热电偶定标教案

合集下载

实验9热电偶标定与测温

实验9热电偶标定与测温

[实验目的]1. 掌握对热电偶温度计定标的方法。

[实验仪器]DHT-2型热学实验仪,直流数字电压表,热电偶,保温杯。

[实验原理]热电偶示意图两种不同材料的金属A,金属B相互接触时会发生电子扩散。

当电子扩散达到动态平衡时,形成稳定的电势差。

理论和实验表明接触电动势的大小与相接触的两种金属的性质及接触的温度有关。

则有:Uab=(kT/e)InNa/Nb 1当上述形成闭合回路时由上式接触电势差的性质可以判定若接触处的温度分别为T和To是,则闭合电路的电动势为E=(kT/e)InNa/Nb-=(kTo/e)InNa/Nb==(kT-To/e)InNa/Nb 2 而在实际中上式中给出的温差电动势用下式表示:E=a(t-t0)+b(t-t0)^2+^ 3在温差不太大时上式可近似为E=a(t-t0) 4由上式34可知若常数和冷端温度已知,只要测得温差电动势就能得到热端温度。

[实验内容]1.连接线路(1)将热电偶的冷端置于冰水混合物之中,确保t0=0度(测温度安置于加热器内)2.测量待测热电偶的电动势(1)用直线连接相邻点。

(2)在两个校正点之间的变化关系用线性内插法予以近似,从而得到出校正点外其他点的电动势和温度关系。

注意:(1)在使用电风扇时,需将支持干向上抬起,使空气形成对流。

[数据处理]1. 求铜—康铜热电偶的温差电系数(1)根据Ex=at,(t0=0),在定标曲线中可给出线性化后的平均直线,从而求得a.。

(2)在直线取两点a(Ea,ta),b(Eb,tb)求斜率K=(Eb-Ea)/(tb-ta)(求温差系数时,不要取原来测量的数据点,并且两点间尽可能相距远一点。

)[结果分析]无。

热电偶定标实验

热电偶定标实验

实验4—8 热电偶定标实验在现代工业自动控制系统中,温度控制是经常遇到的工作,对温度的自动控制有许多种方法。

在实际应用中,热电偶的重要应用是测量温度,它是把非电学量(温度)转化成电学量(电动势)来测量的一个实际例子。

用热电偶测温具有许多优点,如测温范围宽(-200~2000℃)、测量灵敏度和准确度较高、结构简单不易损坏等。

此外由于热电偶的热容量小,受热点也可做得很小,因而对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。

热电偶在冶金、化工生产中用于高、低温的测量;在科学研究、自动控制过程中作为温度传感器,具有非常广泛的应用。

在大学物理实验中,热电偶温度计的定标是一个传统实验,该实验要求学生找出热电偶的温差电动势与冷热端温差之间的关系,并给出温差电动势与冷热端温差之间的关系曲线,求出经验方程,从而完成其定标工作,使同学们了解热电偶测温度的基本原理。

【实验目的】1. 加深对温差电现象的理解。

2. 了解热电偶测温的基本原理和方法。

3. 了解热电偶定标基本方法。

【实验原理】1. 温差电效应温度是表征热力学系统冷热程度的物理量,温度的数值表示法叫温标。

常用的温标有摄氏温标、华氏温标和热力学温标等。

温度会使物质的某些物理性质发生改变。

一般来讲,任一物质的任一物理性质只要它随温度的改变而发生单调的、显著的变化,都可用它来标志温度,也即制作温度计。

常用的温度计有水银温度计、酒精温度计和热电偶温度计等。

在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。

其优点是不仅使测量方便、迅速,而且可提高测量精密度。

温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。

本实验是研究一给定温差电偶得温差电动势与温度的关系。

图4-8-1 闭合电路大学物理实验如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图4-8-1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。

