【精选资料】深圳中考一模数学试题及答案
【中考数学】2024届广东省深圳市南山区模拟试题(一模)含答案

...A.35°A.甲、乙、丙A.2个二.填空题(共5小题,满分11.(3分)分解因式:第13题14.(3分)如图,在Rt第14题15.(3分)如图,在正方形ABCD第15题三.解答题(共7小题,满分16.(9分)解下列方程.18.(7分)为喜迎中国共产党第二十次全国代表大会的召开,某中学举行党史知识竞赛.团(4)(3分)若在这次竞赛中有A 、B 、C 、D 四人成绩均为满分,现从中抽取2人代表学校参加区级比赛,请用列表或画树状图的方法求出恰好抽到A 、C 两人同时参赛的概率.19.(7分)某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过市场调查,每月的销售量(件)与每件的售价(元)之间满足如图所示的函y x 数关系.(1)求每月的销售量(件)与每件的售价(元)之间的函数关系式;(不必写出自变量y x 的取值范围)(2)物价部门规定,该防护品每件的利润不允许高于进货价的.设这种防护品每月的30%总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?w20.(8分)如图,AB 是的直径,CD 是的弦,,垂足是点,过点O e O e AB CD ⊥H 作直线分别与AB ,AD 的延长线交于点,,且.C E F 2ECD BAD ∠=∠(1)(4分)求证:CF 是的切线;O e (2)(4分)若,.求AE 的长.20AB =12CD =21.(9分)数形结合是解决数学问题的重要方法22.(9分)【问题】(1)(3分)如图点,以CE为边在CE的右侧作正方形(2)如图,四边形ABCD 是矩形,,,点是AD 边上的一个动点,3AB =6BC =E 【探究】(4分)①如图2,以CE 为边在CE 的右侧作矩形CEFG ,且,连接:1:2CG CE =DG 、BE ,求证:;DG BE ⊥【拓展】(3分)②如图3,以CE 为边在CE 的右侧作正方形CEFG ,连接DF 、DG ,则面积的最小值为______.DFG △,DMC BHC Q △≌△BCD ∠=,,MC HC ∴=DM BH =CDM ∠,90MBH ∴∠=︒90MCH ∠=︒,,,,1212DM MG BG a ∴++==1a ∴=3BG ∴=5MG =,,,MGC NGB ∠=∠Q 45MNG GBC ∠=∠=︒MGN CGB ∴△△∽,GC MGGB NG∴=.故1515CG NG BG MG ∴⋅=⋅=三.解答题(共7小题,满分55分)16.(1),(2)-214x =-21x =17.m18.50;144.319.【分析】(1)由图象可知每月销售量(件)与售价(元)之间为一次函数关系,设其y x 函数关系式为,用待定系数法求解即可;(0,50)y kx b k x =+≠≥(2)由题意得关于的二次函数,将其写成顶点式,根据二次函数的性质可得答案.w x 解:(1)由图象可知每月销售量(件)与售价(元)之间为一次函数关系,设其函数关y x 系式为,(0,50)y kx b k x =+≠≥将,代入,得:(60,600)(80,400)6060080400k b k b +=⎧⎨+=⎩解得:,101200k b =-⎧⎨=⎩每月销售(件)与售价(元)的函数关系式为;∴y x 101200y x =-+(2)由题意得:,(101200)(50)w x x =-+-210170060000x x =-+-210(85)12250x =--+,当时,随的增大而增大,100-<Q ∴85x ≤w x 该防护品的每件利润不允许高于进货价的30%,,即,Q 50(130%)x ∴≤⨯+65x ≤当时,取得最大值:最大值.∴65x =w 210(6585)122508250=-⨯-+=售价定为65元可获得最大利润,最大利润是8250元.∴20.(1)见解答;(2);45221.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数的图象,根据图象即可21(21)3y x =---+22.解:(1)结论:,DG BE =DG ⊥理由:延长GD 交BE 的延长线于,H 正方形ABCD ,,,Q CD CB ∴=90BCD ∠=︒正方形ECGF ,,,,Q CG CE ∴=90ECG ∠=︒90ECG BCD ∴∠=∠=︒DCG BCE∴∠=∠在和中,DCG △BCE △CD CB DCG BCECG CE =⎧⎪∠=∠⎨⎪=⎩,,(SAS)DCG BCE ∴△≌△DG BE ∴=CDG CBE∠=∠,,90CBE ABE ∠+∠=︒Q 90CDG EDH ∠+∠=︒ABE EDH ∴∠=∠,,AEB HED ∠=∠Q 90EHD A ∴∠=∠=︒DG BE∴⊥故,;DG BE =DG BE ⊥(2)①证明:如图2中,延长BE 、GD 相交于点.H 四边形ECGF 、四边形ABCD 都是矩形,,Q 90ECG BCD ∴∠=∠=︒,DCG BCE ∴∠=∠,,,:2:41:2CD CB ==Q :1:2CG CE =::CD CB CG CE ∴=,,DCG BCE ∠=∠Q DCG BCE ∴△△∽,,,12DG CG BE CE ∴==BEC DGC ∠=∠12DG BE ∴=四边形ECGF 是矩形,,Q 90FEC FGC F ∴∠=∠=∠=︒,,18090HEF BEC FEC ∴∠+∠=︒-∠=︒90FGH DGC ∠+∠=︒,.90H F ∴∠=∠=︒DG BE ∴⊥②设,DE x =,DFG DFE CDG CDE CEFG S S SS S =---△△△△正方形,12DFE CDG CEFG S SS +=Q △△正方形,,12DFGCDE CEFG S S S ∴=-△△正方形()22113322x x =+-⨯21327228x ⎛⎫=-+ ⎪⎝⎭当时,面积最小,最小面积是,32x =278故.278。
广东省深圳市中考数学一模试题解析版

广东省深圳市中考数学一模试题一、单选题1.如图,该几何体的左视图是()A.B.C.D.2.一元二次方程x2﹣x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.若与都是反比例函数图象上的点,则a的值是()A.4B.-4C.2D.-24.解一元二次方程x2﹣2x=4,配方后正确的是()A.(x+1)2=6B.(x﹣1)2=5C.(x﹣1)2=4D.(x﹣1)2=85.在平面直角坐标系中,将抛物线y=x2向上平移2个单位长度,再向右平移1个单位长度,得到的抛物线的解析式是()A.y=(x﹣1)2+2B.y=(x﹣1)2﹣2C.y=(x+1)2﹣2D.y=(x+1)2+26.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为时,标准视力表中最大的“ ”字高度为,当测试距离为时,最大的“ ”字高度为()mmA.4.36B.29.08C.43.62D.121.177.如图,△ABC的顶点A.B.C均在△O上,若△ABC+△AOC=90°,则△AOC的大小是()A.30°B.45°C.60°D.70°8.下列命题:①有一个角等于100°的两个等腰三角形相似;②对角线互相垂直的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=bx+c在同一坐标系内的大致图象是()A.B.C.D.10.如图,△ABC中,△ABC=45°,BC=4,tan△ACB=3,AD△BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A.B.C.D.2二、填空题11.方程x2﹣2x=0的解为.12.如图,在中,,,,则的值是.13.一个不透明的布袋里装有3个只有颜色不同的球,其中1个红球,2个白球,从布袋里摸出1个球,则摸到的球是红球的概率是.14.如图,反比例函数的图象经过菱形OABD的顶点A和边BD的一点C,且,若点D的坐标为(8,0),则k的值为.15.如图,在正方形ABCD中,,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN△CM,交线段AB于点N.连接NC交BD于点G.若BG:MG=3:5,则NG△CG的值为.三、解答题16.计算:4cos30°﹣tan245°+|1|+2sin60°.17.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC OA交x轴于C.则=.18.如图为某学校门口“测温箱”截面示意图,当身高1.7米的小聪在地面M处时开始显示额头温度,此时在额头B处测得A的仰角为45°,当他在地面N处时,此时在额头C处测得A的仰角为58°,如果测温箱顶部A处距地面的高度AD为3.3米,求B、C两点的距离.(结果保留一位小数,sin58°≈0.8,cos58°≈0.5,tan58°≈1.6)19.如图,在Rt△ABC中,△ACB=90°,点D是边AB上一点,以BD为直径的△O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为△O的切线;(2)若CF=1,tan△EDB=2,求△O的半径.20.某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)设每月获得的利润为W(元).这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?21.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.(1)①如图1,若四边形ABCD是正方形,且DE△CF于G,则;②如图2,当四边形ABCD是矩形时,且DE△CF于G,AB=m,AD=n,则;(2)拓展研究:如图3,若四边形ABCD是平行四边形,且△B+△EGC=180°时,求证:;(3)解决问题:如图4,若BA=BC=5,DA=DC=10,△BAD=90°,DE△CF于G,请直接写出的值.22.如图,在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的解析式;(2)如图1,点D,E是线段BC上的两点(E在D的右侧),,过点D作DP△y轴,交直线BC上方抛物线于点P,过点E作EF△x轴于点F,连接FD,FP,当△DFP面积最大时,求点P的坐标及△DFP面积的最大值;(3)如图2,在(2)取得面积最大的条件下,连接BP,将线段BP沿射线BC方向平移,平移后的线段记为B'P',G为y轴上的动点,是否存在以B'P'为直角边的等腰Rt△GB'P'?若存在,请直接写出点G的坐标,若不存在,请说明理由.答案解析部分【解析】【解答】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确;故选:C.【分析】根据从左边看得到的图形是左视图,可得答案.【解析】【解答】解:∵根的判别式,∴方程有两个不相等的实数根.故答案为:A.【分析】利用一元二次方程根的判别式求解即可。
2024年广东省深圳市南山区初三一模数学试题含答案解析

