正弦型函数的图像变换
正弦函数和余弦函数的图像与性质

例2.求下列函数的最大值与最小值,及取到最值 时的自变量 x 的值. (2) y 3sin x cos x (1) y sin(2 x )
4 解:(1)视为 y sin u , u 2 x 4
8 3 当 u 2k ,即 x k , k Z 时, 2 8 ymin 1 2
二、正弦函数与余弦函数的周期
对于任意 x R 都有
sin( x 2k ) sin x, k Z cos( x 2k ) cos x, k Z
正弦函数是周期函数, k , k Z , k 0 都是它的 2
周期,最小正周期是 2 余弦函数是周期函数, k , k Z , k 0 都是它的 2 周期,最小正周期是 2
注:一般三角函数的周期都是指最小正周期
1 (1) f ( x) cos 2 x (2) f ( x) sin( x ) 2 6 解: (1)设 f ( x)的周期为 T f ( x T ) f ( x)
即 cos[2( x T )] cos 2 x 即 cos(2 x 2T ) cos 2 x 即 对任意 u 都成立:cos(u 2T ) cos u 因此 2T 2 ,从而 T 解毕
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值. 因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x 叫做余弦函数 正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
正弦型函数的图像性质

y
2
2
1
0
π
2π x
-1
-2
A的作用:使正弦函数相应的函数值发生变化。
你能得到y=Asinx与y=sinx 图象的关系吗?
1.y=Asinx(A>0, A1)的图象是由y=sinx的图 象上所有点的横坐标不变,纵坐标伸长 (当A>1 时)或压缩(当0<A<1时)A倍而成.
2.值域 【 -A, A 】最大值A,最小值-A
3、 的作用:研究 y=sin(x+ )与y=sinx 图象的关系
先观察y = sin(x+ )、y = sin(x - )
2
2
与 y=sinx 的图象间的关系
y
1
0
π
2π
x
-1
的作用:使正弦函数的图象发生位移变化。
你能得到y=sin(x+ )与y=sinx 图象的关系吗?
y sin(x ) ( 0)的图象,可以看
正弦型函数 y = A sin(ωx+ )
的图象
今日提问
正弦函数 y = sinx 的图象、定义域、值域、周期
y
1 x
0
π
-1
2π
3π
4π
x
0
3
2
2
2
sinx 0
1
0
-1
0
复习
正弦函数 y = sinx 的图象、定义域、值域、周期
y
1 x
0
π
2π
3π
4π
-1
定义域:R 当x 值2 域 2:[-时1,,y1m]ax 1 周期: 2π
当x
三角函数的图像变换

cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。
1.5正弦型函数图象的平移和伸缩变换

向右平移 个单位
y sin x
3
y
sin(x
3
)
纵坐标不变 横坐ห้องสมุดไป่ตู้变为原来的1
倍
y sin(2x )
3
2
横坐标不变 总坐标变为原来的3倍
y 3sin(2x ) 向上平移1个单位
3
y 3sin(2x ) 1
3
法二:先伸缩( 变换)后平移( 变换):
纵坐标不变
y sin x 横坐标变为原来的1 倍 y sin 2x 2
函数y Asin(x ) b的图象
A是振幅:A变换也叫振幅变换;
T为周期:T 2 ,变换也叫周期变换;
f是频率:f 1 ; T
x 是相位:变换也叫相位变换; 是初相:x 0时的相位.
要得到y 3sin(2x ) 1的图象,需将y sin x的图象作怎样的变换?
3
法一:先平移( 变换)后伸缩( 变换):
向右平移 个单位 6
y sin(2x )
3
横坐标不变 总坐标变为原来的3倍
y 3sin(2x ) 向上平移1个单位
3
y 3sin(2x ) 1
3
总结:1.箭头图:起始→终止;
2. 四个数据,四个变换:先:, 后:A,b
三角函数的图像及其变换

