公务员笔试之行测:巧解三集合容斥原理问题
公务员考试行测技巧:容斥原理公式及运用

【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。
【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?
参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。
在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,中公教育专家研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
一、容斥原理1:两个集合的容斥原理
二、容斥原理2:三个集合的容斥原理
如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:
三集合容斥原理问题

行测数学运算技巧:三集合容斥原理问题的解决方法容斥原理类型是目前国家、各地区公务员考试数学运算的“常客”题型,对于大部分应试者来说,还是比较头痛的一种类型。
这里我们介绍一下三集合容斥原理问题的解决方法。
1、三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C2、三个集合的容斥关系(三元)例题:假设有100人参加了三个兴趣小组。
其中参加数学兴趣小组的有55人,参加语文兴趣小组的有65人,参加英语兴趣小组的有70人,同时参加语文和数学兴趣小组的人数是31人,同时参加数学和英语兴趣小组的人数是40人,同时参加语文和英语兴趣小组的有25人,则三个兴趣小组都参加的人数是多少人?(1) A+B+T=至少参与一项的总人数(无重叠)(2) A+2B+3T=至少参与一项的总人数(含重叠部分)(3) B+3T=至少参与两项的总人数(含重叠)(4) T三项都参与的人数。
这里介绍一下A、B、T分别是什么A=x+y+z;表示只参加一个兴趣小组的人数,在图中反应的区域就是每个圆圈互不重叠的部分。
B=a+b+c;表示仅参加了两个兴趣兴趣小组的人数,是图中两两相交的部分总和(不含中间的T区域)T=全部都参加的人数。
也就是图形当中最中间的部分T。
例题通过公式有如下解法:(1) A+B+T=100;(2) A+2B+3T=55+65+70=190(3) B+3T=31+40+25=96实际上我们要求的是T, (1)+(3)-(2)=T。
即得到答案T=100+96-190=63、三元容斥公式应用实例三元容斥涉及的对象比较多。
我们通常建议考生根据不同提问情况区别对待。
本小节先对一般情况的题目做一些分析。
例:如图所示,X、Y、Z分别是面积为64、180、160的三个不同形状的纸片,覆盖住桌面的总面积是290,其中X与Y、Y与Z、Z与X重叠部分的面积依次是24、70、36,那么阴影部分的面积是:【09国考】A.15B.16C.14D.18【解析】参考答案为B。
公务员考试数量关系之三集合容斥问题

公务员考试数量关系之三集合容斥问题在最近几年的公务员考试中,考察了相关的三集合容斥问题,对于这样的一个问题,华图教研中心提醒你,在复习三集合容斥问题时一定不能停留在表面,一定要从实质上理解它,因为现在在考察容斥问题时,考的比较细致。
但是题目难度并不是很大,只要能够掌握它的实质,熟练运用我们的解题方法,那么这种问题肯定能够轻松应对。
一浅识三集合容斥问题对于三集合容斥问题,一定要弄清楚它题目的关键词语及问法。
A+B+C-AB-AC-BC-ABC=总数-三个条件都不满足的情形A+B+C-满足两个条件-2满足三个条件=总数-三个条件都不满足的情形二真题回放1.某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【华图解析】根据题意,“按规定每人至多可投考两个职位”则表明这次招聘中不存在有人报考三个职位的情形,共有42人报名,也表明不存在一个人是三个职位都不报考的情形。
故可以直接代入三集合的标准形公式即可。
22+16+25-8-6-x=42 x=7,故选择A选项。
2.某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。
如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?()A. 148B. 248C. 350D. 500【华图解析】设三种上网方式都使用的客户有x个,则使用两种上网方式的就有352-x,根据三集合容斥问题的公式,可以得到 1258+1852+932-(352-x)—2x=3542 解得x=148 故答案选择A3. 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。
行测数学运算16种题型之容斥原理问题

行测数学运算16种题型之容斥原理问题核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C【例1】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:A.22人 B.28人 C.30人 D.36人【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)B∩C=既喜欢看电影又喜欢看戏剧的人(16)A∩B∩C=三种都喜欢看的人(12)A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩CC∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)=148-(100+18+16-12)=26所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C=52-16-26+12=22【例2】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。
A.22B.18C.28D.26【解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22所以,答案为A。
【例3】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人A.57B.73C.130D.69【解析】设A=会骑自行车的人(68),B=会游泳的人(62)显然,A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B=A+B-A∪B=130-73=57所以,答案为A。
集合整体重复型公式巧解容斥原理问题