2024年广东省深圳市南山区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.−2023C.12023D.−12023【答案】B【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A表示的数是2023,OA=OB,∴OB=2023,∴点B表示的数是−2023,故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是().A.B.C.D.【答案】D【分析】根据中心对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C. 不是中心对称图形,故此选项不合题意;D. 是中心对称图形,故此选项符合题意;【点睛】本题考查的是中心对称图形.中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A .0.186×105B .1.86×105C .18.6×104D .186×103【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:将数据186000用科学记数法表示为1.86×105;故选B【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.4.一技术人员用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB =90°,点D 为边AB 的中点,点A 、B 对应的刻度为1、7,则CD =( )A .3.5cmB .3cmC .4.5cmD .6cm 【答案】B【分析】本题考查直角三角形性质,涉及直角三角形斜边上的中线等于斜边的一半,读懂题意,直接利用直角三角形性质求解即可得到答案,熟记直角三角形斜边上的中线等于斜边的一半是解决问题的关键.【详解】解:由题意可知,AB =7−1=6cm ,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,则CD =12AB =62=3cm ,故选:B .5.一元一次不等式组x−2>1x <4的解集为( )A .−1<x <4B .x <4C .x <3D .3<x <4【答案】D第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:x−2>1①x<4②解不等式①得:x>3结合②得:不等式组的解集是3<x<4,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°【答案】C【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵AB∥OF,∴∠1+∠BFO=180°,∴∠BFO=180°−155°=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠BFO=30°+25°=55°;故选:C.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形的其中一个内角是72°D.单项式πab2的次数是43【答案】B【分析】本题考查命题真假的判断,涉及同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识,根据相关定义与性质逐项验证即可得到答案,熟记同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识是解决问题的关键.【详解】解:A、根据同位角定义与性质,当两条直线平行时,同位角才相等,故选项说法错误,不是真命题,不符合题意;B、根据菱形定义与性质,菱形的四条边相等,故选项说法正确,是真命题,符合题意;=72°,从而由正多边形外角与其C、由正五边形外角和为360°,则每一个外角均为360°5相应内角和为180°即可得到正五边形的其中一个内角是180°−72°=108°,故选项说法错误,不是真命题,不符合题意;D、单项式πab2的次数是3而不是4,故选项说法错误,不是真命题,不符合题意;3故选:B.8.某校篮球队有20名队员,统计所有队员的年龄制成如下的统计表,表格不小心被滴上了墨水,看不清13岁和14岁队员的具体人数.年龄(岁)12岁13岁14岁15岁16岁人数(个)283在下列统计量,不受影响的是()A.中位数,方差B.众数,方差C.平均数,中位数D.中位数,众数【答案】D【分析】根据频数表可知,年龄为13岁与年龄为14岁的频数和为7,即可知出现次数最多的数据及第10、11个数据的平均数,可得答案.【详解】解:由表可知,年龄为13岁与年龄为14岁的频数和为20−2−8−3=7,故该组数据的众数为15岁,总数为20,按大小排列后,第10个和第11个数为15,15,则中位数为:15+152=15岁,故统计量不会发生改变的是众数和中位数,故选:D.【点睛】本题考查频数分布表及统计量的选择,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,驽马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.x240=x+12150B.x240=x150−12C.240(x−12)=150x D.240x=150(x+12)【答案】D【分析】设快马x天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x天可追上慢马,由题意得240x=150(x+12)故选:D.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.10.在平面直角坐标系xoy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.若m<n<c,则t的取值范围是()A.32<t<2B.1<t<3C.0<t<1D.12<t<1【答案】A【分析】本题考查二次函数的性质,二次函数图象上点的坐标特征,根据m<n<c,可得出a+b+c<9a+3b+c<c,解得3a<−b<4a,进而可确定t的取值范围,函数图象上点的坐标满足函数解析式是解题的关键.【详解】解:∵m<n<c,二、填空题11.若a2=3b,则ab=.【答案】6【分析】本题考查比例性质,交叉相乘即可得到答案,熟记比例性质是解决问题的关键.【详解】解:∵a2=3b,∴ab=2×3=6,故答案为:6.12.已知一元二次方程x2−5x+2m=0有一个根为2,则另一根为.【答案】3【分析】本题考查一元二次方程根与系数的关系,根据题意,设另一个根为a,则由根与系数的关系得到a+2=5,解得a=3,熟练掌握一元二次方程根与系数的关系是解决问题的关键.【详解】解:∵一元二次方程x2−5x+2m=0有一个根为2,设另一个根为a,∴a+2=5,解得a=3,故答案为:3.13.如图,一束光线从点A(−2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m−n的值是.由题意知,∠ABG=∠CBF ∴△AGB∼△CFB∴BF CF =BGAG∵A(−2,5),B(0,1)∴AG=2,BG=5−1=4∴BF CF =BGAG=214.如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=kx (k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.【详解】解:设C a,∵⊙A 与x 轴相切于点B ,∴BC ⊥x 轴,15.如图,在四边形ACBD 中,对角线AB 、CD 相交于点O ,∠ACB =90°,BD =CD 且sin ∠DBC =35,若∠DAB =2∠ABC ,则AD AB 的值为 .设∠ABC=α,∠ABD=β,∴∠DAB=2∠ABC=2α,∠DBC ∵BD=CD,DE⊥BC,三、解答题16.计算:|−3|−(4−π)0−2sin60°+.【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】=4.【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.先化简x−1−÷x2−4,然后从−1,1,−2,2中选一个合适的数代入求x2+2x+1值.【答案】x+1,2【分析】本题考查分式化简求值,涉及通分、因式分解、分式加减乘除混合运算、约分、分式有意义的条件等知识,先将分式分子分母因式分解、再由分式加减乘除混合运算法则,利用通分、约分化简,再根据分式有意义的条件取得x的值,代值求解即可得到答案,熟练掌握分式加减乘除混合运算法则,根据分式有意义的条件取值是解决问题的关键.【详解】18.2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m的值为______;(2)补全条形统计图;(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【详解】(1)解:根据题意得,本次抽取的人数为:5÷10%=50人,∵B组人数为15人,∴15÷50×100%=30%,故答案为:50;30;(2)解:C组人数为:50-10-15-5=20人,补全统计图如图所示:(3)(4)【点睛】题目主要考查条形统计图与扇形统计图,列表法或树状图法求概率,用样本估计总体等,理解题意,综合运用这些知识点是解题关键.19.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?【答案】(1)甲型自行车利润为150元,一台乙型自行车利润为100元(2)最少需要购买10台甲型自行车【分析】本题考查二元一次方程组及一元一次不等式解实际应用题,涉及解二元一次方程组、解一元一次不等式等知识,读懂题意,准确列出方程组及不等式求解是解决问题的关键(1)设一台甲型自行车利润为x元,一台乙型自行车利润为y元,读懂题意,找准等量关系列二元一次方程组求解即可得到答案;(2)设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,读懂题意,找到不等关系列不等式求解即可得到答案.【详解】(1)解:设一台甲型自行车利润为x元,一台乙型自行车利润为y元,由题意可得3x+2y=650x+2y=350,解得x=150y=100,∴甲型自行车利润为150元,一台乙型自行车利润为100元;(2)解:设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,则由题意可得500x+800(20−x)≤13000,解得x≥10,∴最少需要购买10台甲型自行车.20.研究发现课堂上进行当堂检测效果很好,每节课40分钟,假设老师用于精讲的时间x(单位:分钟)与学生学习收益y1的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y2的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.(1)老师精讲时的学生学习收益y1与用于精讲的时间x之间的函数关系式为________;(2)求学生当堂检测的学习收益y2与用于当堂检测的时间x的函数关系式;(3)问“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量W最大?(W=y1+y2)【答案】(1)y1=2x(0≤x≤40)(2)y2=−x 2+16x(0≤x≤8) 64(8<x≤20)(3)精讲33分钟,当堂检测7分钟【分析】本题考查了待定系数法求一次函数的解析式的运用,二次函数的运用,顶点式求二次函数的最大值的运用,解答时求出二次函数的解析式是关键.(1)由图设该函数解析式为y1=kx,即可依题意求出y与x的函数关系式.(2)本题涉及分段函数的知识,需要注意的是x的取值范围依照分段函数的解法解出即可.(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟,用配方法的知识解答该题即可.【详解】(1)解:设y1=kx,把(1,2)代入,得k=2,∴y1=2x,自变量的取值范围为0≤x≤40,故答案为:y1=2x(0≤x≤40);(2)解:当0≤x≤8时,设y2=a(x−8)2+64,把(0,0)代入,得64a+64=0,解得a=−1.∴y2=−(x−8)2+64=−x2+16x.当8<x≤20时,y2=64,∴y2=−x 2+16x(0≤x≤8) 64(8<x≤20);(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟.当0≤x≤8时,w=−x2+16x+2(40−x)=−x2+14x+80=−(x−7)2+129.∴当x=7时,W最大=129.当8<x≤20时,W=64+2(40−x)=−2x+144.∵W随x的增大而减小,∴当x=8时,W最大=128,综合所述,当x=7时,W最大=129,此时40−x=33.即老师在课堂用于精讲的时间为33分钟,学生当堂检测的时间为7分钟时,学习收益总量最大.21.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB为直径的半圆O,MN为台面截线,半圆O与MN相切于点P,连结OP与CD相交于点E.水面截线CD=63cm,MN∥CD,AB=12cm.(1)如图(1)求水深EP;(2)将图(1)中的老碗先沿台面MN向左作无滑动的滚动到如图(2)的位置,使得A、C 重合,求此时最高点B和最低点P之间的距离BP的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时∠BOP=75°,求滚动过程中圆心O运动的路径长.【分析】本题考查圆的实际应用,涉及垂径定理、勾股定理、全等三角形的判定与性质、勾股定理、弧长公式等知识,熟练掌握圆的性质是解决问题的关键.(1)连结OC ,如图所示,由垂径定理及勾股定理求解即可得到答案;(2)过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示,利用三角形全等的判定与性质,结合勾股定理求解即可得到答案;(3)根据题意可知,滚动过程中圆心O 运动的路径长为AC 的长度,求出弧对的圆心角带入公式求解即可得到答案.【详解】(1) ∴CE =12CD =33cm ,在Rt △OCE 中,由勾股定理可得∴EP =OP−OE =6−3=3cm (2)解:过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示:∵AD ∥BF ,∴∠OAE =∠OBF ,在△AOE 和△BOF 中,∠OAE =∠OBF AO =BO ∠AOE =∠BOF,∴△AOE≌△BOF (ASA),(3)由(1)可知OE=3cm,OC在Rt△COE中,∠COE=60°∵∠BOP=75°,∴∠AOC=180°−60°−75°=由题意可得,圆心O运动的路径长为22.