信号的采样与恢复
02-模拟信号的采样与重建 - 采样的恢复(课件)

3
内插函数
g (t n T )
sin
T
(t n T )
(t n T )
T
特点:在采样点nT上,函数值为1,其余采样点上,函数值为零。
4
内插过程:被恢复的信号y(t)在采样点的值等于xa(nT),采样点 之间的信号则是由各采样值内插函数的波形延伸叠加而成的。 这也是理想低通滤波器G(j )的响应过程。
采样的恢复(恢复模拟信号)
如果采样频率高于奈奎斯特采样频率,即信号最高频率谱不超过折迭频率
则理想采样的频谱就不会产生混叠,因此有
Xˆ a (
j)
1 T
Xa(
m
j
jms )
1 T
X a ( j)
其中││< S/2
将采样信号xˆa(t) 通过一个理想低通滤波器(只让基带频谱通过),其带宽 等于折迭频率S/2,特性如图
y(t)
xa
t
gt
n
x
a
(
)
(
nT
) g ( t
)d
xa ( )g(t
)
(
nT)d
xa (nT )g(t nT )
n
n
又因为
g(t)
F
1G j
1
2
sin t
G( j)e jt d
T
t
T
所以
xa t
yt
n
xa
nT
sin
T
t
t n
nT
T
T
它表明了连续时间函数如何由它的采样值来表达。
内插公式的意义: 证明了只要满足采样频率高于两倍信号最高频谱,整个连续信号就可以 用它的采样值完全代表,而不损失任何信息——奈奎斯特定律。
信号的采样与恢复

信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。
三、内容与步骤本实验在脉冲采样与恢复单元完成。
1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。
实验九信号的采样与恢复

第4页
实验九 信号的采样与恢复
一、实验目的
(1)掌握电信号的采样和恢复的实验电路。 (2)通过本实验,加深学生对采样定理的理解。 二、实验设备
序号
型号
备注
1 DJK01 电源控制屏
该控制屏包含”三相电源输
出”等几个模块
2 DJK15 控制理论实验挂箱 或 DJK16 控制理论实验挂箱
3 双踪慢扫描示波器
三、实验原理
(2)为使所选的f(t)信号经频率为fs的周期脉冲采样后,希望 通过滤波器后信号的失真小,则采样频率和低通滤波器的截止频 率应各取多少,试设计一满足上述要求的低通滤波器。
(3)将(2)计算求得的 f(t)和 s(t)送至采样器,观察采样 后的正弦波的波形。
(4)改变采样频率如fS=4B,和fS<2B,再用示波器观察恢复后的 信号,并比较失真度。 五、思考题
第2页
即使用图 9-3 所示的理想滤波器,也不能获得原有的f(t)信号。 图 9-4 为信号采样的实验电路图。
图 9-4
(2)信号的恢复 为了实验对被检对象的有效控制,必须把所得的离散信号恢 复为相应的连续信号。工程上常用的低通滤波器是零阶保持器, 它的传递函数为
G
h
(s)
=
1
− e −Ts S
或近似地表示为
这就是香农采样定理,它表示采样角频率ωs(或采样频率fs) 若能满足式(3),则采样后的离散信号fS(t)信号就会有连续信号 f(t)的全部信息,如把fs(t)信号送至具有图 9-3 所示特性的理想 滤波器输入端,则其输出就是原有的连续信号f(t)。
信号恢复原理

