药物设计的基本原理和方法
药物设计基本原理和方法

❖ 主要内容: 先导化合物的发现 先导化合的优化
一、新药开发的两阶段
❖先导化合物的发现 (Lead Generation) ❖先导化合物优化
NCE
(Lead Optimization)
两者相辅相成
lead discovery
lead optimization
先导化合物Lead compound
❖ 经研究后发现是由于异烟肼具有 抑制单胺氧化酶的副作用,于是 以异烟肼为先导化合物,发展了 单胺氧化酶抑制剂类抗抑郁药, 异丙烟肼是其中一例。
CONHNH2
N 异 烟 肼 Iso n ia z id
C O N H N H C H (C H 3 )2
N 异 丙 烟 肼 Ip r o n ia z id
❖The structure of the lead compound is then modified by synthesis to amplify the desired activity and to minimize or eliminate the unwanted properties.
❖原型药物(Prototype Drug) ❖ 随之出现了大量的“Me-too”药物
A me-too drug is a compound that is structurally very similar to already known drugs, with only minor pharmacological differences.
二、先导化合物的发现
Approaches for lead discovery
1 改进和优化已有药物 2 筛选途径 3 利用自然界生物资源 4 合理药物设计
药物化学第二章-药物设计的基本原理和方法

§ 2. 先导化合物的优化
Lead Optimization
先导化合物的优化
Izant等人于1984年首次提出反义寡核苷酸技术,该技术是根据
核酸间碱基互补原理,利用一小段外源性的人工或生物合成的特
异互补RNA或DNA片断,与靶细胞中的mRNA或DNA通过碱基
互补结合,通过这种寡核苷酸键抑制或封闭其基因的表达。与反
义寡核苷酸相似的是反义DNA,是用一小段人工会成的约8~23
碱基组成的脱氧核苷酸单链,与靶mRNA形成碱基配对的DNA-
S
可旋转键的数量不超过10个。(删去)
ADMET
ADMET (药物的吸收、分配、代谢、排泄 和毒性)药物动力学方法是当代药物设计和 药物筛选中十分重要的方法。
A:吸收 Absorption D:分配 Distribution M:代谢 Metabolism E :排泄 Excretion T: 毒性 Toxcity
3.综合技术平台
目前最快速的发现先导化合物的途径是被各国称为综合技术平台的方法, 简单说就是用液相串联质谱( LC MS/MS)作为化合物的分离和分析结构 的工具,与药理学、组合化学的高通量筛选、计算机辅助设计、分子生物学、 受体(酶)学,及化学基因组学等学科结合起来,可迅速而大量地确定具有 不同活性药物的基本母核(scaffold),作为先导化合物。
药物进入体内后发生的代谢过程实质上是药物在体内 发生的化学转化过程。 代谢失活:体内代谢的结果主要是产物降低或失去 活性,排出体外 代谢活化:有些药物却发生代谢产物活化或产生其 它新的作用,转化为保留活性、毒副作用小的代谢 物,这样的代谢产物可成为新的先导化合物。
药物化学第二章药物设计的基本原理和方法

代谢产物可成为新的先导物化合物 甚至直接得到比原来药物更好的药物 选择其活化形式,避免代谢失活或毒化的结构 研究药物代谢过程和发现活性代谢物是寻找先导化合物的 途径之一。