“转化”是解决数学问题的重要思想方法,通过构造图形全等或者相似建立数量关系是处理问题的重要手段.(1)【问题情景】:如图(1),正方形ABCD中,点E是线段BC上一点(不与点B、C重合),连接EA.将EA绕点E顺时针旋转90°得到EF,连接CF,求∠FCD的度数.以下是两名同学通过不同的方法构造全等三角形来解决问题的思路,①小聪:过点F作BC的延长线的垂线;②小明:在AB上截取BM,使得BM=BE;请你选择其中一名同学的解题思路,写出完整的解答过程.(2)【类比探究】:如图(2)点E是菱形ABCD边BC上一点(不与点B、C重合),∠ABC=α,将EA绕点E顺时针旋转α得到EF,使得∠AEF=∠ABC=α(a≥90°),则∠FCD的度数为______(用含α的代数式表示)(3)【学以致用】:如图(3),在(2)的条件下,连结AF,与CD相交于点G,当α=120°时,若DGCG =12,求BECE的值.【详解】解:(1)任选一个思路求解即可,下面两种思路求解如下:小聪解题思路:过点F作FG⊥BC交BC的延长线于点G,如图1,∵将EA绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∵FG⊥BC,∴∠G=90°=∠B=∠AEF,∴∠BAE+∠AEB=90°=∠AEB+∠FEC,∴∠BAE=∠FEC,∴△ABE≌△EGF(AAS),∴BE=CF,AB=EG,∵AB=BC,∴BC=EG,∴BE=CG,∴CG=FG,∴∠FCG=45°,∴∠FCD=45°;小慧解题思路:在AB上截取BM,使得BM=BE,连接EM,如图所示:∵BM=BE,AB=BC,∴∠BME=∠BEM=45°,AM=EC,∴∠AME=135°,又∵AE=EF,∠BAE=∠FEC,∴△AME≌△ECF(SAS),∴∠AME=∠ECF=135°,∴∠DCF=45°;(2)在AB上截取BM,使得BM=BE,连接EM,如图2,∵四边形ABCD是菱形,∠ABC=α,∴AB=BC,∠BCD=180°−α,∵BM=BE,∴AM=CE,∵将EA绕点E顺时针旋转α得到EF,∴AE=EF,∠AEF=∠B=α,∵∠AEC=∠AEF+∠FEC=∠B+∠BAE,∴∠BAE=∠CEF,∴△AEM≌△EFC(SAS),由(2)可知,△ANE≌△ECF,∴NE=CF,【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形,旋转性质,正方形的性质,菱形的性质,相似三角形的判定和性质,解直角三角形等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键.试题21。
深圳市初三中考数学一模模拟试题【含答案】

深圳市初三中考数学一模模拟试题【含答案】一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.在-2,0,1这四个数中,最小的数是()A.-2 B.0 C.1 D2.2018年河南省全年生产总值48055.86亿元,数据“48055.86亿”用科学记数法表示为()A.4.805586×104 B.0.4805586×105C.4.805586×1012 D.4.805586×10133.如图是由5个小立方块搭建而成的几何体,它的俯视图是()A.B.C.D.4.下列计算正确的是()A.a+a=a2 B.(2a)3=6a3 C.a3×a3=2a3 D.a3÷a=a25.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩6.为鼓励同学们阅读经典,了解同学们课外阅读经典名著的情况,在某年级随机抽查了20名同学每期的课外阅读名著的情况,调查结果如下表:A .中位数是10本B .平均数是10.25本C .众数是12本D .方差是07.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号和为4的概率是( )A.16 B .13 C .12 D .238.关于x 的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m >0且m≠1B .m >0C .m≥0且m≠1D .m≥09.如图,在平面直角坐标系中,A (0,),B (-2,0),C (2,0),过点B 作AC 的垂直平分线于点D ,则点D 的坐标为( )A .(1,1)B .(1C .1)D .(110.如图1,在△ABC 中,∠C=90°,动点P 从点C 出发,以1cm/s 的速度沿折线CA→AB 匀速运动,到达点B 时停止运动,点P出发一段时间后动点Q 从点B 出发,以相同的速度沿BC 匀速运动,当点P 到达点B 时,点Q 恰好到达点C ,并停止运动,设点P 的运动时间为ts ,△PQC 的面积为Scm2,S 关于t 的函数图象如图2所示(其中0<t≤3,3≤t≤4时,函数图象均为线段(不含点O ),4<t <8时,函数图象为抛物线的一部分)给出下列结论:①AC=3cm ; ②当S=65时,t=35或6.下列结论正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对二.填空题(每小题3分,共15分)11.计算:(13)0−|−2|=12.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为13.若不等式组11xx m<⎧⎨>-⎩没有解,则m的取值范围是14.如图,在△ABC中,∠ABC=90°,∠ACB=30°,BC=2,BC是半圆O的直径,则图中阴影部分的面积为15.如图,在△ABC中,∠C=90°,AC=4,BC=6,点D是BC上一动点,DE⊥AB,DF⊥BC,将△BDE沿直线DF翻折得到△B'E'D,连接AB',AE',当△AB'E'是直角三角形时,则BD=三.解答题(本大题共8个小题,满分75分)16.先化简,再求值:22113263x x xxx x++-⎛⎫÷-⎪--⎝⎭,其中x.17.随着手机普及率的提高,有些人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.某校学生会为了解学校初三年级学生使用手机情况,随机调查了部分学生的使用手机时间,将调查结果分成五类:A .基本不用;B .平均每天使用手机1~2小时;C .平均每天使用手机2~4小时;D .平均每天使用手机4~6小时;E .平均每天使用手机超过6小时.并根据统计结果绘制成了如下两幅不完整的统计图.(1)学生会一共调查了多少名学生.(2)此次调查的学生中属于E 类的学生有 名,并补全条形统计图. (3)若一天中使用手机的时间超过6小时,则患有严重的“手机瘾”.该校初三年级共有900人,估计该校初三年级中约有多少人患有严重的“手机瘾”.18.如图.平行四边形AOBC 的顶点为网格线的交点,反比例函数y=kx (x >0)的图象过格点A ,点B .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出△ABC 沿CO 所在直线平移,使得点C 与点O 重合,得到△A′B′O (不写画法).①点A′,点B′ (填“是”或“不是”)都在反比例函数图象上; ②四边形A′B′BA 是 (特殊四边形),它的面积等于 .19.如图,AB 是半圆O 的直径,点C 为半圆O 右侧上一动点,CD ⊥AB 于点D ,∠OCD 的平分线交AB 的垂直平分线于点E ,过点C 作半圆O 的切线交AB 的垂直平分线于点F . (1)求证:OC=OE ;(2)点C 关于直线EF 的对称点为点H ,连接FH ,EH ,OH . 填空:①当∠E 的度数为 时,四边形CFHE 为菱形.②当∠E 的度数为 时,四边形CFHO 为正方形.20.小亮家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM 的仰角为37°,此时把手端点A 、出水口点B 和落水点C 在同一直线上.洗手盆及水龙头示意图如图2,其相关数据为AM=10cm ,MD=6cm ,DE=22cm ,EH=38cm .求CH 的长.(参考数据:sin37°=35,cos37°=45,tan37°=34≈1.7)21.某网店经市场调查,发现进价为40元的某新型文具每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是 (填“一次函数”“反比例函数”或“二次函数”),求这个函数关系式;(2)当售价为元时,当月的销售利润最大,最大利润是 元; (3)若获利不得高于进价的80%,那么售价定为多少元时,月销售利润达到最大? 22.(1)问题发现如图1,在等腰直角三角形ABC 中,∠CAB=90°,点D 在AC 上,过点D 作DE ⊥BC 于点E ,以DE ,BE 为边作▱DEBF ,连接AE ,AF . 填空:线段AE 与AF 的关系为 ;(2)类比探究将图1中△CDE 绕点C 逆时针旋转,其他条件不变,如图2,(1)的结论是否成立?并说明理由.(3)拓展延伸在(2)的条件下,将△CDE 绕点C 在平面内旋转,若AC=5,,请直接写出当点A ,D ,E 三点共线时BE 的长.23.如图,抛物线y=ax2+94x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=-34x+3经过点B ,C .(1)求抛物线的解析式;(2)点P 从点O 出发以每秒2个单位的速度沿OB 向点B 匀速运动,同时点E 从点B 出发以每秒1个单位的速度沿BO 向终点O 匀速运动,当点E 到达终点O 时,点P 停止运动,设点P 运动的时间为t 秒,过点P 作x 轴的垂线交直线BC 于点H ,交抛物线于点Q ,过点E 作EF ⊥BC 于点F .①当PQ=5EF 时,求出t 值;②连接CQ ,当S △CBQ :S △BHQ=5:2时,请直接写出点Q 的坐标.参考答案与试题解析1. 【分析】根据正数大于0,0大于负数,可得答案. 【解答】解:-2<1<0,故选:A .【点评】本题考查了有理数比较大小,正数大于零,零大于负数.2. 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:48055.86亿用科学记数法表示为4.805586×1012.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3. 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的俯视图是故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5. 【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6. 【分析】根据中位数,平均数,众数,方差的意义解答即可.【解答】解:A.中位数是10+112=10.5 (本),故A错误;B.平均数120x=(8×3+9×3+10×4+11×6+12×4)=10.25(本),正确;C.众数是10本,故C错误;D.显然方差不为0,D错误,故选:B.【点评】本地考察了中位数平均数,众数以及方差,正确理解中位数,平均数,众数,方差的意义是解题的关键.7. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和为4的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两次摸出的小球标号和为4的有2种情况,∴两次摸出的小球标号和为4的概率是:21 = 63.故选:B.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8. 【分析】根据一元二次方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,∴△=(-2)2-4×1×[-(m-1)]=4m>0,∴m>0.故选:B.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9. 【分析】先确定D为AC的中点,根据中点坐标公式可得结论.【解答】解:∵BD是AC的垂直平分线,∴D是AC的中点,∵A(0,,C(2,0),∴D(1),故选:B.【点评】本题考查了线段垂直平分线的定义和点的坐标,熟练掌握中点坐标公式是关键.10. 【分析】①由函数图象可知当0<t≤3时,点Q未动,点P在AC上移动,移动时间t=3,然后依据路程=时间×速度求解即可;②求出求S关于t的函数关系式,由S=65列出关于t的方程,从而可求得t的值.【解答】解:由函数图象可知当0<t≤3时,点Q未动,点P在AC上移动,∴AC=t×1=3×1=3cm.故①正确;在Rt△ABC中,S△ABC=12BC•AC=6,即12BC×3=6,解得BC=4.由勾股定理可知:AB=5.当0<t ≤3时,点Q 未动,点P 在AC 上运动.如图1所示:S=12BC •PC=12×4t=2t .当3≤t ≤4时,由题意可知,点Q 未动,点P 在AB 上运动.