热电偶定标实验报告

热电偶定标实验报告

热电偶定标实验报告标题:热电偶定标实验报告摘要:本实验旨在通过热电偶的定标实验,探究热电偶的测温原理和定标方法,了解热电偶的灵敏度、线性度和温度范围等性能指标,并且通过实验采集的数据进行处理,得出实验结果。

本文将介绍本实验的原理和方法、实验步骤、数据处理过程和实验结果,并对实验中存在的问题和不足进行分析和讨论。

正文:一、实验原理和方法热电偶是利用热电效应将热量转换为电量的一种温度传感器。

其极性和电压大小均与测量温度相关。

热电偶的测量精度主要受到三个方面的影响:热电偶本身的灵敏度、线性度和温度范围。

因此热电偶的定标实验主要是测定热电偶的灵敏度和线性度,以及确定其温度范围,从而为后续的温度测量工作提供数据支持。

本实验采用了一台高精度的电势差计对热电偶测温的电势差进行了测量,使用了高精度的温度计对温度进行了测量,通过比较两种测量结果来确定热电偶的灵敏度和线性度。

二、实验步骤1.检查实验仪器和设备,确保所有设备正常工作。

2.按照实验要求选取合适的热电偶和电势差计,连接电路。

3.将热电偶置于标准温度范围内,并记录其电势差值和相应温度值。

4.逐渐改变热电偶测量温度,记录其电势差值和相应温度值。

5.将实验得到的数据进行处理和分析。

三、数据处理过程1.将实验采集的电势差值和相应温度值绘制成图表。

2.通过图表分析和拟合求出热电偶的灵敏度和校准系数。

3.对实验过程中存在的误差进行分析,得出实验结果的误差范围。

四、实验结果通过本实验,我们得出了热电偶的灵敏度和校准系数:灵敏度:20.5 μV/℃校准系数:1.035同时,实验中存在一些误差,主要是由于实验过程中环境温度对实验结果的影响等原因造成的。

