应力分量: ( x , y代入式( ) x , y , xy 2 2 2 x 2 Xx y 2 Yy xy (2-26) xy y x
Y xy 0
如图坐标位置,可解矩形梁偏心拉伸问题 问:坐标位置如右图,
fy 3 可解何问题?
总结: (多项式应力函数 的性质)
(1) 多项式次数 n < 4 时,则系数可以任意选取,总可满足 多项式次数
0 。 n ≥ 4 时,则系数须满足一定条件,才能满足 4 0。
上下边界: X Y 0 左、右端面受线性分布面力作用;面力合力
R X d y 6 fyd y 0 M
h 2 h 2 h 2 h 2
h 2 h 2
yX d y
h 2 h 2
1 3 6 fy d y fh 2
2
对应纯弯曲
M