振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。
正弦型函数的图像性质

相位是正弦波在时间轴上的偏移量,决定了波形开始的时间点。当 $varphi > 0$ 时,图像向右位移;当 $varphi < 0$ 时,图像向左位移。相位的变化不会 改变波形周期和振幅,但会影响波形在时间轴上的位置。
03 正弦型函数的奇偶性
奇函数性质
奇函数性质
正弦型函数是奇函数,因为对于任意x,都有f(-x) = -f(x)。这意 味着正弦型函数的图像关于原点对称。
对称轴
正弦函数图像关于y轴对称
正弦函数$y = sin x$的图像关于y轴对称,即当$x$取正值和负值时,$y$的值相 同。
余弦函数图像关于x轴对称
余弦函数$y = cos x$的图像关于x轴对称,即当$y$取正值和负值时,$x$的值相 同。
对称中心
要点一
正弦函数图像关于点$(kpi, 0)$对 称
通过调整A、ω、φ的值,可以获 得不同振幅、周期和相位偏移的 正弦型函数。
单位圆与三角函数关系
单位圆是指在平面直角坐标系中, 以原点为圆心、半径为1的圆。
三角函数与单位圆密切相关,单 位圆上的点可以用三角函数来表
示。
在单位圆上,正弦和余弦函数的 值等于点的纵坐标和横坐标的比 值,正切函数的值等于点的纵坐
图像特点
偶函数的图像关于y轴对称,即当 x=0时,y达到最大或最小值。在 x>0和x<0的区间内,函数值相等。
应用实例
偶函数性质在电磁学中有广泛应用, 例如磁场分布等。
既非奇又非偶函数性质
既非奇又非偶函数
性质
正弦型函数既不是奇函数也不是 偶函数。虽然它的图像关于原点 和y轴都有对称性,但它不符合奇 偶函数的严格定义。
振幅与图像高度
三角函数图像与变换

三角函数图像与变换一、引言三角函数是高中数学中的重要内容,它们在数学和物理等领域都有广泛的应用。
本文将从三角函数的图像出发,探讨其与变换的关系,并探讨它们在实际问题中的应用。
二、三角函数的基本图像1. 正弦函数的图像正弦函数是最基本的三角函数之一,它的图像呈现周期性的波动形态。
当自变量为0时,正弦函数的值为0;当自变量为90度(或π/2弧度)时,正弦函数的值为1;当自变量为180度(或π弧度)时,正弦函数的值为0;当自变量为270度(或3π/2弧度)时,正弦函数的值为-1;以此类推,正弦函数的图像在每个周期内都呈现出上升、下降、上升、下降的特点。
2. 余弦函数的图像余弦函数与正弦函数非常相似,它们的图像在形态上只有一个平移。
当自变量为0时,余弦函数的值为1;当自变量为90度(或π/2弧度)时,余弦函数的值为0;当自变量为180度(或π弧度)时,余弦函数的值为-1;当自变量为270度(或3π/2弧度)时,余弦函数的值为0;以此类推,余弦函数的图像也呈现出上升、下降、上升、下降的特点。
3. 正切函数的图像正切函数是另一个重要的三角函数,它的图像呈现出周期性的波动形态。
正切函数的图像在每个周期内都有一个渐进线,即在自变量接近90度(或π/2弧度)和270度(或3π/2弧度)时,函数值趋近于无穷大。
三、三角函数的变换1. 平移变换平移变换是指将函数的图像沿x轴或y轴方向移动一定的距离。
对于正弦函数和余弦函数,平移变换可以通过改变自变量的值来实现。
例如,将正弦函数的自变量增加π/4,可以使函数图像向左平移π/4个单位;将正弦函数的自变量减少π/4,可以使函数图像向右平移π/4个单位。
同样的,对于余弦函数,也可以通过改变自变量的值来实现平移变换。
2. 伸缩变换伸缩变换是指将函数的图像在x轴或y轴方向进行拉伸或压缩。
对于正弦函数和余弦函数,伸缩变换可以通过改变自变量的系数来实现。
例如,将正弦函数的自变量乘以2,可以使函数图像在x轴方向压缩一倍;将正弦函数的自变量除以2,可以使函数图像在x轴方向拉伸一倍。
三角函数的基本变换平移伸缩和反射