信号恢复原理
信号恢复原理是指通过对失真、噪声或其他干扰进行补偿和处理,使原始信号恢复到其原始状态或接近原始状态的过程。
在信号传输过程中,由于各种因素的影响,信号会发生失真、衰减、干扰等问题,导致信号质量下降。
为了解决这些问题,信号恢复原理被应用于信号处理和通信领域。
信号恢复原理主要依靠数学和工程技术手段进行实现。
在信号恢复过程中,一般会有以下几个关键步骤:
1. 信号采样:将原始信号转化为离散的采样信号。
采样过程会导致信号失真和信息损失,因此在信号恢复中需要考虑采样频率和采样精度等参数的选择。
2. 信号重构:通过采样信号恢复原始信号的形态和特征。
重构过程可以使用插值、滤波等方法进行,以尽可能减小失真和抽样误差。
3. 信号增强:对恢复后的信号进行增强和处理,以提高信号质量和还原度。
常见的信号增强方法包括降噪、滤波、增益控制等。
4. 信号校正:在信号恢复过程中,可能会出现偏差、非线性等问题,需要通过校正方法修正信号的偏差和失真。
5. 信号补偿:对于由于信道衰减、不完美的传输介质等因素引起的信号衰减和失真,需要通过补偿方法进行修复。
补偿手段
包括均衡、增益补偿、时钟回复等。
通过以上步骤的综合应用,信号恢复原理能够在很大程度上提高信号质量和还原度。
然而,鉴于信号传输过程中可能存在的复杂和多样化的干扰因素,实际的信号恢复往往需要结合具体应用场景进行优化和调整。
因此,在实际应用中,针对特定信号类型和环境条件,可能会有不同的信号恢复原理和方法。
连续信号的采样和恢复

电 子 科 技 大 学实 验 报 告(二)学生姓名: 学 号: 指导教师:实验室名称:信号与系统实验室 一、 实验项目名称:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.4-1所示。
可以证明,奈奎斯特采样定理仍然成立。
⊗)x t )(t P T )图3.4-1 实际采样和恢复系统采样脉冲:其中,T s πω2=,2/)2/sin(τωτωτs s k k k T a =,T <<τ。
采样后的信号: ∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。
四、实验目的与任务:()()2()FT T ksk p t P j a k ωπδωω+∞=-∞←−→=-∑目的:1、使学生通过采样保持电路理解采样原理。
2、使学生理解采样信号的恢复。
任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。
五、实验内容:1、采样定理验证2、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。
七、实验步骤:打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
【1.采样定理验证】1、连接接口区的“输入信号1”和“输出信号”,如图1所示。
图1 观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。
按“F4”键把采样脉冲设为10kHz。
3、点击SSP软件界面上的按钮,观察原始正弦波。
4、按图2的模块连线示意图连接各模块。
自动控制原理--信号的采样与复现

例1 设 e(t) 1(t) ,试求 e* (t) 的拉氏变换。
解:显然,对于给定的 e(t),其拉式变换
为 E(s) 1 ,根据式(8-6)定义,可得
s
E* (s) e(kT ) ekTs 1 eTs e2Ts k 0
这是一个无穷等比级数,公比为eTs,求
级数和可得闭合形式
E*(s)
例3 xt Asin 0t ,求x t 和 X s 。
解:由拉式变换的一般公式,可得
L[x(t)] xs A0
s 2 02
所以 ,x(s)有两个极点 。t 0时 ,xt 0 ,
由式(8-7)得
X s
A0 T
s
1
jks 2
02
A0 T
s2
1 02
s
1
js 2
02
s
1
js 2
jT
e2
sin T
T
sin(T
/
2)
e
jT
2
T 2 2
T / 2
• 零阶保持器的频率特性如图所示
Gh j
Gh j
T
0
s
2s
3s
2
Gh j
3
• 零阶除了允许主频谱分量通过之外,还 允许一部分附加高频分量通过。因此复 现出的信号与原信号是有差别的。
4、小结
• 采样控制系统的结构; • 计算机控制的采样系统的优点; • 采样过程和采样定理; • 零阶保持器的传函和特性。
(4)随机采样:采样是随机进行的,没有固定的规律
1、信号的采样过程
et
e* t
e* t
et T e*t
0
0
t
信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。
信号的采样与恢复