如图2所示:PB=AB-AP=5-(t-3)=8-t .过点P 作PH ⊥BC ,垂足为H ,则35PH AC PBAB ==, 33(8)551136484(8)22555PH PB t S BC PH t t ∴==-∴=⋅=⨯⨯-=-+, 由函数图象可知当4<t <8时,点Q 在BC 上,点P 在AB 上,如图3所示:过点P 作PH ⊥BC ,垂足为H .同理:PH=35(8-t ).QC=BC-BQ=4-(t-4)=8-t .∴S 2211332496(8)2251055QC PH t t t =⋅=⨯-=-+综上所述,S=22(03)648(34)5532496(48)1055t t t t t t t ⎧⎪<⎪⎪-+⎨⎪⎪-+<<⎪⎩…剟, 当0<t ≤3时,2t=65,解得t =35,当3≤t ≤4时,−65t+485=65,解得:t=7(舍去),当4<t <8时,232496610555t t -+=,解得t=6或t=10(舍去), 综上所述,当t 为35或6时,△PQC 的面积为65.故②正确. ∴①②都对. 故选:A .【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了三角形的面积公式,依据函数图象求得AC 、BC 的长是解题的关键.11. 【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案. 【解答】解:原式=1-2=-1. 故答案为:-1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12. 【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°, ∵直尺的两边互相平行, ∴∠2=∠3=148°. 故答案为:148°. 【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13. 【分析】利用不等式组取解集的方法判断即可求出m 的范围.【解答】解:∵不等式组没有解,∴m-1≥1,解得m≥2.故答案为:m≥2.【点评】此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.14. 【分析】根据S阴=(S扇形OFC-S△OFC)+(S△ABC-S△OFC-S扇形OBF),计算即可.【解答】解:如图,连接OF.S阴=(S扇形OFC-S△OFC)+(S△ABC-S△OFC-S扇形OBF),2212011111160123602222236032366πππππ⋅⋅⋅⋅=-+⨯--=-+-=+故答案为:66π+.【点评】本题考查扇形的面积公式,三角形的面积公式等知识,解题的关键是学会用分割法求阴影部分的面积,属于中考常考题型.15. 【分析】分两种情形画出图形:如图1中,当∠AB′E′=90°时,设BD=DB′=x.如图2中,当∠AE′B′=90°时,易证:A,E′,D共线,设BD=AD=x.分别构建方程求解即可.【解答】解:如图1中,当∠AB′E′=90°时,设BD=DB′=x.∵DF∥AC,∴DF BDAC BC=,4623DF xDF x∴=∴=, ∵∠ACB′=∠AB′F=∠FDB′=90°,∴∠AB′C+∠FB′D=90°,∠CAB′+∠AB′C=90°, ∴∠CAB′=∠FB′D , ∴△ACB′∽△B′DF ,46223AC CB DB DF x x x ''∴=-∴=,解得x=53.如图2中,当∠AE′B′=90°时,易证:A ,E′,D 共线,设BD=AD=x .在Rt △ACD 中,则有x2=42+(6-x )2,解得x=133,综上所述,满足条件的BD 的值为53或133.【点评】本题考查翻折变换,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.16. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=222(1)313(1)312(3)32(3)(1)(1)2(1)x x x x x x x x x x x x x +--++-+÷=⋅=---+--当时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17. 【分析】(1)根据使用手机时间为C的人数和所占的百分比即可求出总人数;(2)用总人数减去A、B、C、D类的人数,求出E类的人数,从而补全统计图;(3)用全校的总人数乘以一天中使用手机的时间超过6小时的学生人数所占的百分比,即可求出答案.【解答】解:(1)20÷40%=50(人),答:学生会一共调查了50名学生.(2)此次调查的学生中属于E类的学生有:50-4-12-20-9=5 (名),补全条形统计图如图:(3)900×550=90(人),答:该校初三年级中约有90人患有严重的“手机瘾”.故答案为:(2)5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18. 【分析】(1)求出点A坐标,利用待定系数法解决问题即可.(2)①根据要求画出图形即可,利用图象法判断即可.②根据矩形的判定方法即可解决问题.【解答】解:(1)由题意A(1,4),∵反比例函数y=kx经过点A(1,4),∴k=4,∴反比例函数的解析式为y=4 x.(2)①△A′B′O如图所示.观察图象可知A′(-4,-1),B′(-1,-4),∴A′,B′均在y=4x 的图象上.②观察图象可知:A ,O ,B′共线,B ,O ,A′共线,且OA=OB′=OB=OA′, ∴四边形AA′B′B 是矩形,∴S 矩形=30.故答案为矩形,30.【点评】本题考查反比例函数的应用,平移变换,矩形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 19. 【分析】(1)先证明EF ∥CD ,再由角平分线的定义可得∠OCE=∠E ,最后由等角对等边可得结论;(2)①如图2,证明△CEH 和△CFH 是等边三角形,可得四边形CFHE 的四边相等,可得结论;②如图3,证明△OCF 是等腰直角三角形,得OC=FC ,根据四边相等且有一个有是直角的四边形是正方形,可得结论. 【解答】证明:(1)如图1,∵EF 是AB 的垂直平分线, ∴EF ⊥AB ,且EF 经过圆心O , ∵CD ⊥AB , ∴CD ∥EF ,∴∠E=∠ECD,∵CE平分∠OCD,∴∠OCE=∠ECD,∴∠OCE=∠E,∴OC=OE;(2)①当∠E的度数为30°时,四边形CFHE为菱形.理由是:如图2,连接CH,交EF于G,∵点C关于直线EF的对称点为点H,∴EF是CH的垂直平分线,∴FH=CF,EH=CE,EF⊥CH,∴∠CEG=∠HEG=30°,∴∠CEH=60°,∴△CEH是等边三角形,∴EH=CE=CH,由(1)知:∠OEC=∠OCE=30°,∴∠FOC=2∠OEC=60°,∵FC是⊙O的切线,∴FC⊥OC,∴∠OCF=90°,∴∠OFC=30°,∴∠CFH=2∠OFC=60°,∴△CHF是等边三角形,∴FH=FC=CH=EH=CE,∴四边形CFHE是菱形;故答案为:30°;②当∠E的度数为22.5°时,四边形CFHO为正方形;理由是:如图3,连接CH ,交EF 于点G ,则FH=CF ,OH=OC , ∵∠OEC=∠OCE=22.5°, ∴∠FOC=45°, ∵∠OCF=90°, ∴∠OFC=45°, ∴FC=OC=OH=FH ,∴四边形CFHO 为正方形; 故答案为:22.5°.【点评】本题为圆的综合运用题,涉及到等边三角形、等腰直角三角形、对称的性质、矩形和正方形的判定等知识,其中(2),对称性质的运用,是解题的关键.20. 【分析】作AG ⊥EH 于G ,则∠ANM=∠AGC=90°,EG=MN ,NG=ME=MD+DE=28,由三角函数求出AN=AM×sin37°=6,MN=AM×cos37°=8,得出EG=8,AG=AN+NG=34,由三角函数求出,即可得出结果.【解答】解:作AG ⊥EH 于G ,如图所示:则∠ANM=∠AGC=90°,EG=MN ,NG=ME=MD+DE=6+22=28,∵sin ,cos AN MNAMN AMN AM AM ∠=∠=,∴34sin 37106,cos3710855AN AM MN AM ︒︒=⨯=⨯==⨯=⨯=,∴EG=8,AG=AN+NG=6+28=34,∵∠ACG=60°,第6题图ABCDE第7题图34201.7AG CG ∴=∴=≈=,∴CH=EH-EG-CG=38-8-20=10(cm );答:CH 的长为10cm .【点评】本题考查了解直角三角形的应用-仰角俯角问题;根据三角函数求出AN 、MN 、AG 的长是解题的关键. 21. 【分析】(1)利用一次函数的性质和待定系数法求解可得;(2)根据月销售利润=单件利润乘以月销售量可得函数解析式,配方成顶点,再利用二次函数的性质求解可得;(3)先根据获利不得高于进价的80%得出x 的范围,再结合二次函数的性质求解可得. 【解答】解:(1)由表格知,售价每增加10元,销售量对应减少20元, 所以这个函数是一次函数,设其解析式为y=kx+b ,根据题意,得:6028070260k b k b ⎨⎩++⎧==,解得:2400k b -⎧⎨⎩==中学数学一模模拟试卷一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( )A . -5B . 5C .0.5D . 0.22.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3. 人类已知最大的恒星是盾牌座UY ,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km .那么这个数的原数是( ) A .143 344 937 km B . 1 433 449 370 km C . 14 334 493 700 km D . 1.43344937 km4.下列计算正确的是( )A .2a -3a =-1B .(a 2b 3)3=a 5b 6C .a 2 ·a 3=a 6D .a 2+3a 2=4a 2 5. 已知关于x 的分式方程mx +1x=2有解,则m 的取值范围是( ) A .m ≤1且m ≠0 B . m ≤1 C . m ≥-1 D . m ≥-1 且m ≠0 6. 如图所示,该物体的主视图为( )A .B .C .D .7. 如图所示,在Rt △ABC 中∠A =25°,∠ACB =90°,以点C 为圆心,BC图②图①120°1234120°第10题图图1图22B CD E 123第12题图A E B C D第14题图A EFM A 'B C D 第15题图A 为半径的圆交AB 于一点D ,交AC 于点E ,则∠DCE 的度数为( ) A . 30° B . 25° C . 40° D . 50°8. 不等式组101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( )A .12B .29C . 79 D .3410. 如图1所示,小明(点P )在操场上跑步,弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x , 小明到右侧半圆形弯道的圆心O 的距离PO 为y ,可绘制出如图2所示函数图象,那么a -b 的值应为( )A .4B .52π-1 C . D .π二、填空题(3分×5=15分)11. (-3)0= .12. 如图所示,直线ABCD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= .13.二次函数y =x 2-2mx +1在x ≤1时y 随x 增大而减小,则m 的取值范围是 .14. 如图所示,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E . 连接CE ,则阴影部分的面积是 .(结果保留π)15.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对D称点为A ,,当△A ,FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .三、解答题(本大题共8小题,满分75分)16. (8分)先化简22442x x x x -+-÷(x -4x),然后从x x的值代入求值.17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A 类学生中随机选取一位同学,再从D 类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 至点D ,使CD =AC ,连接AD 交⊙O 于点E ,连接BE 、CE ,BE 交AC 于点F .