三角函数的基本变换平移伸缩和反射三角函数的基本变换:平移、伸缩和反射三角函数是数学中非常重要且广泛应用的概念之一。
它们在几何、物理、工程学等领域中起着关键作用。
在学习三角函数时,我们经常会遇到一些基本的函数变换,比如平移、伸缩和反射。
本文将介绍三角函数的这些基本变换,帮助读者更好地理解和应用这些概念。
一、平移变换平移是指图形在平面内沿着某个方向移动一段距离。
在三角函数中,平移变换是指将函数图像沿着横轴或纵轴方向移动,改变函数的位置。
对于正弦函数sin(x)来说,平移变换可以表示为sin(x-a),其中a为平移的距离和方向。
当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。
对于余弦函数cos(x)来说,平移变换可以表示为cos(x-a),同样地,当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。
二、伸缩变换伸缩是指图形的尺寸在某个方向上改变。
在三角函数中,伸缩变换是指将函数图像在横轴或纵轴方向上进行拉伸或压缩,改变函数的振幅和周期。
对于正弦函数sin(x)来说,伸缩变换可以表示为a*sin(x),其中a为正实数。
当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。
对于余弦函数cos(x)来说,伸缩变换可以表示为a*cos(x),同样地,当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。
伸缩变换还可以改变函数的周期。
对于正弦函数和余弦函数来说,原本的周期是2π。
通过伸缩变换,可以改变函数的周期为2π/a,其中a为正实数。
三、反射变换反射变换是指图形关于某个轴线对称。
在三角函数中,反射变换是指将函数图像关于横轴或纵轴进行翻转,改变函数的正负号。
对于正弦函数sin(x)来说,反射变换可以表示为-sin(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂练习:1. 将函数y=sin2x 的图象向左平移6π个单位,则平移后的图象的解析式为( ) A .y=sin(2x+6π) B .y=sin(2x+3π) C .y=sin(2x -6π) D .y=sin(2x -3π)2. 要得到函数2sin(2)4y x p=+(x ÎR )的图象,只需将函数2sin 2y x =(x ÎR )的图象上所有的点( )A .向左平行移动4p 个单位长度 B. 向右平行移动4p个单位长度 C. 向左平行移动8p 个单位长度 D. 向右平行移动8p个单位长度3.4.把函数sin(2)4y x π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到原来的12,则所得图象的解析式为 ( )A .3sin(4)8y x π=+B .sin(4)8y x π=+ C .sin 4y x = D .sin y x = 5. 将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A 1sin 2y x = B 1sin()22y x π=- C 1sin()26y x π=- D sin(2)6y x π=-6.要得到函数)32sin(2π+=x y 的图象,只须将函数x y sin 2=的图象 ( )A .向左移3π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变B .向右移3π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变C .向左移3π个单位,再把所有点的横坐标缩短到原来的21倍,纵坐标不变D .向右移3π个单位,再把所有点的横坐标缩短到原来的21倍,纵坐标不变7.要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象( )A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位8.将函数sin(2)3y x π=-的图象先向左平移3π,然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为___________. 9.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________. 10. ①利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图并说明该函数图象可由y=sinx (x ∈R )的图象经过怎样变换得到的。
②求函数)621sin(π+=x y 的所有对称点与对称轴11.已知函数f(x)=sin(ωx+3π)(ω>0)的最小正周期为π,则该函数的图象 ( ) A .关于点(3π,0)对称 B .关于直线x=4π对称C .关于点(4π,0)对称 D .关于直线x=3π对称 12.函数y =4sin ⎝⎛⎭⎫2x -π6的图象的一个对称中心是( ) A.⎝⎛⎭⎫π12,0B.⎝⎛⎭⎫π3,0C.⎝⎛⎭⎫-π6,0 D.⎝⎛⎭⎫π6,013. 设函数f (x )=A sin(ωx +φ)(A ≠0,ω>0,⎭⎫|φ|<π2的图象关于直线x =2π3对称,它的周期是π,则( )A .f (x )的图象过点⎝⎛⎭⎫0,12B .f (x )在⎣⎡⎦⎤5π12,2π3上是减函数 C .f (x )的一个对称中心是⎝⎛⎭⎫5π12,0 D .f (x )的最大值是A14.