五、讨论和总结通过本次实验,我们深入了解了热电偶的测温原理和定标方法,以及热电偶的灵敏度、线性度和温度范围等性能指标。

同时,我们也认识到了实验中存在的问题和不足,为今后改进实验提供了参考。

在今后的工作中,我们将继续深入探究并完善热电偶的校准方法,提高测温精度和稳定性,为工业生产和科研实验提供更为准确的温度数据支持。

热电偶标定实验

热电偶标定实验

热电偶标定实验一、概述:温差热电偶(简称热电偶)是目前温度测量中应用最广泛的温度传感元件之一,是以热电效应为基础的测温仪表。

它用热电偶作为传感器,把被测的温度信号转换成电势信号,经连接导线再配以测量毫伏级电压信号的显示仪表来实现温度的测量。

热电偶测温的优点是结构简单、制作方便、价格低廉、测温范围宽、热惯性小、准确度较高、输出的温差电信号便于远距离传送、实现集中控制和自动测试。

流体、固体及其表面温度均可用它来测量,所以在工业生产和科学研究、空调与燃气工程中应用广泛。

二、实验目的1.学习使用毫伏表测定温差电动势及热电偶工作原理。

2.掌握热电偶定标曲线的绘制规则。

3.学习用热电偶设计温度计4.学习用直线拟合方法处理实验数据。

三、实验原理1、温差电现象。

导体中存在着与热现象有关的非静电力和电动势,称为温差电动势,依其产生的机理不同而有两种具体形式。

一种称为汤姆孙电动势。

金属导线两端如果温度不同,高温端的自由电子好像气体分子一样向低温端扩散,并在低温端堆积起来,从而在导线内形成电场。

由电子热扩散不平衡建立的电场反过来又阻碍不平衡热扩散的进行,最终达到动态平衡,使导线两端形成一稳定的电势差。

若把两种金属导线两端连接起来,并把接点置于不同温度中,使两种不同材料的金属连接成闭合回路,因两个汤姆孙电势不相等,两段导线中即形成恒定电流。

回路中相应的电动势称为汤姆孙电动势。

温差越大,汤姆孙电动势也越大。

另一种称为珀耳帖(J.C.A.Peltier,1785——1845)电动势。

两种不同金属连接起来,由于接触面两侧金属内自由电子浓度不同,电子将从浓度大的一侧向浓度小的一侧扩散,在接触面间形成电场,从而在两种金属间形成电位差。

显然,两种金属连成回路,并把接点置于相同温度中,两接触面间将建立相等而相反的电动势,因而也形不成恒定电流。

只有两接点温度不同,两个珀耳帖电动势不等,才会形成电动势。

而且温差越大,形成的电动势也越大。

热电偶定标和测温

热电偶定标和测温

根据实验室提供的标准电池电动势值,置RS于 相应位置,旋K1至“×1”、 K2至“标准”,依次调 节Rn,使检流计指针指“零”,电位差计即达到补 偿状态IAB=ES/lAC 。
3、测量练习
将冰块放入冷端部分的保温杯(约
1 2
杯)中,加少量
自来水形成冰水混合物;热端置于空气中,旋K2至热
电偶接入端,调节测量转盘I、II、III,使检流计指
图4 工作电路
再将S与Ex相接,固定R (IAB不 变),调节C点位置,使检流计示 数为零,可得EExx的值IA:Bl'ACll'A AC CES
电势差计中,ES/lAC是定值,将l‘AC 相对ES/lAC定标的结 果直接标在刻度盘上,即可直观读出Ex值。
4.热电偶的测温
得出热电偶的Ex(t) -t 定标曲线后,只要测出待测条
件下热电偶输出的温差电动势,就可在定标曲线上标定 相关条件下热电偶两端的温差,冷端温度已知(固定) 时,热端的温度随之被测出。
1、接线
【实验内容】
按图5接入标准电池Es、检流计G、工作电源E(5.7 ~6.4V),热电偶引线接入“未知1”(或“未知2”)。检
流计G接入前要先进行零点调节。
图5
2、校正工作电流
图2
偶定标曲线,测量时便可根据测得的温差电
动势来求得被测温度。
2.热电偶的定标
热电偶的定标就是用实验方法,找出热电偶两端温度差 与温差电动势的对应关系曲线.
根据温度给定方法和测定方法不同,热电偶的定标方法 分为纯物质定点定标法和比较定标法等.
这里仅介绍比较定标法: 将热电偶冷端置于冰水混合物中,热端置于热水中,让 其自然冷却,用水银温度计测量其温度,同时用电位差计测 出热电偶对应温差时的温差电动势,以一定温度间隔进行多

如何标定热电偶

如何标定热电偶

实验一热电偶和测温系统的标定一、实验目的1. 学习热电偶的焊接方法;2. 了解热电偶冷端补偿的重要性;3. 熟悉热电偶的特性和标定方法;4. 了解测温系统的组成和温度校准过程。

二、基本原理图1-1为温度测试的实验装置, 各部分的作用为:图1-1 测温系统方框图热源功率为300w, 能产生高达500℃的温度;热电偶: FU-2作标准热电偶;EA-2作被校准电偶;冰点槽: 用作热电偶的冷端处理;数字电压仪: 为热电势标准测量仪;动圈式仪表: 指示热源的温度;定温调节定温调节过程:图1-2为动圈仪表的面板。

当旋动“定温控制”旋钮时, 红色定温指针将指示预定的温度, 黑色指示指针随热源温度的上升向右移动, 逐渐靠近红色指针, 此时绿灯亮, 表明加热电源接通。

当红色指示灯亮时, 表明电源切断。

由于热惯性, 黑色指示将继续上升, 并超过红色指针指示的温度, 以后温度慢慢下降, 至红色指针附近, 继而绿灯又亮, 电源接通, ……如此反复多次, 当红灯和绿灯的指示时间相等且两灯指示之间和为(40±10)秒时, 黑色指针基本对准红色指针, 可认为热源温度已基本控制在定温点。