一、实验目的和要求1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证采样定理。
二、实验内容和原理实验原理Array1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s(t)可以看成连续信号x(t)和一组开关函数s(t)的乘积。
s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s及其谐波频率2f s、3f s……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3、原信号得以恢复的条件是f s≥2f max,f s为采样频率,f max为原信号的最高频率。
当fs<2 f max时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使f s=2 f max,恢复后的信号失真还是难免的。
实验中选用f s<2 f max、f s=2 f max、f s>2 f max三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s必须大于信号最高频率的两倍。
4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。
除选用足够高的采样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成采样后信号频谱的混迭,但这也会造成失真。
如果实验选用的信号频带较窄,则可以不设前置低通滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:信号分析与处理 指导老师: 成绩: 实验名称:信号的采样与恢复 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的和要求
1. 了解信号的采样方法与过程以及信号恢复的方法。
2. 验证采样定理。
二、实验内容和原理 2.1信号的自然采样
采样信号为周期Ts ,宽度τ的矩形脉冲信号S(t)。
s(t)的傅里叶变换为: 2(t)Sa(
)()2
s s s
n S n T ωτ
πτ
δωω+∞
-∞
=
-∑ 采样的过程可以视为两个信号相乘:()()()s f t f t s t =
在频域中,1
()()()2Sa()()2
s s s s F F S n F n T ωωωπ
ωττωω+∞
-∞=
*=-∑
可以看到自然采样后的频谱除了左右平移采样信号的角频率ωs 外,还按取样函数Sa(x)的
规律衰减。
时域采样定理:如果采样信号的频率为fs ,原信号的最大频率为f m ,为了采样后信号的频谱不混叠,需要有fs ≥2f m 。
2.2信号的恢复
在不发生频谱混叠的时候,将信号通过的低通滤波器,理论上可以完全恢复原信号。
低通滤波器的截止频率略大于fm,即“频谱加窗”的方法。
如果发生了频谱混叠,则原信号的频谱不能完全被恢复,通过低通滤波器后输出的信号将产生失真。
本实验分别用500Hz三角波和正弦波作为输入信号,占空比50%和10%的0.4kHz、1kHz、2kHz、5kHz、10kHz的矩形脉冲作为采样信号,使用截止频率1kHz以及2kHz的低通滤波器,观察输出波形,验证采样定理。
实验中,受自然采样、实验滤波器效果的限制,恢复后的波形难免都会有失真。
三、主要仪器设备
PC一台、myDAQ设备一套、面包板一块、导线、电容、电阻若干。
四、操作方法和实验步骤
1.编辑波形文件:正弦波峰峰值4V、频率500Hz,与10kHz、幅值1V、占空比50%的方
波相乘,保存波形文件。
改变方波频率为5kHz、2kHz、1kHz、400Hz,重复以上过程。
改方波占空比为10%,重复以上过程。
改正弦波为峰峰值1V、频率500Hz三角波,重复以上过程。
共获得5*2*2=20个波形文件。
2.连接线路:
3.加载步骤1中生成的波形,打开slope,观察并保存两个通道的波形。
4.改变参数,变为截止频率2kHz的滤波器,重复步骤1-3。
共获得40个波形图。