⑴求证:CE =AE ⑵填空:①当∠ABC = 时,四边形AOCE 是菱形;②若AE ,AB =则DE 的长为 .19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB 长 为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与 底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C 到桌面的 高度CE 的长?GF E BCDA 图1图2图3AD CB E F GG F E B CD A(结果精确到0.1cm1.732)20.(9分)如图所示,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =kx(x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). ⑴求双曲线的解析式;⑵若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴 于H ,当以点Q 、C 、H 为顶点的三角与△AOB 相似 时,求点Q 的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其中甲、乙两种运动鞋的进价和售价如下表已知:用元购进乙种运动鞋的数量相同. ⑴求m 的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC 中,AC =BC E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED .(1)观察猜想: 如图1所示,过D 作DF ⊥AE 于F ,交AB 于G ,线段CD 与BG 的关系为 ;(2)探究证明:如图2所示,将△CDE 绕点C 顺时针旋转到如图所示位置,过D 作DF ⊥AE 于F ,过B 作DE 的平行线与直线FD 交于点G ,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E 、D 、G 共线时,直接写出DG 的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0), D (8,8).抛物线y =ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为1个单位长度,运动时间为t 秒.①如图1所示,过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,点G 关于抛物线对称轴的对称点为H ,求当t 为何值时,△HAC 的面积为16;②如图2所示,连接EQ ,过Q 作QM ⊥AC 于M ,在点P 、Q 运动的过程中,是否存在某个t ,使得∠QEM =2∠QCE ,若存在请直接写出相应的t参考答案一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D二、填空题(3分×5=15分) 11.-2 12.80°13.m ≥1 14.3-3 15.三、解答题(本大题共8小题,满分75分)16.解:224442x x x x x x-+÷--()= ()22(24)2x x x x x --÷-= ()()222x x x x x -⨯+-= 12x + 当x =1时,原式=1132x =+(名),从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=36= 1218.(1)证明:∵四边形ABCE 为圆O 的内接四边形,∴∠ABC =∠CED ,又AB =AC ,∴∠ABC =∠ACB ,∴∠CED =∠ACB ,又∠AEB 和∠ACB 都为AB 所对的圆周角,∴∠AEB =∠ACB ,∴∠CED =∠AEB ,∵AB =AC ,CD =AC ,∴AB =CD ,在△ABE 和△CDE 中,BAEDCE AEB CED ABCD∠∠∠∠⎧⎪⎨⎪⎩===∴△ABE ≌△CDE (AAS ) (2)①60 答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .当△QCH∽△BA中学数学一模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;。
2024年广东省深圳市33校联考中考一模数学试题及答案

深圳市2024年初三年级3月质量检测数学(33校联考)一、选择题(每题3分,共30分)1. 2024的倒数是( )A 2024− B. 2024 C. 12024− D. 120242. 2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13000000人次,将数据13000000用科学记数法表示为( )A. 61.310×B. 71.310×C. 80.1310×D. 61310× 3. 第19届亚运会于9月23日至10月8日在杭州成功举办,下列图形中是轴对称图形的是( )A. B. C. D. 4. 右图是我们生活中常用的“空心卷纸”,其主视图为( )A. B. C. D. 5. “立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程( )A. ()22001728x +=B. ()()220012001728x x +++=C. ()22001728x x ++=D. ()()220020012001728x x ++++= 6. 下列计算正确的是( )A. 236326a a a ⋅=B. 020=C. ()236416x x =D. 2139−=− 7. 对一组数据:4,6,4,6,8−,描述正确的是( ).A. 中位数是4−B. 平均数是5C. 众数是6D. 方差是78. 如图,ABC 与DEF 位似,点O 为位似中心,2AD AO =,若ABC 的周长是5,则DEF 的周长是( )A. 10B. 15C. 20D. 259. A ,B 两地相距60千米,一艘轮船从A 地顺流航行至 B 地所用时间比从B 地逆流航行至A 地所用时间少45分钟, 已知船在静水中航行的速度为20千米/时.若设水流速度为x 千米/时(20x <), 则可列方程为( ) A. 6060320204x x −=−+ B.6060320204x x −=+− C. 6060452020x x −=+− D. 6060452020x x −=−+ 10. 如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ;BD 与CF 相交于点H .给出下列结论:①12AE FC =;②15PDE ∠=°;③PBC PCD S S =△△12DHC BHC S S =△△;⑤2DE PF FC =⋅.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共5小题)11. 实数范围内分解因式:2318a −=_____. 12. 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于在_______________.13. 如图,A 是反比例函数k y x=的图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,且2ABC S ∆=,则k 的值为_____.14. 如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧,与OA OB 、分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M 作MN OA ∥,与OB 相交于点N ,50MOB ∠=°,则AOM ∠=______.15. 如图,在直角坐标系中,已知A (4,0),点B 为y 轴正半轴上一动点,连接AB ,以AB 为一边向下作等边△ABC ,连接OC ,则OC 的最小值为_______.三.解答题(共55分)16. ()101220246cos304π− −−−+−−° .17. 化简求值:22112242x x x x x x ++− ÷− −−,其中x 为数据4,5,6,5,3,2的众数. 18. 某校为了调查本校学生对航空航天知识知晓情况.开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人 频率 6070x ≤<10 0.1 7080x ≤<15 b 8090x ≤< a 0.3590100x ≤≤ 40c请根据图表信息解答下列问题:(1)求a ,b ,c 的值;(2)补全频数直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.19. 如图,O 是ABC 的外接圆,直径BD 与AC 交于点E ,点F 在BC 的延长线上,连接DF ,F BAC ∠=∠.(1)求证:DF 是O 的切线;的(2)从以下三个选项中选一个作为条件,使DF AC ∥成立,并说明理由;①AB AC =;② AD DC=;③CAD ABD ∠=∠; 你选的条件是:______.20. 某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg ;如图,在销售过程中发现销悬()kg y 与售价x (元/kg )之间满足一次函数关系.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设销售这种商品每天所获得利润为W 元,求W 与x 之间的函数关系式,并求出该商品售价定为多少元/kg 时,才能使经销商所获利润最大?最大利润是多少?21. 如图1,一灌溉车正为绿化带浇水,喷水口H 离地竖直高度为 1.2h =米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG ,其水平宽度2DE =米,竖直高度0.7EF =米,下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口04.米,灌溉车到绿化带的距离OD 为d 米.(1)求上边缘抛物线喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴交点B 的坐标;(3)若 3.2d =米,灌溉车行驶时喷出的水______(填“能”或“不能”)浇灌到整个绿化带. 22. 在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .的(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH .①如图1,若点E 在线段BC 上,则线段AE 与EH 之间的数量关系是________,位置关系是_________; ②如图2,若点E 在线段BC 延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E 在线段BC 上,以BE 和BF 为邻边作BEHF ,M 是BH 中点,连接GM ,3AB =,2BC =,求GM 的最小值.的深圳市2024年初三年级3月质量检测数学(33校联考)一、选择题(每题3分,共30分)1. 2024的倒数是( )A. 2024−B. 2024C. 12024−D. 12024【答案】D【解析】【分析】本题主要考查了求一个数的倒数,根据乘积为1的两个数互为倒数进行求解即可. 【详解】解:∵1202412024×=, ∴2024的倒数是12024, 故选∶D .2. 2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13000000人次,将数据13000000用科学记数法表示为( )A. 61.310×B. 71.310×C. 80.1310×D. 61310×【答案】B【解析】【分析】本题考查了科学记数法表示较大的数,熟练掌握其定义是解题的关键.将一个数表示成10n a ×的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得到答案. 【详解】13000000=71.310×故选:B .3. 第19届亚运会于9月23日至10月8日在杭州成功举办,下列图形中是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的定义逐项判断即可.【详解】解:A ,不是轴对称图形,不合题意;B ,是轴对称图形,符合题意;C ,不是轴对称图形,不合题意;D ,不是轴对称图形,不合题意;故选B .【点睛】本题考查轴对称图形的识别,解题的关键是掌握轴对称图形的定义.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4. 右图是我们生活中常用的“空心卷纸”,其主视图为( )A. B. C. D.【答案】C【解析】【分析】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.看不见的棱要用虚线表示.找到从前面看所得到的图形即可.