数学鸡兔同笼PPT课件

合集下载

(新插图)人教版四年级下册小学数学 第1课时 鸡兔同笼课件

(新插图)人教版四年级下册小学数学 第1课时   鸡兔同笼课件
9 数学广角——鸡兔同笼
第 1 课 时 鸡兔同笼
人教版数学四年级下册课件
课时导入
我国古代数学名著《孙子算经》中记载了一道数学趣题——
“鸡兔同笼”问题。
笼子里有若干只鸡和兔。从上面
数,有35个头,从下面数,有94
只脚。鸡和兔各有几只?
你能用自己的语言描 述一下这道数学题吗?
课时导入
兔有几只脚? 鸡有几只脚?
(4-2),鸡的只数=鸡兔总数-兔的只数。 2.假设全是兔:鸡的只数=( 4×鸡兔总数-实际 脚数)÷
(4-2),兔的只数=鸡兔总数-鸡的只数。
当堂练习 努力总会有收获
2. 鸡兔同笼,已知鸡比兔多15只,鸡兔共有282只脚, 鸡、兔各多少只?
兔:(282-15×2)÷(2+4)=42(只) 鸡:42+15=57(只) 答:鸡有57只,兔有42只。
课堂总结 坚持-胜利
“鸡兔同笼”问题的解决方法:(假设法) 1.假设全是鸡:兔的只数=(实际脚数-2×鸡兔总数)÷
探索新知
笼子里有若干只鸡和兔,从上面数,有35个头; 从下面数,有94只脚。鸡和兔各有几只?
假设法: 假设笼子里全都是兔 35×4=140(只) 140-94=46(只) 4-2=2(只) 鸡:46÷2=23(只) 兔:35-23=12(只) 答:鸡有23只,兔有12只。
探索新知
归纳总结:
“鸡兔同笼”问题的解决方法:(假设法) (1)假设全是鸡,脚的只数比实际少,原因是把若干只兔 当成若干只鸡算了。 公式:兔的只数=(实际脚数-2×鸡兔总数)÷(4-2), 鸡的只数=鸡兔总数-兔的只数。
探索新知
方法一:列表法
鸡 8 7 6 5 43
兔0 12 3 45
脚 16 18 20 22 24 26

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件

列方程 笼子里有若干只鸡和兔,从上面数, 有8个头;从下面数,有26条腿。鸡和 兔各有几只?
鸡+兔=8只 鸡的腿+兔的腿=26条腿
解:设兔有X只,鸡有(8-X)只。 4X+2(8-X)=26 4X+16-2X=26 16+2X=26 2X=26-16 X=5 鸡:8-5=3(只)
答:笼子里有鸡3只,有兔5只。
鸡+兔=8只 鸡的腿+兔的腿=26条腿
解:设兔有X只,鸡有(8-X)只。 4X+2(8-X)=26 4X+16-2X=26 16+2X=26 2X=26-16 X=5
笼子里有若干只鸡和兔,从上面数, 有8个头;从下面数,有26条腿。鸡和 兔各有几只?
鸡+兔=8只 鸡的腿+兔的腿=26条腿
解:设兔有X只,鸡有(8-X)只。 4X+2 +(8-X)=26 4X+16-2X=26 16+2X=26 2X=26-16 X=5 鸡:8-5=3(只)
数,有8个头,从下面数,有26只脚.鸡 ? ?
和兔各有几只?
??
方法一 方法二 列表法 假设法
鸡兔同笼
笼子里有若干只 鸡和兔,从上面数, 有8个头;从下面数, 有22只脚。鸡和兔各 有几只?
1、 鸡和兔共8只。 2、 鸡和兔共有26只脚。 3、 鸡有2只脚。 4、 兔有4只脚。
笼子里有若干只鸡和兔.从上面数,有8个头, 从下面数,有22只脚.鸡和兔各有几只? 列表法:
全班42人去公园划船, 一共租了10只船。每只大船 坐5人,每只小船坐3人。大、 小船各租了几只?
你能用刚学过的假设的方法 来解决这个问题吗?
假设10只船都是大船:

鸡兔同笼ppt免费课件

鸡兔同笼ppt免费课件

05
如何教授鸡兔同笼问题
教授给小学生的方法
1 2
3
故事化教学
将鸡兔同笼问题转化为一个有趣的故事,通过故事情节引导 学生进入问题情境,增加学习的趣味性。
实物演示
准备一些小玩具或道具,模拟鸡和兔子的数量及动作,帮助 学生直观理解问题。
画图法
教会学生使用简单的图形和线条表示鸡和兔子,通过画图来 理解数量关系。
$number {01}
鸡兔同笼问题
目录
• 鸡兔同笼问题简介 • 鸡兔同笼问题的解决方法 • 鸡兔同笼问题的变种与扩展 • 鸡兔同笼问题的实际应用 • 如何教授鸡兔同笼问题 • 鸡兔同笼问题的趣味性和挑战性
01
鸡兔同笼问题简介
起源与背景
01
鸡兔同笼问题起源于中国古代的 数学趣题,最早的记录可以追溯 到《孙子算经》等古代数学著作 。
例如,题目中给出笼子里有35个头和80只脚,我们可以假设所有的动物都是鸡,那么应该有35只鸡和0只兔,但是这样就会 有70只脚而不是80只脚,所以我们需要增加兔子的数量来使得脚的数量符合题目要求。通过调整我们可以得出实际的鸡和兔 的数量。
03
鸡兔同笼问题的变种与扩展
多个笼子的问题
多个笼子的情况
当有多个笼子,每个笼子里有不 同种类的动物和不同数量的腿时 ,需要分别对每个笼子进行推理 和计算,最后汇总结果。
系统分析
在科学研究和工程领域,系统分析是非 常重要的一环。解决鸡兔同笼问题所使 用的逻辑推理和系统分析方法,可以应 用于更复杂的工程系统和科学问题。
VS
优化问题
在解决优化问题时,我们常常需要设定一 些条件并求解满足这些条件的解。鸡兔同 笼问题的解决方法可以提供一种有效的思 路和方法来解决这类优化问题。

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件
学生可以通过参加数学竞赛或 数学俱乐部等活动,与其他学 生交流学习心得和解题经验, 提高自己的数学水平。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
该问题描述了一个笼子中鸡和兔共存的情况,需要通过给定的条件求解未知数。
鸡兔同笼问题具有很高的数学价值和教育意义,是锻炼逻辑思维和代数思维的良好 素材。
问题引入
通过展示一个实际的鸡兔同笼场 景,引起学生的兴趣和好奇心。
提出“如何确定笼子中鸡和兔的 数量”的问题,引导学生思考并
进入主题。
简要介绍解题方法,让学生对后 续内容产生期待。
2023-2026
ONE
KEEP VIEW
《鸡兔同笼》ppt课件
汇报人:可编辑
REPORTING
2023-12-26
CATALOGUE
目 录
• 引言 • 问题描述与建模 • 鸡兔同笼问题的解法 • 鸡兔同笼问题的变种 • 实际应用与启示 • 结论
PART 01
引言
背景介绍
鸡兔同笼问题是中国古代数学中的经典问题,最早出现在《孙子算经》中。
对生活的启示
学会转换思维
在面对复杂问题时,可以尝试从不同 的角度去思考,将问题简化。
重视基础知识的积累
基础知识是解决复杂问题的关键,只 有掌握了扎实的基础知识,才能更好 地解决实际问题。
对数学学习的启示
培养数学思维
通过解决“鸡兔同笼”这类问题 ,可以培养数学思维,提高逻辑 推理能力。
学会举一反三
举例说明
解法:首先列出方程组来表示问题,然后解方程组求解 。
逻辑推理法:根据动物的特性(如只有鸡有两只脚,兔 子有四只脚)和给定的条件,通过逻辑推理来求解。

鸡兔同笼(共24张PPT)

鸡兔同笼(共24张PPT)

5 3a 4b 7;
6 2x 10 0.
练一练:
2.如果方程 2 xm1 3 y 2mn 1 是二元一
次方程,那么m= 2 ,n= -3 .
方程 x+y=8 和 5x+3y=34中,x的含义相同吗?y呢?
x,y的含义分别相同,因而x,y必须同时满足方程 x+y=8 和
每张成人票5元,每 张儿童票3元.他们 到底去了几个成人、 几个儿童呢?
设他们中有 x个成人, y个儿童.由此你能得到 怎样的方程?
x y 8

5 x 3 y 34
想一想
x-y=2 x+y=8
x+1=2(y-1)
5x+ 3y=34
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1
老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢? 老牛的包裹数-小马的包裹数=2个 x-y=2 若老牛从小马的背上拿来1个包裹,这时它们各有几个包裹?由 此你又能得到怎样的方程呢? 老牛的包裹+1=(小马驮的包裹数-1)×2 x+1=2(y-1)
昨天,我们8个人 去红山公园玩,买门 票花了34元.
解:设长为x厘米,宽为y厘米,则

解得
x-y=3 2(x+y)=14
x=5
{ y=2
当堂检测
1.在下列四组数值中,哪些是二元一次方程 的解?
x 3y 1
( A)
x 2, y 3;
(B)
(C)
x 10, y 3;
( D)
x 4, y 1; x 5, y 2.