能够与DNA 或信使RNA 发生特异性结合,分别阻 断核酸的转录或翻译功能, 阻止与病理过程相关的核 酸或蛋白质的生物合成。
第三十三页,共75页。
反义寡核苷酸(Antisense oligonucleotides)
反义寡核苷酸的分子大小是设计的重要环节。
12-25个碱基范围,15-20较佳,超过25难以通过细胞膜
His
吡咯环与S2′结合
O
N NH
O
Zn2+
H
HS
N
NH
O Glu
O Ser
S1' S2'
Ty r
CH3
HO
N
O H O 羧基阳离子对结合酶起重要作用
O
NH2
OH
H2N
NH
Arg
酰胺的羰基则可和受体形成氢键
第十八页,共75页。
三、通过随机机遇发现先导化合物
1929年青霉素的发现
异丙肾上腺素:β-受体激动剂,结构改造,发现β -受 体阻断剂-普萘洛尔,第一个心血管药物。
虚 拟 库
类
药 原 则
药 代 性
潜 在 毒
质性
专 利 指 导
受 体 结
设 计
构库
第二十七页,共75页。
类药性
Lipinski归纳的“类药5规则”(Rule of Five),
药物设计的基本原理和方法

靶点定位
02
药物的靶点可以是细胞内的特定分子、细胞膜上的受体或细胞
器等。
药效学特征
03
药物的细胞和组织特异性与其药效学特征密切相关,决定了药
物的治疗效果和副作用。
03
CATALOGUE
药物设计的计算方法
基于配体的药物设计
总结词
基于配体的药物设计是指根据已知活性配体分子的结构特征和药效团,预测和 设计新药分子。
02
CATALOGUE
药物作用的分子机制
药物与受体的相互作用
药物与受体结合
药物通过与细胞膜上的受体结合,传递信号,调节细 胞功能。
药物作用模式
药物与受体结合后,可以激动或拮抗受体,产生兴奋 或抑制效应。
亲和力与选择性
药物与受体结合的亲和力决定了药物作用的强度,而 选择性决定了药物作用的特异性。
药物作用的信号转导通路
人工智能可以帮助研究人员分析大量数据,发现潜在的药物靶点,预测分子的三维 结构和相互作用模式,提高药物设计的精度和效率。
人工智能还可以模拟药物在体内的代谢和分布过程,预测药物的疗效和安全性,为 新药临床试验提供有力支持。
基于免疫疗法的药物设计
免疫疗法已成为一种重要的治疗手段 ,通过调节人体免疫系统来攻击肿瘤 细胞或其他有害物质。
基于结构的药物设计
总结词
基于结构的药物设计是指根据已知靶蛋 白的三维结构,设计和筛选能够与靶蛋 白结合并影响其功能的小分子药物。
VS
详细描述
该方法依赖于对靶蛋白三维结构的了解, 通过计算机辅助药物设计软件,设计和筛 选能够与靶蛋白结合并影响其功能的小分 子药物。这种方法需要高分辨率的靶蛋白 结构信息,并考虑蛋白质的动态性质。
药物设计的基本原理和方法

所选择参数之间不能有相关性,要有比较大的差异,并且生物活性数据的变化幅度应大于一个对数单位(即大于10倍),否则得不到足够的信息;
2 所设计化合物的物理化学性质差异要大
Hansch方法的一般操作过程
*
Hansch方程除了研究定量构效关系外, 还能用来解释药物作用机理,推测和描述可能的受体模型,研究除活性以外的其他药代动力学定量关系
分子对接法(Docking)
通过生长、旋转等得到基本骨架,按照受体的腔穴,定出靶标边界,这是一级结构的生成。从有关数据库搜索与受体受点结合的原子或原子团,设计新的化合物
*
二、间接药物设计(Indirect Drug Design)
间接药物设计法 受体的三维结构并不清楚