行测数学运算技巧:三集合整体重复型公式巧解容斥原理问题一、介绍三集合整体重复型核心公式在三集合题型中,假设满足三个条件的元素数量分别是A、B和C,而至少满足三个条件之一的元素的总量为W。
其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得到以下两个等式:W=x+y+zA+B+C=x×1+y×2+z×3二、典型的三集合整体重复型的题目讲解例1、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动。
现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。
如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(2004年浙江公务员考试行测第20题)A. 15人B.16人C.17人D.18人【答案】A 解析:此题有两种解法可以解出:解一:分别设只参加英语和语文、英语和数学、语文和数学小组的人为x、y、z,则只参加英语小组的人为17-5-x-y,只参加语文小组的人有30-5-x-z,只参加数学小组的人有13-5-y-z,则只参加三个小组中的一个小组的人和只参加其中两个小组的人和三个小组都参加的人的总和为总人数,即17-5-x-y+30-5-x-z+13-5-y-z+x+y+z+5=35。
则求x+y+z=15,所以只参加一个小组的人数的和为15。
解二:套用三集合整体重复型公式:W=x+y+zA+B+C=x×1+y×2+z×335=x+y+517+30+13=x×1+y×2+5×3解得:x= 15,y=15例2、某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是( )(2009年江苏公务员考试行测A类试卷第19题)A. 69B.65C.57D.46【答案】D 解析:本题也是一道典型的三集合整体重复型题目,直接套用三集合整体重复型公式:W=x+y+zA+B+C=x×1+y×2+z×3这里需要注意的是W=105,而非125,105=x+y+2489+47+63=x×1+y×2+24×3两个方程,两个未知数,解出y=46,这里y表示只看过两部电影的人数,即所求。
国考:公式法解容斥问题(三集合标准型)

国考:公式法解容斥问题(三集合标准型)河北公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。
河北华图教育精心整理了河北公务员行测真题及其他公务员笔试资料供考生备考学习。
在行测考试当中,有一类问题叫做容斥问题。
什么题目我们归结为容斥问题呢?一般情况下,有符合A,有符合B,有符合AB,有AB都不符合等这一类题干,我们就把他归结为容斥问题。
容斥问题可以分为二集合容斥和三集合容斥。
解题思路有画图法和公式法。
一般情况下,只要我们能牢牢地背会相关公式,考试的时候就能很快的做出答案,节省考试时间。
今天我们一起来看一下三集合容斥标准型公式。
三集合容斥标准型公式:A+B+C-AB-BC-AC+ABC=总数-都不符合。
下面我们一起来看寄到容斥问题的例题:【例】(2009-国家-81)如图所示,X、Y、Z 分别是面积为64、180、160 的三张不同形状的纸片。
它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。
且X 与Y、Y 与Z、Z 与X 重叠部分面积分别为24、70、36。
问阴影部分的面积是多少?()A.15B.16C.14D.18【解析】此题为容斥原理问题,根据三集合容斥标准型公式:A+B+C-AB-BC-AC+ABC=总数-都不符合。
根据题意,设阴影部分为x,列方程有:290=64+180+160-24-70-36+x,解得x=16。
选择B。
由此可见,如果能够熟练地记住公式,其实这类问题我们完全可以在1分钟以内做出来的。
我们再来看一道例题:【例】对39 种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17 种,含乙的有18 种,含丙的有15 种,含甲、乙的有7 种,含甲、丙的有6种,含乙、丙的有9 种,三种维生素都不含的有7 种,则三种维生素都含的有多少种?()A.4B.6C.7D.9【解析】根据题意列方程:17+18+15-7-6-9+7=39-x,解出x=4。
公务员行测考试容斥问题速解宝典题集