图1-2 动圈仪表面板利用上述装置, 可对热电偶和测温系统进行标定。

1. 热电偶的标定热电偶使用时, 是按照电偶标准分度值来确定温度的, “标定”就是对所使用的热电偶进行校验, 确定误差大小。

本实验用EU-2作为标准热电偶, EA-2作为被校热电偶, 数字电压表作电势的标准测量仪器, 动圈式仪表作定温控制作用, 使两支热电偶在相同温度时, 由数字电压表分别读出相应的电势值, 并由分度表查得相应的温度值, 然后以EU-2热电偶的温度标准, 来判断热电偶EA-2的误差。

2、以热源、热电偶EU-2和数字电压表组成标准测温系统, 用以测定热源的温度.热电偶EA-2与热电偶EU-2处于同一热点, 它与动圈式仪表组成被校测温系统, 以EU-2输出的数字电压表读数为基准, 分析被校测温系统的误差。

热电偶实验教案

热电偶实验教案

课程:学年第_ _学期第周月日教学内容备注实验四热电偶的校验一.实验目的(1)掌握热电偶的校验及分度。

(2)应用比较法求得被校验热电偶的电势—温度关系曲线,并与同类型标准化热电偶的热电特性相比较。

确定在一定测量范围内的,由于热电特性的标准化而产生的误差。

(3)观察工业用热电偶的结构,获得有关的感性知识。

(4)学会熟练使用电位差计。

二仪器与设备管式电加热炉,温度控制仪,标准热电偶,被校热电偶,电位差计,冰点恒温瓶。

三实验说明(1)热电偶的校验有两种方法。

一是定点法,就是使用国际使用文标规定的定点进行定点校验。

这种方法的精确度高,但设备复杂,只有对基准铂铑10-铂热电偶分度时才用。

另一种是比较法,它常用于校验工业用和实验室用热电偶。

一等铂铑10-铂热电偶是用比较法进行校验的。

比较法是最常用的热电偶校验方法,本实验就是用比较法进行的。

(2)比较法校验热电偶是通过标准热电偶和被校热电偶测量同一稳定对象的温度来进行的。

本实验采用管式电炉作被测对象。

用温度控制器(以下简称温控器)使电炉温度自动地稳定在设定值上。

(3)用比较法校验时,必须保证两只热电偶的热端温度保持一致,为此需要把热电偶的保护套管卸去,将两只热电偶的热端用镍铬丝卷扎在一起,插入到管式电炉的2/3深处,再将管式电炉的炉口用硅酸铝封堵,以防外界冷空气进入电炉导致炉温波动。

本实验使用一只去掉保护套管的热电偶作为标准热电偶来校验未去掉保护套管的热电偶。

四实验步骤(1)把实验装置按图接好线后,暂时不合上220伏电源。

设定好温控仪的第一个校验点,在设定校验点时,先不要一下子就设定在实验点,设定点要分阶段逐渐上升,并且将可控硅电压调节器的“电源开关”拨到“关”的位置,调节电位差计的测量零点,全面检查整套装置的接线,经指导老师同意后合上220伏电源开始试验。

(2)打开可控硅电压调节器的电源开关,分阶段调节设定点温度。

待到炉温在设定点稳定3-4min,课程: 学年 第_ _学期 第 周 月 日教 学 内 容 备 注就可以开始读标准热电偶和被校热电偶的热电势值和温度值。

实验四 热电偶数字温度计的设计与定标1

实验四 热电偶数字温度计的设计与定标1

实验四 热电偶数字温度计的设计与定标
【实验目的】
1、了解热电偶测温的基本原理和方法。

2、掌握数字温度计的设计和调试技巧。

【实验仪器】
热学综合实验平台、加热井、单端热电偶传感器、热电偶数字温度计设计实验模板。

【实验原理】
1、温差电效应
在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。

其优点是不仅使测量方便、迅速,而且可提高测量精密度。

温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。

如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图4-1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。