以小分子的构效关系为基础,从一组小分子化合物的结构和生物活性数据出发,研究结构与活性关系的规律
是一种新药设计的研究方法,可以作为先导化合物优化的一种手段。也是计算机辅助药物设计的一个重要内容
A=f(C)
生物活性
化合物的结构特征
由于学科的限制,并没有成功地将此关系用于药物设计
发展建立了三种定量构效关系的研究方法
*
20世纪 60年代 定量构效关系: 并根据信息进一步 结构参数 找出结构与活性间的
分子疏水性参数IogP,即分子的脂水分配系数(partition coefficient),表示分子的疏水性
化合物在有机相和水相中分配平衡时的量(摩尔)浓度Co和CW之比值,P=CO/CW
P值一般较大,常用IogP表示
当分子中有该取代基时I为1,当分子中没有该取代基时I为0。
logP的测定:
*
药物设计的原理是

药物设计的原理是药物设计是指利用现代科学技术和药学等相关知识,通过分子设计和合成药物分子,以满足治疗疾病的需要。
药物设计的基本原理包括药物作用靶点选择、药物分子的合成、药物的优化等。
首先,药物设计需要明确疾病的发病机制,找到适合的治疗靶点。
靶点可以是特定的蛋白质、酶、离子通道等,这些靶点参与了生理、病理过程的调控。
通过选择合适的靶点,药物设计师可以根据其功能特点开发出有针对性的药物。
在药物分子的合成过程中,药物设计师需要设计与靶点相互作用的化学结构,并通过有机合成方法合成出药物分子。
药物设计师会考虑药物分子的生理学、药代学性质以及药物的有效性和安全性等方面的因素。
通常,药物分子具有独特的化学结构和功能团,可以与靶点发生特异性的相互作用,从而达到治疗效果。
药物设计的一个重要原则是结构活性关系(Structure-Activity Relationship,SAR)。
药物设计师通过对已知活性药物结构进行结构修饰、改变或优化,使药物分子具备更好的活性和选择性。
这涉及到合理的分子模拟和计算方法,如分子对接、药物动力学和动力学模拟等。
通过这些方法,药物设计师可以预测药物与靶点的相互作用模式和药物分子在体内的代谢途径,为药物分子的优化提供指导。
此外,药物设计也需要考虑药物分子的药物代谢特性。
药物在人体内经历一系列的代谢途径,包括吸收、分布、代谢和排泄。
药物的代谢特性对于药物的治疗效果和毒副作用具有重要影响。
药物设计师可以通过结构优化以及设计药物释放系统等方法,调控药物在体内的代谢过程,提高药物的生物利用度和疗效。
此外,近年来,药物设计中也注重了计算机辅助药物设计(Computer-Aided Drug Design,CADD)。
计算机辅助药物设计通过建立药物分子与靶点的结构模型,应用计算机算法进行分析和预测,加速药物设计的过程。
CADD包括药物活性预测、分子对接、虚拟筛选等技术,它们在药物设计中发挥着重要的作用,并提高了药物研发的效率。
药物设计的原理及方法

基于已知的生物活性分子结构特征、生物靶标结构特征以及 药效团模型,采用计算机辅助药物设计(CADD)和基于片 段的药物设计(FBDD)等手段,预测和设计新的可能具有药 理活性的分子结构。
药物设计的目的和意义
目的
通过药物设计,可以预测和设计出具有特定药理活性的新分子结构,以满足临 床治疗的需求,提高药物的疗效、降低副作用、改善药物的代谢性质等。
04
CATALOGUE
药物设计的应用
新药研发
靶点发现与验证
通过基因组学、蛋白质组学等技 术手段,发现并验证潜在的药物 作用靶点,为新药研发提供目标
。
药物筛选
利用高通量筛选技术,从大量化合 物中筛选出具有潜在活性的候选药 物,进一步降低新药研发成本和时 间。
结构生物学方法