5.参数:
1kHz滤波器:R1=R2=5.1kΩ,C1=C2=10nF (103) 仿真结果:截止频率约1.1kHz
2kHz滤波器:R1=2kΩ,R2=5.1kΩ,C1=C2=10nF(103)。
仿真结果:截止频率2kHz
五、实验数据记录与处理
正弦波峰峰值4V,矩形波幅值1V
参数1kHz滤波器2kHz滤波器
500Hz
正弦波
0.4kHz
50%矩形
波
500Hz
正弦波
0.4kHz
10%矩形
波
正弦波
1kHz 50%矩形
波
500Hz 正弦波
1kHz 10%矩形
波
500Hz 正弦波
2kHz 50%矩形
波
500Hz 正弦波
2kHz 10%矩形
波
正弦波
5kHz 50%矩形
波
500Hz 正弦波
5kHz 10%矩形
波
500Hz 正弦波
10kHz 50%矩形
波
500Hz 正弦波
10kHz 10%矩形
波
三角波
0.4kHz 50%矩形
波
500Hz 三角波
0.4kHz 10%矩形
波
500Hz 三角波
1kHz 50%矩形
波
500Hz 三角波
1kHz 10%矩形
波
三角波
2kHz 50%矩形
波
500Hz 三角波
2kHz 10%矩形
波
500Hz 三角波
5kHz 50%矩形
波
500Hz 三角波
5kHz 10%矩形
波
三角波
10kHz
50%矩形
波
500Hz
三角波
10kHz
10%矩形
波
六、实验结果与分析
6.1离散信号频谱的特点
1.离散信号的频谱是周期性的,是原信号频谱发生±ωs,±2ωs,±3ωs的延拓后
得到的。
ωs为采样角频率。
2.如果原始信号时周期信号,那么采样后获得的离散信号的频谱是离散的,如果原始
信号时非周期信号,采样后的离散信号频谱是连续的。
6.2比较正弦波和三角波采样后的频谱特点
1.正弦波的频谱是有限的。
如实验中500Hz的正弦波,其频谱的最大频率就是500Hz。
所以根据采样定理,采样频率大于1000Hz时,其频谱就不会发生混叠。
如果将采样后的信号通过理想的低通滤波器,理论上就可以完全恢复原信号。
2.三角波的频谱是无限的。
所以采样后,三角波的频谱发生了周期延拓,一定会发生混叠。
即使滤波器是理想的低通滤波器,也不能完全恢复原信号,只能说恢复后的信号比较接近原信号。
3.在实验中发现,对于矩形脉冲10kHz、占空比50%的情况,正弦波信号的恢复情况比三
角波信号好。
6.3比较矩形脉冲占空比10%和50%时采样的情况
矩形脉冲信号频率相同时,占空比越大,采样信号含的信息越多,通过同一个滤波器以后显示的波形也越接近原波形。
可以设想,如果占空比是100%,那么“采样”后的信号就是原信号。
从实验波形图中可以看到,占空比50%时,恢复后的波形锯齿较小、较为平滑,信号恢复的效果好于占空比10%。
6.4采样信号频率对信号恢复的影响
对比波形可以看出,同一原始信号,采样矩形脉冲占空比相同时,采样频率越高,信号恢复得越好。
因为采样频率高时,频谱发生延拓时相距较远。
对于频谱无限的信号,比如三角波信号来说,采样频率高时,发生混叠的就是频谱中幅度较小的分量,所以混叠现象对信号恢复的影响就较小。
6.5比较1kHz和2kHz的滤波器对信号恢复的影响
对比波形可以发现,通过截止频率2kHz的滤波器获得的波形,锯齿较大、不光滑,信号恢复的效果较差。
因为滤波器截止频率较高时,一些不需要的成分也能通过,导致波形失真更加明显。
而且,实验中的滤波器与理想滤波器有很大差别。
理想低通滤波器能完全抑制大于截止频率的成分。
而实际滤波器的幅频特性如图:
实际的低通滤波器不能完全抑制高频信号。
所以,采样信号通过滤波器后,总有一些高频成分没有被完全除去。
所以,实验中,即使采样频率达到10kHz,恢复后的信号仍然有一些失真。
七、实验心得体会
1.对滤波器电容电阻参数的选择,最好先进行仿真确认其截止频率。
2.实验中经常出现,波形的频率变为50Hz,或者两个通道的波形完全一致的情况。
我们
发现这应该是面包板和导线接触不良。
有时候调整一下导线的角度就能恢复正常。
实在调节不好时,就需要换一个插孔接线。
3.事先熟悉myDAQ和Labview相关软件的使用,以及面包板的构造,对实验有很大帮助。