图4-1
2、热电偶
两种不同金属串接在一起,其两端可以和仪器相连进行测温(图4-2)的元件称为温差电偶,也叫热电偶。


4-2 A 金属:铜 B 金属:康铜
t 0 0t t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理实验课程教案
热电偶定标实验
热电偶在现实生活中的应用及其优势:在现代工业自动控制系统中,温度控制是经常遇到的工作,对温度的自动控制有许多种方法。

在实际应用中,热电偶的重要应用是测量温度,它是把非电学量(温度)转化成电学量(电动势)来测量的一个实际例子。

用热电偶测温具有许多优点,如测温范围宽(-200~2000℃)、测量灵敏度和准确度较高、结构简单不易损坏等。

此外由于热电偶的热容量小,受热点也可做得很小,因而对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。

热电偶在冶金、化工生产中用于高、低温的测量;在科学研究、自动控制过程中作为温度传感器,具有非常广泛的应用。

在大学物理实验中,热电偶温度计的定标是一个传统实验,该实验要求学生找出热电偶的温差电动势与冷热端温差之间的关系,并给出温差电动势与冷热端温差之间的关系曲线,求出经验方程,从而完成其定标工作,使同学们了解热电偶测温度的基本原理。

实验原理
1. 温差电效应
温度是表征热力学系统冷热程度的物理量,温度的数值表示法叫温标。

常用的温标有摄氏温标、华氏温标和热力学温标等。

温度会使物质的某些物理性质发生改变。

一般来讲,任一物质的任一物理性质只要它随温度的改变而发生单调的、显著的变化,都可用它来标志温度,也即制作温度计。

常用的温度计有水银温度计、酒精温度计和热电偶温度计等。

在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。

其优点是不仅使测量方便、迅速,而且可提高测量精密度。

温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。

本实验是研究一给定温差电偶的温差电动势与温度的关系。

如果用A、B两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。

1闭合电路
2. 热电偶
两种不同金属串接在一起,其两端可以和仪器相连进行测温(2)的元件称为温差电偶,也叫热电偶。

温差电偶的温差电动势与二接头温度之间的关系比较复杂,
2热电偶测温
但是在较小温差范围内可以近似认为温差电动势T E 与温度差0()T T -成正比,即
0()T E T T α=- (1)
式中T 为热端的温度,0T 为冷端的温度,α称为温差系数(或称温差电偶常量),单位为
μV ⨯℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶
材料的性质,即
00(/)ln(/)A B k e n n α= (2)
式中k 为玻耳兹曼常量,e 为电子电量,0A n 和0B n 为两种金属单位体积内的自由电子数目。

如图3所示,温差电偶与测量仪器有两种连接方式:(a )金属B 的两端分别和金属A 焊接,测量仪器M 插入A 线中间; (b )A 、B 的一端焊接,另一端和测量仪器连接。

3温差电偶与测量仪器有两种连接方式
在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A 、B 两种金属之间插入任何一种金属C ,只要维持它和A 、B 的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A 、B 两种金属组成的温差电偶中的温差电动势一样。

温差电偶的测温范围可以从4.2K (-268.95℃)的深低温直至2800℃的高温。

必须注意,不同的温差电偶所能测量的温度范围各不相同。

3.热电偶的定标
热电偶定标的方法有两种: 1)比较法
即用被校热电偶与一标准组成的热偶去测同一温度,测得一组数据,其中被校热电偶测
得的热电势即由标准热电偶所测的热电势所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度、进行逐点校准,就可得到被校热电偶的一条校准曲线。

2)固定点法
这是利用几种合适的纯物质在一定气压下(一般是标准大气压),将这些纯物质的沸点和熔点温度作为已知温度,测出热电偶在这些温度下的对应的电动势,从而得到热电势,从而得到℃热电势-温度关系曲线,这就是所求的校准曲线。