利用X射线晶体学、核磁共振等技术 ,解析药物作用靶点的三维结构, 为新药设计提供结构基础。
基于片段的药物设计
将已知活性片段作为药物设计的起点,设计和筛选能够与靶标结合 的小分子化合物。
02
CATALOGUE
药物设计原理
药物作用靶点
靶点选择
选择与疾病相关的靶点,如蛋白 质、酶、受体或离子通道等,是 药物设计的关键步骤。
靶点验证
验证靶点的生物学功能和药理学 特性,以确保所选靶点是有效的 治疗目标。
计算机辅助药物设计
利用计算机模拟技术,预测药物与靶点的相互作 用,为药物改造和优化提供理论支持。
3
合成生物学方法
利用合成生物学技术,设计和构建具有特定功能 的基因线路或细胞工厂,生产具有特定活性的药 物分子。
05
CATALOGUE
药物设计的挑战与展望
药物设计的挑战
第三章药物设计的基本原理和方法

第三章:药物设计的基本原理和方法概述药物设计是指根据疾病的病理生理过程,以及分子水平的生命科学创新为基础,运用计算机辅助药物设计、合成药物、验证药物效果等多学科交叉的理论和方法,研制出具有筛选性和靶向性的新型药物。
本文讨论药物设计的基本原理和方法。
药物设计的原则选择恰当的靶点药物和其所要治疗的疾病之间的关键是选择恰当的靶点,即在细胞或器官层级上与特定分子相互作用的新型化合物。
药物的靶点可能是酶、激素受体、离子通道、转录因子或其他蛋白质等。
确定可行的物化特性新型药物也需要具有一些物化特性,如良好的溶解性、合理的分布系数、合适的药代动力学和毒性水平等。
这些特性需要在药物设计的早期考虑,以保持最高程度的药物有效性和安全性。
靶向性药物设计需要有靶向性,即新型药物必须与目标分子更具选择性,从而降低其他细胞和蛋白质的影响和干扰。
可逆性新型药物必须保证可逆性,即能够与目标分子迅速结合和解离结合,这样可以防止药物不必要的堆积和不良反应的产生。
耐药性新型药物还必须克服耐药性的问题,这可以通过合理的药物配伍、合理的剂量和临床监测来达成。
药物设计的方法高通量筛选技术高通量筛选技术可以根据药物与目标之间的相互作用来筛选出优化的药物分子。
这种方法可以在速度快、成本低、提高药物筛选的效率等方面起到重要作用。
分子模拟分子模拟是基于分子动力学原理的计算机模拟方法,可以模拟药物分子与靶点结合的过程,从而预测和分析药物的性能。
这种方法具有速度快、全面性和准确性高的特点。
分子对接技术分子对接技术是模拟药物分子在目标分子表面的结合情况,通过计算从而找到最优的药物结构。
这种方法可以在改善药物生物利用度、减少药物副作用、提高药物特异性等方面发挥重要的作用。
三维定量构效关系三维定量构效关系(3D-QSAR)是指通过分子构象学、药理、计算化学等多方面综合分析药物分子构效关系的方法。
通过建立与三维分子结构有关的统计和数学模型,从而预测药物分子与靶标分子的结合方式和药效,以此优化药物的结构和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N + H
,
N+F3
40
可达到四个目的
(1)用生物电子等排体替代时,得到相似的药理 活性。
NH2 CH3 Cl
SO2NHCONHC4H9
SO2NHCONHC4H9
SO2NHCONHC3H7
氨磺丁脲 降血糖
甲苯磺丁脲 降糖活性增强
氯磺丙脲 1/2延长,毒性下降
41
(2)用生物电子等排体替代时,可能产生拮 抗的作用。 如果替代H的F原子在生物反应中最终要 除去的话,则可能产生拮抗作用。这是因 为C-F键相当稳定,在生理条件下不易断裂, 能在分子水平代替正常代谢物欺骗性地掺 入生物大分子。结果导致致死合成.