【详解】解:卷纸的主视图应是:,故选:C .5. “立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程( )A. ()22001728x +=B. ()()220012001728x x +++=C. ()22001728x x++=D. ()()220020012001728x x ++++= 【答案】D【解析】【分析】本题考查了一元二次方程的应用,解题的关键是先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于728,列方程即可.【详解】解:设进馆人次的月增长率为x ,依题意可列方程为()()220020012001728x x ++++=, 故选D .6. 下列计算正确的是( )A. 236326a a a ⋅=B. 020=C. ()236416x x =D. 2139−=− 【答案】C【解析】【分析】本题主要考查单项式乘以单项式,积的乘方与幂的乘方,零指数幂和负整数指数幂,运用相关运算法则进行计算即可判断出正确结果.【详解】解:A. 235326a a a ⋅=,故选项A 计算错误,不符合题意;B. 021=,故选项B 计算错误,不符合题意;C. ()236416x x =,计算正确,故C 符合题意; D. 2139−=,故选项D 计算错误,不符合题意; 故选:C .7. 对一组数据:4,6,4,6,8−,描述正确的是( )A. 中位数是4−B. 平均数是5C. 众数是6D. 方差是7【答案】C【解析】【分析】本题主要考查了求方差,中位数,平均数和众数,根据方差,中位数,平均数和众数的定义进行求解判断即可. 【详解】解:把这组数据从小到大排列为44,6,6,8−,,处在最中间的数为6, ∴中位数为6,故A 不符合题意;∵数字6出现的次数最多,∴众数是6,故C 符合题意; 平均数为4466845−++++=,故B 不符合题意;方差为()()()()222244442648417.65−−+−+−+−=,故D 不符合题意; 故选:C . 8. 如图,ABC 与DEF 位似,点O 为位似中心,2AD AO =,若ABC 周长是5,则DEF 的周长是( )A. 10B. 15C. 20D. 25【答案】B【解析】 【分析】根据位似变换的概念得到ABC DEF ∽△△,AB DE ∥,根据相似三角形的性质求出AB DE ,再根据相似三角形的周长比等于相似比计算即可.【详解】解:∵ABC 与DEF 位似,2AD AO =,∴ABC DEF ∽△△,AB DE ∥, ∴ABO DEO ∽,∴13ABOA DE OD ==, ∴ABC 的周长:DEF 的周长1:3=,∵ABC 的周长是5,∴DEF 的周长是15.故选:B .【点睛】本题考查位似变换,相似三角形的判定和性质.掌握相似三角形的周长比等于相似比是解题的关键.9. A ,B 两地相距60千米,一艘轮船从A 地顺流航行至 B 地所用时间比从B 地逆流航行至A 地所用时间少45分钟, 已知船在静水中航行的速度为20千米/时.若设水流速度为x 千米/时(20x <), 则可列方程为( )A. 6060320204x x −=−+B. 6060320204x x −=+− 的C. 6060452020x x −=+−D. 6060452020x x−=−+ 【答案】A【解析】【分析】本题考查分式方程的应用,根据时间的关系列方程是解题的关键.顺流的速度=静水速度+水流速度,逆水速度=静水速度-水流速度,根据路程、速度、时间的关系表示出船顺流所用的时间和逆流所用的时间,根据时间的关系建立分式方程即可.详解】解:由题意可得,6060320204x x −=−+, 故选:A .10. 如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ;BD 与CF 相交于点H .给出下列结论:①12AE FC =;②15PDE ∠=°;③PBC PCD S S =△△12DHC BHC S S =△△;⑤2DE PF FC =⋅.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】 【分析】由BPC △是等边三角形,得12AE BE =,而BE FC =,故①正确;由PC BC CD ==,906030PCD ∠=°−°=°,可判定②正确;过点D 作DM CP ⊥于M ,过点P 作PN BC ⊥于N ,则30DCM ∠=°,30CPN ∠=,可推出12DM CD =,PN =,则PBC PCD S S = ,判定③正确;由FE BC ∥可得FDH CBH ∽,进而得到DH FD BH BC=,得到DHC BHC S DH S BH = ,又因为F 不是AD 中点,故12DHC BHC S S ≠ ,可判定④错误;由PED DEB ∽,得PE ED ED BE=,则2ED PE BE =⋅,可【判定⑤正确.【详解】解:BPC 为等边三角形,PB PC ∴=,60PBC PCB ∠=∠=°,四边形ABCD 是正方形∴FE BC ∥,90ABC ∠=°,FEP CPB ∴△∽△,又PB PC = ,PE PF ∴=,FC EB ∴=,60PBC ∠=° ,90ABC ∠=°,30ABE ∴∠=°,在Rt ABE 中,30ABE ∠=°,12B AE E ∴=, 又BE FC = ,12AE FC ∴=,故①正确; PC BC CD == ,906030PCD ∠=°−°=°,18030752DPC PDC °−°∴∠=∠==°, 907515PDE ADC PDC ∴∠=∠−∠=°−°=°,故②正确;过点D 作DM CP ⊥于M ,过点P 作PN BC ⊥于N ,由题意可得30DCM ∠=°,30CPN ∠=, 12DM CD ∴=,PN =,∴PBC PCD S S = ,故③正确;FE BC ∥,FDH CBH ∴△∽△, ∴DH FD BH BC=, 又BHC △与DHC 同高, ∴DHC BHC S DH S BH= , 又 DH FD BH BC=,F 不是AD 中点, ∴12DHFD BH BC =≠, ∴12DHC BHC S S ≠ ,故④错误; 180180607545EPD EPF DPC ADB ∠=°−∠−∠=°−°−°=°=∠ ,PED PED ∠=∠,PED DEB ∴△∽△, ∴PE ED ED BE=, 2ED PE BE ∴=⋅,又PE PF = ,BE FC =,2DE PF FC ∴=⋅,故⑤正确,综上所述:正确的结论有4个,故选:D .【点睛】本题考查了正方形的性质、等边三角形性质、锐角三角函数、相似三角形的判定及性质,掌握以上基础知识,作出合适的辅助线是解本题的关键.二、填空题(共5小题)11. 在实数范围内分解因式:2318a −=_____.【答案】(3a a +【解析】【分析】本题主要考查了因式分解,掌握提取公因式法和公式法进行因式分解是解题的关键. 先提取公因数3,再运用平方差公式进行分解即可.【详解】解:()(22318363a a a a −=−=.故答案为(3a a +.12. 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于_______________.【答案】(﹣3,4).【解析】【详解】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4故答案为(﹣3,4).13. 如图,A 是反比例函数k y x=的图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,且2ABC S ∆=,则k 的值为_____.【答案】4−【解析】【分析】此题考查了求反比例函数的比例系数,设点A 的坐标为(,)x y ,利用2ABC S ∆=得到4xy =−,即可得到答案.【详解】解:设点A 的坐标为(,)x y ,点A 在第二象限,0x ∴<,0y >,111||||2222ABC S AB OB x y xy ∆∴=⋅=⋅=−=, 4xy ∴=−,A 是反比例函数k y x=的图象上一点,4k xy ∴==−,故答案为:4−.14. 如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧,与OA OB 、分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M 作MN OA ∥,与OB 相交于点N ,50MOB ∠=°,则AOM ∠=______.【答案】25度##25°【解析】【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN OA ,∴50AOB MNB ∠=∠=°,由题意可知:OM 平分AOB ∠, ∴1252AOM MOB AOB ∠=∠=∠=°. 故答案为:25°.【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.15. 如图,在直角坐标系中,已知A (4,0),点B 为y 轴正半轴上一动点,连接AB ,以AB 为一边向下作等边△ABC ,连接OC ,则OC 的最小值为_______.【答案】2【解析】【分析】以OA为对称轴,构造等边三角形ADF,作直线DC,交x轴于点E,先确定点C在直线DE上运动,根据垂线段最短计算即可.【详解】如图,以OA为对称轴,构造等边三角形ADF,作直线DC,交x轴于点E,∵△ABC,△ADF都是等边三角形,∴AB=AC,AF=AD,∠F AC+∠BAF=∠F AC+∠CAD=60°,∴AB=AC,AF=AD,∠BAF=∠CAD,∴△BAF≌△CAD,∴∠BF A=∠CDA=120°,∴∠ODE=∠ODA=60°,∴∠OED=30°,∴OE=OA=4,∴点C在直线DE上运动,∴当OC⊥DE时,OC最小,此时OC =12OE =2,故答案为:2.【点睛】本题考查了等边三角形的性质和判断,三角形的全等判定和性质,垂线段最短,熟练掌握三角形全等和垂线段最短原理是解题的关键. 三.解答题(共55分)16. ()101220246cos304π− −−−+−−° .【答案】3−【解析】【分析】本题考查了锐角三角函数的运算,实数的运算,解题的关键是掌握特殊的锐角三角函数值.先算锐角三角函数、绝对值、零指数幂和负整数指数幂,再算加减即可.【详解】解:原式2416=++−241=++−3=−17. 化简求值:22112242x x x x x x ++− ÷− −−,其中x 为数据4,5,6,5,3,2的众数. 【答案】122x x +−,34【解析】【分析】本题考查分式的化简求值,众数.先根据分式混合运算法则进行化简,根据众数的定义求出x 的值,最后代入计算即可. 【详解】解:22112242x x x x x x ++− ÷− −−()()221212222x x x x x x +−−+÷−− ()()()()2111222x x x x x ++−÷−− ()()()()2122211x x x x x +−⋅−+−122x x +=−, 4,5,6,5,3,2的众数为5,将5x =代入,得: 原式5132524+=×−. 18. 某校为了调查本校学生对航空航天知识的知晓情况.开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人 频率 6070x ≤<10 0.1 7080x ≤<15 b 8090x ≤< a 0.3590100x ≤≤ 40c请根据图表信息解答下列问题:(1)求a ,b ,c 的值;(2)补全频数直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.【答案】(1)35a =,0.15b =,0.4c =.(2)见解析 (3)23【解析】【分析】(1)根据6070x ≤<的人数和频率可求抽取总人数,再由频率的定义求出a 、b 、c 即可; (2)由(1)中a 的值,补全频数分布直方图即可;(3)画树状图,共有6种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有4种,再由概率公式求解即可.【小问1详解】解:由题意得:抽取学生总数100.1100÷=(人), 1000.3535a =×=,151000.15b =÷=,401000.4c ÷==.【小问2详解】解:补全频数分布直方图如图:【小问3详解】画树状图如下:共有6种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有4种,∴选出的2名学生恰好为一名男生、一名女生的概率为4263=. 【点睛】此题考查的是用树状图法求概率以及频数分布表和频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19. 如图,O 是ABC 的外接圆,直径BD 与AC 交于点E ,点F 在BC 的延长线上,连接DF ,F BAC ∠=∠.(1)求证:DF 是O 的切线;(2)从以下三个选项中选一个作为条件,使DF AC ∥成立,并说明理由;①AB AC =;② AD DC=;③CAD ABD ∠=∠; 你选的条件是:______.