关于函数f(x)=4sin(2x+π3) (x ∈R),有下列命题:(1)y=f(x )的表达式可改写为y=4cos(2x-π6 );(2)y=f(x )是以2π为最小正周期的周期函数;(3)y=f(x ) 的图象关于点(---π6 ,0)对称;(4)y=f(x ) 的图象关于直线x=---π6 对称;其中正确的命题序号是___________.〖解〗C将函数y=sin(2x - π3)的图象先向左平移π6,然后将所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为 ( )A .y= - cosxB .y=sin4xC . y=sin(x-π6)D .y=sinx〖例〗将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于( ) A .12π-B .3π-C .3π D .12π 〖解〗C例〗要得到函数y=3sin(2x -4π)的图象,可以将函数y=3sin2x 的图象沿x 轴 A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D . 向右平移8π个单位〖解〗D已知函数2sin 23y x π⎛⎫=+⎪⎝⎭。 (1)用五点法画出此函数在区间5,66ππ⎡⎤-⎢⎥⎣⎦内的简图;(2)求此函数的单调地增区间。〖解〗解: (1)列表如下;描点连线可以得到下图:(2)由222,232k x k k Z πππππ-+≤+≤+∈,得5,1212k x k k Z ππππ-+≤≤+∈ ∴该函数的单调递增区间是5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦为了得到函数)32sin(π+=x y 的图像,可以将x y 2sin =的图像 ( )A.向右平移6π个单位 B.向左平移6π个单位 C.向右平移3π个单位 D.向左平移3π个单位〖解〗B 〖例〗 〖解〗A〖例〗将函数sin(2)3y x π=+的图象经怎样平移后所得的图象关于点(,0)12π-中心对称( ) A .向左平移12π B .向左平移6π C .向右平移12π D .向右平移6π 〖解〗C〖例〗将函数y=sin2x 的图象向左平移6π个单位,则平移后的图象的解析式为( ) A .y=sin(2x+6π) B .y=sin(2x+3π) C .y=sin(2x -6π) D .y=sin(2x -3π)〖解〗B〖例〗(1)利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图 列表: 作图:(2)并说明该函数图象可由y=sinx (x ∈R )的图象经过怎样变换得到的。
〖解〗解、先列表,后描点并画图(2)把y=sinx 的图象上所有的点向左平移6π个单位长度,得到)6sin(π+=x y 的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到)621sin(π+=x y 的图象。
或把y=sinx 的图象横坐标伸长到原来的2倍(纵坐标不变),得到x y 21sin =的图象。
再把所得图象上所有的点向左平移3π个单位长度,得到)3(21sin π+=x y ,即)621sin(π+=x y 的图象。
〖例〗 〖解〗C要得到函数∈-=x x y ),32sin(πR 的图象,只需将函数∈=x x y ,2sin R 图象上所有的点( ) (A )向左平行移动6π个单位长度 (B )向右平行移动6π个单位长度(C )向左平行移动3π个单位长度(D )向右平行移动3π个单位长度〖解〗B 〖例〗〖解〗sin 3y x π⎛⎫=+ ⎪⎝⎭〖例〗要得到函数)32sin(2π+=x y 的图象,只须将函数x y sin 2=的图象 ( )A .向左移3π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 B .向右移3π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变C .向左移3π个单位,再把所有点的横坐标缩短到原来的21倍,纵坐标不变D .向右移3π个单位,再把所有点的横坐标缩短到原来的21倍,纵坐标不变〖解〗C〖例〗要得到函数y =sin(2x -)6π的图像,只需将函数y =cos 2x 的图像 ( ) A .向右平移6π个单位 B .向左平移6π个单位C .向右平移3π个单位D .向左平移3π个单位〖解〗C〖例〗要得到函数)32sin(π-=x y 的图象,只需将函数x y 2sin =的图象( )A .向左平移π3B .向右平移π3C .向右平移π6D .向左平移π6〖解〗C〖例〗已知函数3sin(2)6y x π=+.⑴ 用“五点法”作出函数在一个周期上的简图;⑵ 由sin y x =的图像作怎样的变换就得到函数3sin(2)6y x π=+的图像.〖解〗①列表如下:3sin(2)y x π=+②sin y x =的图像作怎样的变换就得到函数3sin(2)6y x π=+的图像. 第一(相位变换):将y=sinx 左平移6π个单位,得到y=sin(x+6π);第二(周期变换):将y=sin(x+6π)横坐标缩短为原来的12,得到sin(2)6y x π=+;第三(振幅变换):将sin(2)6y x π=+纵坐标扩大为原来的3倍,得到3sin(2)6y x π=+〖例〗为了得到x y 3sin =的图像只需把)63sin(π+=x y 的图像( )A 向左平移 6π个单位B 向左平移18π个单位C 向右平移6π个单位 D 向右平移18π个单位〖解〗D。