曲霉菌和土曲霉菌,羟甲戊二酰辅酶A还原
酶抑制剂的 Lead Compound 。后开发了 人工合成的阿托伐他汀(No. 1)
HO O H3C H3C H O H O H CH3 H3C H3C
3
O O O
1
HO O H H CH3
7 6
O
H3C
美伐他汀
洛伐他汀
13
(3)动物来源
九肽替普罗肽(谷-色-脯-精-脯-谷-亮-脯脯):来源于巴西毒蛇,以此为先导物,发 现了ACE抑制剂卡托普利,开创了一类新 的影响重大的抗高血压药物。
CH N
羧基: COOH
O H S N R , O N N N N , H
PO(OH)NH2 , O
OH O N
39
硫脲基:
H S N C NH2 OH
H NCN H CHNO2 , N C NH2 , N C NH2 H N N O N OH , O O OH
邻酚羟基:
OH , O R 吡啶环: N , NO2 , N OH ,
新的时代——后基因组时代。
4
治疗药物的作用靶点
治疗药物的作用靶点总数483
DNA 2% Ë Ê º Ü Ì å 2% ë × À Ó Í ¨µ À 5% ´ Ö Î ª 7% ¤Ë ¼ Ø º Í Ï ¸ ° û Ò ò × Ó 11% ¸ 28% Ã Ü Ì Ê å 45%
17 MARCH 2000 VOL 287 SCIENCE, 1960
30
先导化合物的优化可分为:
(1)传统的化学方法 (2)现代的方法: 包括CADD和3DQSAR(在第三章介绍)
31
先导化合物优化的一般方法
一、烷基链或环的结构改造
二、生物电子等排原理
三、前药原理
四、软药
五、硬药
六、孪药
七、定量构效关系研究
32
一、烷基链或环的结构改造
1、成环或开环 镇痛药吗啡→哌替啶
NHCOR, NHSO2R, CH2OH, NHCONH2, NHCN, CH(CN)2 CF3, CN, N(CN)2, CN C CN O S O S O , , , SO3H , O S N O O C N , , PO(OH)OEt O OH , O , N O NH O C(CN)3
N CN , CN C CN
23
六、从药物合成的中间体中发现 (From Synthetic Intermediates)
一些药物合成的中间体,由于与目的化 合物结构上有相似性,经过筛选也可发 现先导化合物。 阿糖胞苷 →环胞苷(中间体)
24
安西他滨(环胞苷)是阿糖胞苷的中间体, 后发现安西他滨不仅具有抗肿瘤作用,且 副作用轻,体内代谢比阿糖胞苷慢,故作 用时间长,治疗各种白血病。
(1)类药筛选
类药五规则(Role of five, Lipinski规则) 是指如果一个化合物违背了下列规则中的任意两 条就很难被生物体吸收:分子量在500以下,分 配系数ClogP值小于5,氢键的给体不超过5个, 氢键的接受体不超过10个。
26
(2)ADMET(吸收-分布-代谢-排泄-毒性)
(3)毒性筛选
7
药物设计的两个阶段(p16)
先导化合物的发现(lead discovery) 先导化合物的优化(lead optimization) 先导化合物(lead compound)简称先导物, 又称原型物,是通过各种途径得到的具有 一定生理活性的化学物质。
8
p16
由于先导化合物存在着某些缺陷,如活性 不够高,化学结构不稳定,毒性较大,选 择性不好,药代动力学性质不合理等等, 需要对其进行化学修饰,进一步优化使之
谢产物,可直接作为药物使用,也可作为先
导化合物,进行进一步的结构修饰和优化。
19
例如百浪多息→磺胺,再以磺胺为先导物开发 了大量的磺胺类药物。
百浪多息 体外无抗菌活性 体内抑制葡萄球菌
H2N
N=N NH2
SO2NH2
H2N
SO2NH2
活性代谢产物---磺胺 先导化合物
H2N
SO2NH N O CH3
CH3 OH HO HO H N CH3 CH3 结构改造 O OH N H CH3
异丙肾上腺素
普萘洛尔
18
四、从药物代谢产物中发现 ( From Metabolites )
药物在体内经过生物转化后,有些药物代谢
产物降低或失去了活性,称为代谢失活;有
些药物的代谢产物正好相反,可能使活性升
高,称为代谢活化。代谢活化得到的药物代
34
4-苯基哌啶类
2、插烯原理(vinylogues)(烷基链局部减少双键 或引入双键) 抗癫痫药胡椒碱→桂皮酰胺类的衍生物
O O O 胡椒碱 桂皮酰胺衍生物 N X O NHR
3、烃链的同系化原理 利福平(甲基哌嗪)→利福喷汀(环戊基哌嗪)
35
二、生物电子等排(Bioisosteris)
p27 电子等排体(Isostere)是指具有相同数目 的原子、相同的电子总数、相同的电子排 列的分子或原子团,因而又称同电异素体.