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查切线的判定,圆周角定理,直角三角形两锐角互余,理解并掌握相关图形的性质定理是解决问题的关键.(1)由直径所对圆周角为直角可知90BAC DAC ∠+∠=°,结合圆周定理可知DAC DBC ∠=∠,由F BAC ∠=∠,可知90F DBC ∠+∠=°,进而可知B D D F ⊥,即可证明结论;(2)若选②,由等弧所对圆周角相等可知ABD DBF ∠=∠,结合(1)证ADB F ∠=∠,由圆周角定理可知ADB BCA ∠=∠,证得F BCA ∠=∠,进而可得结论;若选③由同弧所对圆周角相等可知CAD DBC ∠=∠,结合CAD ABD ∠=∠,可知ABD DBC ∠=∠,得 AD DC=,同②,可证DF AC ∥. 【小问1详解】证明:∵BD 是O 的直径,∴90BAD ∠=°,∴90BAC DAC ∠+∠=°,∵ CDCD =, ∴DAC DBC ∠=∠,又∵F BAC ∠=∠,∴90F DBC ∠+∠=°,则90BDF ∠=°,∴B D D F ⊥,∴DF 是O 的切线;【小问2详解】若选② AD DC=; ∵ AD DC=, ∴ABD DBF ∠=∠,由(1)可知:9090ABD ADBDBF F ∠+∠=°=∠+∠=°, ∴ADB F ∠=∠,由圆周角定理可知ADB BCA ∠=∠,∴F BCA ∠=∠,∴DF AC ∥;若选③CAD ABD ∠=∠;∵ CDCD =, ∴CAD DBC ∠=∠,∵CAD ABD ∠=∠,∴ABD DBC ∠=∠,∴ AD DC=, 同②,可知DF AC ∥;20. 某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg ;如图,在销售过程中发现销悬()kg y 与售价x (元/kg )之间满足一次函数关系.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设销售这种商品每天所获得的利润为W 元,求W 与x 之间的函数关系式,并求出该商品售价定为多少元/kg 时,才能使经销商所获利润最大?最大利润是多少?【答案】(1)y 与x 的之间的函数解析式为:260y x =−+,自变量x 的取值范围为:1018x ≤≤; (2)W 与x 之间的函数关系式为:22(20)200W x =−−+;当该商品销售单价定为18元时,才能使经销商所获利润最大;最大利润是192元.【解析】【分析】考查一次函数、二次函数的应用,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.(1)根据一次函数过(12,36),(14,32)可求出函数关系式,然后验证其它数据否符合关系式,进而确定函数关系式,(2)先求出总利润W 与x 的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【小问1详解】解:设y 与x 的解析式为y kx b =+,把(12,36),(17,26)代入, 得:12361726k b k b += +=, 解得:260k b =− =, ∴y 与x 的之间的函数解析式为:260y x =−+,自变量x 的取值范围为:1018x ≤≤;【小问2详解】解:2(10)(260)280600W x x x x =−−+=−+−22(20)200x =−−+20a =−< ,抛物线开口向下,对称轴20x ,在对称轴的左侧,y 随x 的增大而增大,1018x ≤≤ ,∴当18x =时,W 最大22 (1820) 200192=−−+=元答:W 与x 之间的函数关系式为22(20)200W x =−−+,当该商品销售单价定为18元时,才能使经销商所获利润最大,最大利润是192元.21. 如图1,一灌溉车正为绿化带浇水,喷水口H 离地竖直高度为 1.2h =米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG ,其水平宽度2DE =米,竖直高度0.7EF =米,下边缘抛物线是由上边缘抛物线向左平移得到,是为上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口04.米,灌溉车到绿化带的距离OD 为d 米.(1)求上边缘抛物线喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴交点B 的坐标;(3)若 3.2d =米,灌溉车行驶时喷出的水______(填“能”或“不能”)浇灌到整个绿化带.【答案】(1)上边缘抛物线喷出水的最大射程OC 为6m ;(2)()2,0B ;(3)不能.【解析】【分析】(1)求得上边缘的抛物线解析式,即可求解;(2)根据二次函数的性质,确定平移的单位,求得下边缘抛物线解析式,即可求解;(3)根据题意,求得点F 的坐标,判断上边缘抛物线能否经过点F 即可;【小问1详解】解:由题意可得:()0,1.2H ,()2,1.6A且上边缘抛物线的顶点为A ,故设抛物线解析式为:()22 1.6y a x =−+将()0,1.2H 代入可得:110a =− 即上边缘的抛物线为:()212 1.610y x =−−+ 将0y =代入可得:()212 1.6010x −−+= 解得:12x =−(舍去)或26x =即6m OC =上边缘抛物线喷出水的最大射程OC 为6m ;【小问2详解】由(1)可得,()0,1.2H 上边缘抛物线为:()212 1.610y x =−−+,可得对称轴为:2x = 点H 关于对称轴对称的点为:()4,1.2下边缘抛物线是由上边缘抛物线向左平移得到,可得上边缘抛物线向左平移4个单位,得到下边缘抛物线,即下边缘的抛物线解析式为:()212 1.610y x =−++ 将0y =代入可得:()212 1.6010x −++= 解得:16x =−(舍去)或22x =即点()2,0B ;【小问3详解】∵2 3.26<<, ∴绿化带的左边部分可以灌溉到,由题意可得:()5.2,0.7F将 5.2x =代入到()212 1.610y x =−−+可得:()21 5.22 1.60.5760.710y =−−+=< 因此灌溉车行驶时喷出的水不能浇灌到整个绿化带.【点睛】此题考查了二次函数的应用,涉及了待定系数法求解析式,与x 轴交点等问题,解题的关键是理解题意,正确求得解析式.22. 在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是_________;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;,M是BH中点,连接GM,(2)如图3,若点E在线段BC上,以BE和BF为邻边作BEHFBC=,求GM的最小值.AB=,23【答案】(1)①相等;垂直;②成立,理由见解析;(2【解析】【分析】(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;②根据(1)中同样的证明方法求证即可;(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出GM的最小值.【详解】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;②成立,理由是:当点E 在线段BC 的延长线上时,同理可得:△ABE ≌△BCF (AAS ),∴BE=CF ,AE=BF ,∵△FCH 等腰直角三角形,∴FC=FH=BE ,FH ⊥FC ,而CD ⊥BC ,∴FH ∥BC ,∴四边形BEHF 为平行四边形,∴BF ∥EH 且BF=EH ,∴AE=EH ,AE ⊥EH ;(2)∵∠EGF=∠BCD=90°,∴C 、E 、G 、F 四点共圆,∵四边形BCHF 是平行四边形,M 为BH 中点,∴M 也是EF 中点,∴M 是四边形BCHF 外接圆圆心,则GM 的最小值为圆M 半径的最小值,∵AB=3,BC=2,设BE=x ,则CE=2-x ,同(1)可得:∠CBF=∠BAE ,又∵∠ABE=∠BCF=90°,∴△ABE ∽△BCF , ∴AB BE BC CF=,即32x CF =, ∴CF=23x , ∴设y=213449x x −+, 为当x=1813时,y取最小值1613,∴EF,故GM【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.。
深圳市初三中考数学一模模拟试卷【含答案】

深圳市初三中考数学一模模拟试卷【含答案】一、选择题(每小题3分,计30分)1.若a是绝对值最小的有理数,b是最大的负整数,c是倒数等于它本身的自然数,则代数式a﹣b+c的值为()A.0 B.1 C.2 D.32.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.3.若点A(1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点, ∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°, ∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADF , ∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ), ∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119 故答案为:119 三、解答题 15.解:原式=﹣+1+﹣1=.16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0, 解这个方程得x 1=1,x 2=2, 经检验,x 2=2是增根,舍去, 所以,原方程的根是x =1. 17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH , ∴∠AGH =∠AHG =30°, 过点A 作AO ⊥GH , ∴AO =50米,HO =GO =50米,∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN , ∴S △AMN 的值最小时,S 四边形AMPN 的值最大, ∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学一模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.6.下列运算正确的是()A.a2+a3=a5 B.(2a3)2=2a6 C.a3•a4=a12D.a5÷a3=a27.有一组数据:1,2,3,6,这组数据的方差是()A.2.5 B.3 C.3.5 D.48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为()A.9cm2 B.16cm2 C.56cm2 D.24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是()A.1000(1-x%)2=640 B.1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=3,CE=5,则该矩形的周长为 .三、解答题(共54分)15.(1)计算:1120192|3tan 3022018π-︒⎛⎫⎛⎫--++ ⎪⎪⎝⎭⎝⎭; (2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt △ABC 的直角边BC 为直径作⊙O ,交斜边AB 于点D ,作弦DF 交BC 于点E .(1)求证:∠A=∠F ;(2)如图2,连接CF ,若∠FCB=2∠CBA ,求证:DF=DB ;(3)如图3,在(2)的条件下,H 为线段CF 上一点,且12FH HC,连接BH ,恰有BH ⊥DF ,若AD=1,求△BFE 的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P (2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l ,则点P 关于l 的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC 中,AB=AC=2cm ,∠ABC=30°,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是 .(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m ,使关于x 的方程3111mx x x -=--有正整数解的概率为 . 