本实验采用固定点法对热电偶进行定标。

为了能测量热电动势E中直接得出待测温度T 值,必须对所用热电偶测定其热电动势E与温度T的关系,这就是热电偶温度的定标。

本实验是做“铜—康铜”热电偶温度计的定标。

在测定E~T关系时,采用摄氏温度规定的两个固定点,即溶冰点(0℃)和沸水点(100℃),再在0~100℃之间取若干温度点,给出0~100℃之间的E~T曲线。

热电偶具有结构简单、小巧、热容量小、测温范围宽等优点,因此被广泛应用于生产和科学研究的测温和温度的自动控制中。

实验仪器
“铜—康铜”热电偶,保温杯,WHT-3导热系数测试仪(可直接用数字电压表或UJ—36直流电位差计)。

1.图4是实验装置示意图
4实验装置示意图
“铜—康铜”热电偶的一个接点(冷端)放在盛有冰水混合物的杜瓦瓶中,使该接点维持在恒定的0℃。

另一接点(热端)放在A盘小孔中。

升温由它的加热器来实现,当手动加热时,将控制方式置“手动”;当自动加热时,将控制方式置“自动”,由PID设定温度自动控制温度。

2.PID控温
PID智能温度控制器是一种高性能、高可靠性的智能型调节仪表,广泛应用于机械、化工、陶瓷、轻工、冶金、石化、热处理等行业的温度、流量、压力、液位等的自动控制系统。

3.“铜—康铜”热电偶温度为100℃时,其温差电动势约为4.0mV,若精度要求不高,可直接用20mV数字电压表代替UJ—36型携带式直流电位差计。

实验内容与步骤
1.热电偶的冷端固定于0℃,WHT-3型导热系数测试仪采用电子补偿,使冷端始终保持在0℃。

2.测定热电偶当热端处于以下温度值时的热电势
1)水的冰点,即0℃,将热电偶的热端放在冰水瓶里。

2)常温下水的温度,将热电偶的热端放在盛水烧杯里。

3)50.0℃左右,将热电偶的热端放在A盘小孔里,然后PID控温设定在50.0℃,将控制方式置“自动”,加热器将会把铜盘自动加热到50.0℃。

4)PID 控温分别设定在55.0℃、60.0℃、65.0℃、70.0℃、75.0℃、80.0℃、85.0℃,(由于PID 显示温度已经过校准可代替标准水银温度计),测出相应的热电势。

3. 如果精度要求不高,也可以用电位差计测热电势,WHT-3导热系数测试仪设有外接电位
差计插孔,位于“特性测量与分析”的位置。

将外接线的一端插入外接电位差计插孔中,另一端的两个接线叉对应接到UJ —36电位差计的“未知”正、负接线柱上。

当使用外接电位差计进行测量时,热电偶的冷端应放在冰水瓶中,此时,应检查冰水瓶内的水面是否有冰块。

按电位差计使用方法测量热电势E 。

当T =T 0时,E 应为零。

若仪器指示不为零或超过最小分度一格,应对该仪器进行校准;小于一格时,可记下这个读数,作为零点订正值。

实验数据处理及分析
1. 逐差法处理数据
7050170500.04075E E T T α-=
=- 7555
275550.04135E E T T α-==-
8060380600.0414E E T T α-=
=- 8565
48565
0.04165E E T T α-==-
1234
(41.29/)4
V αααααμ+++=
=℃
2.作图法
0.511.522.533.540
20
40
6080100
T℃
E (m V )
41.3α=(/V μ℃)
误差分析:
1. 为保持热电偶与铜管良好的接触,测量时应在铜管底部滴入几滴硅油,热电偶测温端应
插入硅油中,不能悬空,一旦悬空,测量误差非常大;
2.除结点外,热电偶丝之间及与铜管之间应保持良好的电绝缘,以免短路而造成测试错误;3.由于整个测量过程时间较长,电位差计校准后仍会发生漂移,所以在每次测量前都应重新校准。

相关文档
最新文档