x=6 y=2
x=5 ,y =3 是否为方程 x+y =8

鸡兔同笼课件(共18张PPT)

鸡兔同笼课件(共18张PPT)
兔的脚的数量×鸡 兔的总数量-实际脚的数量)÷(每只 兔的脚的数量-每只鸡的脚的数量) 兔的数量=鸡兔的总数量-鸡的数量
返回
数学广角——鸡兔同笼 鸡兔同笼
方法四:抬腿法—鸡抬起一只脚 (1)假如让鸡抬起一只脚,兔子抬起两只脚,
还有 26÷2=13只脚。 (2)脚的总数-头的总数=兔子的只数。13-8=5(只)
(26-8×2)÷(4-2) = (26-16)÷2 =10÷2 =5 (只) 鸡的数量:8-5=3 (只) 答:5只兔子,3只鸡。
返回
数学广角——鸡兔同笼 鸡兔同笼
方法三:假设法
假设笼子里全是兔
笼子里脚的数量是:8×4=32(只)
与实际相差32-26=6(只)
每只鸡多算了2 只,6÷2=3 (只)就是鸡的数量。
返回
数学广角——鸡兔同笼 鸡兔同笼
课后作业 课本: 第105页第2题
返回
(8×4-26)÷(4-2) =(32-26)÷2 =6÷2 =3(只) 兔子的数量:8-3=5(只) 答:5只兔子,3只鸡。
返回
数学广角——鸡兔同笼 鸡兔同笼
方法三:假设法
假设笼子里全是鸡
兔的数量=(实际脚的数量-每只鸡 的脚的数量×鸡兔总数)÷(每只兔 的脚的数量-每只鸡的脚的数量) 鸡的数量=鸡兔的总数量-兔的数量
课堂练习
有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、 鹤各有多少只?
理解题意 ① 如果都是龟,就有40×4=160条
腿,比题目中多160-112=48条腿。 ② 那么需要用鹤换龟,换上一只鹤, 腿的总数就少2条,有48÷2=24只鹤。 ③ 所以有40-24=16只龟。
返回
数学广角——鸡兔同笼 鸡兔同笼
已知条件:有35个头, 有94只脚。

《鸡兔同笼》ppt课件

《鸡兔同笼》ppt课件
题的准确性和效率。
06 问题拓展与延伸
鸡兔同ห้องสมุดไป่ตู้问题变形
变形一
已知头数和腿数,求鸡兔各多少只。
变形二
已知鸡兔总数和腿数差,求鸡兔各多少只。
变形三
已知鸡兔互换后总腿数的变化,求鸡兔各多少只 。
其他类似数学问题介绍
百僧分馍问题
一百个和尚分一百个馒头,大和尚一人分三个,小和尚三 人分一个,正好分完。问大和尚和小和尚各有多少人?
01
02
03
04
城市规划
运用数学建模思想,可以合理 规划城市布局,优化交通网络
,提高城市运行效率。
经济学
数学建模在经济学中广泛应用 ,如预测市场趋势、分析消费 者行为、制定经济政策等。
工程学
在工程学中,数学建模可以帮 助工程师设计更稳定、更高效 的建筑结构、机械系统等。
医学
数学建模在医学领域也有应用 ,如预测疾病传播、分析药物
验证答案正确性
验证方法
将求得的鸡和兔的数量代入原方程组,检验是否满足题目条件。
注意事项
在验证答案时,要确保代入后的等式左右两边相等,否则需要重新检查求解过程。
05 图形法解题步骤与技巧
绘制图形表示鸡兔数量关系
绘制基本图形
用圆形表示动物头部,用 竖线表示动物身体,用两 条斜线表示鸡的脚,用四 条斜线表示兔的脚。
《鸡兔同笼》ppt课 件
目录
• 问题引入 • 解题思路与方法 • 假设法解题步骤与技巧 • 方程法解题步骤与技巧 • 图形法解题步骤与技巧 • 问题拓展与延伸
问题引入
01
古代数学问题
01
算术问题
古代数学问题多以算术为主,涉及整数、分数、比例等 计算。

鸡兔同笼完整ppt课件

鸡兔同笼完整ppt课件

鸡兔同笼问题的介绍和 背景。
02
鸡兔同笼问题介绍
问题来源
中国古代数学问题
鸡兔同笼问题是中国古代著名的数学问题之一,最早见于《孙子 算经》。
现实生活中的应用
除了在数学领域,鸡兔同笼问题在现实生活中也有广泛应用,如 物流、经济等领域。
问题描述
笼子里的鸡和兔
一个笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚。问 笼中鸡和兔各有多少只?
鸡兔同笼完整ppt课件