公务员行测考试容斥问题速解宝典题集一、两集合类型1.解题技巧题目中所涉及事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式题目,如下:A∪B=A+B-A∩B快速解题:总数=两集合之和+两集合之外数-两集合公共数。
2.真题示例【例1】现有50名学生都做物理,化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对有:A27人B25人C19人D10人【解析】B。
50=31+40+4-A∩B,得A∩B=25。
二、三集合类型1.解题步骤解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表含义;③代入公式(A∪B∪C=A+B+C-A∩B-A ∩C-B∩C+A∩B∩C)进行求解。
2.解题技巧解题技巧主要包括一个计算公式和文氏图。
总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数3.真题示例【例2】某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加任何一种考试的有15人。
问接受调查问卷的学生共有多少人?A.120B.144C.177D.192【解析】A。
填充三个集合公共部分数字24;根据每个区域含义应用公式:总数=各集合之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+y+z)+24+24+24}+24+15。
x+y+z只属于两集合数之和,该题所讲只选择两种考试参加人数,所以x+y+z值为46人;得本题答案为120。
【例3】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人?A.22人B.28人C.30人D.36人【解析】A。
国考行测容斥原理解题技巧

二、 三集合类型
国考行测容斥原理解题技巧
在行测考试中,容斥原理题令很多考生头疼不已,因为容斥原理题看起来复杂多变,让考生 一时找不着头绪。 但该题型还是有着非常明显的内在规律, 只要考生能够掌握该题型的内在 规律,看似复杂的问题就能迎刃而解,下面就该题型分两种情况进行剖析,相信能够给考生 带来一定的帮助。
一、 两集合类型
1、 解题技巧 题目中所涉及的事物属于两集合时, 容斥原理适用于条件与问题都可以直接代入公式的题目, 公式如下: A B A B A B . 快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数 2、 真题示例 【例1】 现有 50 名学生都做物理、化学实验,如果做物理实验正确的有 40 人,化学实 验做正确的有 31 人,两种实验都做错的有 4 人,则两种实验都做对的有( ) 人 A、27 人 B、25 人 C、19 人 D、10 人 【答案】B 【解析】直接代入公式为:50=40+31+4-A ∩B 解得 A B 25 ,所以答案为 B 。 【注】这里应设 A =物理实验做正确的人数,B =化学实验做正确的人数,U=做物理、化学实 验的人数,则 A=40,B=31,U=50, A B 4 ,
U=A+B+A B-A BAU NhomakorabeaB
【例2】
某服装厂生产出来的一批衬衫大号和小号各占一半,其中 25%是白色的,75%是 蓝色的。如果这批衬衫共有 100 件,其中大号白色衬衫有 10 件,小号蓝色衬衫 有多少件?( ) A、15 B 、25 C 、35 D、40 【答案】C 【解析】这是一种新题型,该种题型直接从求解出发,本题设小号和蓝色分别为 A、B,小 号占 50%,蓝色占 75%,直接代入公式为: 100=50+75+10-A B , 解得, A B=35 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年公务员行测:巧解三集合容斥原理问题
华图教育
三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。
近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。
根据上图,可得三集合容斥原理核心公式:
=A +B +C -A B -B C -A C +A B C =-x A B C 总数
一、直接利用公式型
【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:
A. 7人
B. 8人
C. 5人
D. 6人
【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。
因此,本题答案为A 选项。
二、三集合容斥原理作图型
若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。
【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10 C
x B A
名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?()
A.5名
B.6名
C.7名
D.4名
【答案】B
【解析】本题问题中出现了“只”,故只能采用作图法。
于是有
仰
1
2 2 2 3
4 3
蛙自由
只参加1个项目的人数为1+2+3=6。
因此,本题答案为B选项。
【例3】(2012年河北)某乡镇对集贸市场36种食品进行检查,发现超过保持期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。
其中,两项同时不合格的5种,三项同时不合格的2种。
问三项全部合格的食品有多少种?()
A.14
B.21
C.23
D.32
【答案】C
【解析】
a d b
c
其中d为三项同时不合格的部分,a+b+c为两项同时不合格的部分。
设三项全部合格的食品有x种。
根据题意有:36-x=7+9+6-5-2×2,解得x=23。
因此,本题答案为C选项。
【注】该题注意,由于7+6+9这部分把三项同时不合格的部分共加了3次,减去5的
时候只是减去了同时两项不合格的部分,而未减去三项同时不合格的部分,实际上三项同时不合格的部分只需算一次即可,故在最后再减去2×2,保证每部分面积只算一次。
在三集合原理中只要掌握住核心要点,不管形式怎么变化,只需要用剔除重复的方法把重复计算的部分减去即可。