5
药物靶标
据估计人类基因组计划为我们提供了大量
潜在的蛋白质药物靶标,其中至少有1万个
可以作为寻找新药的靶标。
6
பைடு நூலகம்
药物设计方法
p16
以受体为靶点,可分别设计受体的激动 剂和拮抗剂 以酶为靶点,设计酶抑制剂
以离子通道为靶点,则可分别设计钠、 钾和钙离子通道的激活剂(开放剂)或 阻断剂(拮抗剂)。
16
组胺:体内生物活性物质,以此为先导物,发 现了替丁类抗溃疡药物。
N N H
CH2CH2NH2
N N H
NCN CH2SCH2CH2 NH C NHCH3 CH3 西咪替丁
组胺
17
三、通过随机机遇发现 (From Accidentally discover )
1、 1929年青霉素的发现
2、异丙肾上腺素:β -受体激动剂,结构改造, 发现β -受体阻断剂--普萘洛尔,
发展为理想的药物,这一过程称为先导化
合物的优化。
9
第一节
先导化合物发现的方法和途径
Approaches for lead discovery
10
一、从天然药物的活性成分中获得
(From Active Component of Natural Resources)
(1)植物来源 p17
青蒿素:来自于中药黄花蒿,以此为先导 物,发现蒿甲醚、青蒿琥酯等; 紫杉醇:来自于红豆杉树皮,以此为先导 物,发现多西他赛等。
33
N
CH3 H
N
CH3 H
破 D环 吗啡喃类 破C环 N 破C,D环 N E B A HO D O 吗啡 破B,C,D环 CH3 H C OH 苯并吗喃类 破B 环 N CH3 CH3
结构修饰 HO 左啡诺 CH3 N CH3 CH3 CH3 HO 喷他佐辛
结构修饰
O O CH3
结构修饰 N CH3 哌替啶
=C= =N+= =P+= =As+= =Sb+=
-CH=CH-S-O-NH-
37
非经典的电子等排体范围较广,包括
(1)能产生相似或相拮抗生理作用的生物电 子等排体; (2)疏水性、电性和空间效应等重要参数类 似的电子等排体。
38
羟基: OH 卤素: F, Cl, Br, I 醚键: -O-, -S羰基: C O
药物设计的基本原理和方法
(Basic Principles of Drug Design )
1
p16
* 早期寻找新药的方法多是基于经验和尝 试,通过大量化合物的筛选与偶然发现。 * 随着生命科学的相关学科在上世纪后半 期的迅速发展,定量构效关系、合理药物 设计、计算机辅助药物设计、组合化学、 高通量筛选等新技术、新方法不断涌现, 新药设计学也应运而生。
3
人类基因组学与新药设计
2000年6月26日,参与人类基因组计划的美、
英、日、法、德、中6个国家16个研究中心联
合宣布人类基因组草图绘制完成。
人类基因组草图是覆盖人的大部分基因组、准
确率超过90%的DNA序列图。
从这一时刻开始,人类第一次在分子水平上全
面地认识了自己,从此人类历史进入了一个崭
CHO HO OH OH CH2OH HO O O HO N N NH
. HCl
NH3.H2O MeOH HO
NH2 N O N O HO HO
. HCl
D-阿拉伯糖
安西他滨
阿糖胞苷
25
七、通过计算机辅助药物筛选寻找 (By Virtual Screening)
利用计算机对虚拟化合物库进行筛选有可能发现 先导化合物。包括:
28