CONTENCT

• 引言 • 鸡兔同笼问题介绍 • 假设法解题 • 方程法解题 • 图形法解题 • 多种方法比较与总结
01
引言
课件背景
鸡兔同笼问题是中国古代著名的数学问题之一,具 有悠久的历史和广泛的应用。
该问题涉及到方程式的建立和求解,是锻炼学生逻 辑思维和数学能力的好素材。
本课件旨在通过讲解鸡兔同笼问题的解法,帮助学 生掌握相关数学知识和方法。
课件目的
02
01
03
让学生了解鸡兔同笼问题的历史背景和现实意义。
帮助学生掌握方程式的建立和求解方法。
培养学生的逻辑思维和数学能力,提高学生的数学素 养。
课件内容概述
方程式的建立和求解方 法。
多种解法的比较和分析 。
相关数学知识和方法的 拓展和应用。
列表法
适用于数量较少,易于列出所有可能组合的 情况。
假设法
适用于可以通过合理假设简化问题的情况。
画图法
适用于形象直观,需要直观理解问题的情况 。
方程法
适用于需要精确计算,且具备一定数学基础 的情况。
总结与启示
不同方法各有优缺点,应根据 实际情况选择合适的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+2 +2 +2 +2 +2
.
9
二、探究新知
(1)假设笼子里都是鸡。
+2 +2 +2 +2 +2
8×2=16(只)
Hale Waihona Puke 26-16=10(只)4-2=2(只)
兔:10÷2=5(只)
鸡:8-5=3(只)
.
10
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只? (2)假设笼子里都是兔。
鸡和兔共8只,鸡和兔共有26只脚。
鸡有2只脚,兔有4只脚。
.
7
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只? 列表法:
将一只 将一只
换成 一只
, 则脚的数量增加2。
换成一只
.
, 则脚的数量减少2。
8
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只? (1)假设笼子里都是鸡。
笼子里有若干只鸡和兔,从上面数,有35个头, 从下面数,有94只脚。鸡和兔各有几只?
列表法:
答:鸡有23只,兔有12只。
.
14
三、知识运用
笼子里有若干只鸡和兔,从上面数,有35个头, 从下面数,有94只脚。鸡和兔各有几只?
假设法: 假设笼子里全都是鸡
35×2=70(只) 94-70=24(只) 4-2=2(只) 兔: 24÷2=12(只)
鸡和兔共8只,鸡和兔共有26只脚。
鸡有2只脚,兔有4只脚。
.
5
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只?
鸡和兔共8只,鸡和兔共有26只脚。
鸡有2只脚,兔有4只脚。
.
6
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只?
第九单元 数学广角—— 鸡兔同笼
鸡兔同笼(一)
北京市东城区和平里第四小学 陈 英
.
1
一、情境导入
大约一千五百年前,我国古代数学名著《孙子 算经》中记载了一道数学趣题——鸡兔同笼。
.
2
一、情境导入
zhì
今有雉兔同笼,上有三十五头, 下有九十四足,问雉兔各几何?
雉:野鸡。
笼子里有若干只鸡和兔,从上面数,有35个头, 从下面数,有94只脚。鸡和兔各有几只?
答:鸡有23只,兔有12只。
.
16
四、全课小结
这节课我们一起用列表法和 假设法研究了古代著名的“鸡兔 同笼”问题。你学会了吗?
.
17
-2 -2 -2
.
11
二、探究新知
(2)假设笼子里都是兔。
-2 -2 -2
8×4=32(只)
32-26=6(只)
4-2=2(只)
鸡:6÷2=3(只)
兔:8-3=5(只)
.
12
二、探究新知
假设法: (1)假设笼子里都是鸡。
+2 +2 +2 +2 +2
(2)假设笼子里都是兔。
-2 -2 -2
.
13
三、知识运用
鸡: 35-12=23(只)
答:鸡有23只,兔有12只。
.
15
三、知识运用
笼子里有若干只鸡和兔,从上面数,有35个头, 从下面数,有94只脚。鸡和兔各有几只?
假设法: 假设笼子里全都是兔
35×4=140(只) 140-94=46(只) 4-2=2(只) 鸡: 46÷2=23(只)
兔: 35-23=12(只)
.
3
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只?
从题中你们能获取哪些信息? 和生活常识联系在一起,你还能说出哪些信息?
鸡和兔共8只,鸡和兔共有26只脚。
鸡有2只脚,兔有4只脚。
.
4
二、探究新知
笼子里有若干只鸡和兔。从上面数,有8个头, 从下面数,有26只脚。鸡和兔各有几只?
相关文档
最新文档