25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB =,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A (-1,2)、C (1,0)为顶点作Rt △ABC ,且∠ACB=90°,tanA=3,点B 位于第三象限(1)求点B 的坐标;(2)以A 为顶点,且过点C 的抛物线y=ax2+bx+c (a≠0)是否经过点B ,并说明理由; (3)在(2)的条件下(如图2),AB 交x 轴于点D ,点E 为直线AB 上方抛物线上一动点,过点E 作EF ⊥BC 于F ,直线FF 分别交y 轴、AB 于点G 、H ,若以点B 、G 、H 为顶点的三角形与△ADC 相似,求点E 的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,,所以该矩形的周长=4×2+8×2=24.故答案为24.【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.15. 【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式=2(2313---⨯+=1(2)()312215x x x -+⎧⎨+⎩>①<②解①得:x >1 解②得:x <3∴不等式组的解集为:1<x <3【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16. 【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论求解可得.【解答】解:方程两边都乘以(x+1)(x-1),得:2+(x+1)(x-1)=x (x+1), 解得:x=1, 检验:x=1时,(x+1)(x-1)=0, 则x=1是分式方程的增根, 所以分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17. 【分析】根据题意可得:AD :CD=1:3,然后根据AD 、CD 的长度,然后在△ABD 中求出BD 的长度,最后BC=CD-BD 即可求解. 【解答】解:由题意得,AD :CD=1:3, 设AD=x ,CD=3x ,则AC ===, 解得:x=6,则AD=6,CD=18, 在△ABD 中, ∵∠ABD=30°, ∴则≈8(m ).答:改动后电梯水平宽度增加部分BC 的长约为8米.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据题意构造直角三角形,利用三角函数的知识求解. 18. 【分析】(1)根据自行车的人数和所占的百分比求出总人数,再用总人数乘以步行所占的百分比求出步行的人数,从而补全统计图;(2)画树状图列出所有等可能结果和小明在两个路口都遇到绿灯的情况数,然后根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人),则样本容量为80;步行的人数有80×20%=16(人),补图如下:故答案为:80;(2)画树状图如下:由树状图知,共有9种等可能结果,其中两个路口都遇到绿灯的结果数为1,所以两个路口都遇到绿灯的概率为1 9.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19. 【分析】(1)先将点A坐标代入反比例函数解析式中求出k2,进而求出点B坐标,最后将点A,B坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出BC2=32,CP2=n2+9,BP2=(n-4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.【解答】解:(1)∵点A(-1,4)在反比例函数y=2kx(k2≠0)的图象上,∴k2=-1×(-4)=4,∴反比例函数解析式为y=4 x,将点B(4,m)代入反比例函数y=4x中,得m=1,∴B (4,1), 将点A (-1,-4),B (4,1)代入一次函数y=k1x+b 中,得11441k b k b -⎨+⎩+-⎧==, ∴113k b ⎩-⎧⎨==, ∴一次函数的解析式为y=x-3;(2)由(1)知,直线AB 解析式为y=x-3, ∴C (0,-3), ∵B (4,1),P (n ,0),∴BC2=32,CP2=n2+9,BP2=(n-4)2+1, ∵△BCP 为等腰三角形, ∴①当BC=CP 时, ∴32=n2+9,∴②当BC=BP 时,32=(n-4)2+1, ∴③当CP=BP 时,n2+9=(n-4)2+1, ∴n=1(舍), 即:满足条件的n 为.【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键. 20. 【分析】(1)连接CD ,由BC 为直径可知CD ⊥AB ,根据同角余角相等可知∠A=∠BCD ,根据BD BD =,可得∠F=∠BCD ,从而证明结论.(2)连接OD 、OF ,易得∠OBD=∠ODB ,由∠BDF=∠FCB=2∠CBA 可得∠FDO=∠ODB ,进而可证△BOD ≌△FOD ,即可得到DF=DB .(3)取CH 中点M ,连接OM ,所以OM 是△BHC 的中位线,OM ∥BH ,又BH ⊥DF ,由垂径定理可知FN=DN ,设FH=x ,则FC=3x ,OD=OC=OB=2x ,设∠CBA=α,则∠CBD=∠DCA=α,由勾股定理可知x ,继而得出tan α,由AD=1,即可计算CD 、BD 、BF 、BG 、EF 长,再求三角形面积即可. 【解答】(1)证明:连接CD ,∵BC为直径,∴∠CDB=90°,∴∠A+∠DCA=90°,∵∠C=90°,∴∠BCD=∠A,=,∵BD BD∴∠F=∠BCD,∴∠F=∠A.(2)连接OD、OF,∵OB=OD=OF,∴∠OBD=∠ODB;∠ODF=∠OFD,=,∵BF BF∴∠BDF=∠FCB=2∠CBA,∴∠OBD=∠ODB=∠ODF=∠OFD,又∵OD=OD,∴△BOD≌△FOD(AAS),∴DF=DB.(3)取CH中点M,连接OM,交FD于N点,设∠CBA=α,则∠CBD=∠DCA=α,∵HM=MC ,BO=CO ,∴ON ∥BH ,OM=12BH ,∵BH ⊥FD , ∴FN=DN , ∵CD CD =,∴∠DBO=∠DFC ,由(2)得∠OBD=∠ODF , 在△ODN 和△MFN 中,DFC ODF FN DNONM MNF ∠∠∠⎧⎪⎪⎩∠⎨===,△ODN ≌△MFN (ASA ), ∴FM=OD ,设FH=x ,则FC=3x ,OD=OC=OB=2x , ∴在Rt △BFC中,BF =,∵BH ⊥FD ,∠BFH=90°, ∴∠FBH=∠CFD=α,∴tan α==,∴1tan tan DA CD DADCA α===∠∴7tan tan CD BD FD CBD α====∠,∴BC ===∴x=2,∴BF=,∴BG=4,∵OD∥FC,∴32 FC EFOD ED==,∴EF=FD×35=215,S△BEF=12124540⨯=.【点评】本题是一道有关圆的几何综合题,难度较大,主要考查了圆周角定理,三角形中位线定理、全等三角形性质及判定,相似三角形的判断和性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形,利用角相等解三角形.21. 【分析】根据完全平方公式即可求出答案.【解答】解:∵,∴,∴(x+1)2=3,∴x2+2x+1=3,∴x2+2x=2,故答案为:2【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.22. 【分析】首先根据二次函数的解析式求得其对称轴,然后写出该点关于对称轴的对称点的坐标即可.【解答】解:二次函数y=ax2+4ax+5的对称轴为x=-42aa=-2,∴点点P(2,17)关于l的对称点的坐标为(-6,17),故答案为:(-6,17).【点评】本题考查了二次函数的性质,解题的关键是求得二次函数的对称轴,难度不大.23. 【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积-扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:∵S扇形ACB=120443603ππ⨯=,S半圆CBF=2131,1222ABCS ππ⨯==⨯=所以图案面积=S 半圆CBF+S △ABC-S 扇形ACB=234cm 236πππ⎛+=+ ⎝,故答案为:6π【点评】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.24. 【分析】解方程3111mx x x -=-- 得41x m =+,当m=1时,该方程有正整数解,据此依据概率公式求解可得.【解答】解:解方程3111mx x x -=--,得:41x m =+, 当m=1时,该方程有正整数解,所以使关于x 的方程3111mx x x -=--有正整数解的概率为15, 故答案为:15.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.25. 【分析】作PQ ⊥x 轴于Q ,AM ⊥x 轴于M ,CN ⊥x 轴于N ,根据平行线分线段成比例定理表示出A 、C 、P 的坐标,然后S △PAC=S 梯形APQM-S 梯形AMNC-S 梯形PQNC ,列式计算即可.【解答】解:作PQ ⊥x 轴于Q ,AM ⊥x 轴于M ,CN ⊥x 轴于N ,∴PQ ∥AM ∥CN ,∴21,32AM AB CN OC PQPB PQ OP ====,设PQ=n ,∴21,32AM n CN n ==,∵点A 、C 分别为函数y=kx (x >0)图象上两点, ∴3221,,,232k k A n C n n n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴ON=2k n , ∴OQ=2ON=4kn , ∴P (4kn ,n ),∵S △PAC=S 梯形APQM-S 梯形AMNC-S 梯形PQNC ,∴1243121231123523223222224k k k k k n n n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+--+--+⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 整理得,7k=35, 解得k=5. 故答案为5.【点评】本题考查了反比例图象上点的坐标特征,图象上点的坐标适合解析式. 26. 【分析】(1)利用待定系数法求y1与x 之间满足的函数表达式,并根据图1写出自变量x 的取值范围;(2)利用顶点式求y2与x 之间满足的函数表达式;(3)根据收益=售价-成本,列出函数解析式,利用配方法求出最大值. 【解答】解:(1)设y1=kx+b , ∵直线经过(3,5)、(6,3),3563k b k b ⎨+⎩+⎧==,解得:273k b -⎧⎪⎨⎪⎩==, ∴y1=-23x+7(3≤x≤6,且x 为整中学数学一模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( )。
2024年广东省深圳市盐田区初三一模数学试题含答案解析
2024年广东省深圳市盐田区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商【答案】C【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x -中的运算关系解答即可.【详解】解:代数式3x -的意义可以是3-与x 的积.故选C .2.《国语》有云:“夫美也者,上下、内外、小大、远近皆无害焉,故曰美.”这是古人对于对称美的一种定义,这种审美法则在生活中体现得淋漓尽致.下列地铁图标中,是中心对称图形的是()A .武汉地铁B .重庆地铁C .成都地铁D .深圳地铁【答案】D【分析】本题考查中心对称图形,把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可判断.【详解】解:A 、该图案不是中心对称图形,故A 不符合题意;B 、该图案不是中心对称图形,故B 不符合题意;C 、该图案不是中心对称图形,故C 不符合题意;D 、图形是中心对称图形,故D 符合题意.故选:D .3.小梅沙海滨公园预计将于今年五一期间开放.园区占地面积约20.53万平方米,用水面积约100万平方米,开放后将成为滨海休息、沙滩活动及婚庆产业、活动赛事的重要承载空间.20.53万用科学记数法表示为()A .32.05310⨯B .42.05310⨯C .52.05310⨯D .62.05310⨯4.计算()323a 的结果是()A .63aB .527a C .69a D .627a 【答案】D【分析】本题主要考查积的乘方,熟练掌握运算法则是解题的关键.根据运算法则计算即可.【详解】解:()326327a a =,故选D .5.已知不等式组11x a x b->⎧⎨+<⎩的解集是10x -<<,则2024()a b +的值为()A .1-B .1C .0D .2024【答案】B【分析】本题主要考查解一元一次不等式组,熟练掌握运算法则是解题的关键.分别求出每个不等式的解集,根据不等式组的解集求出a b 、的值,再代入计算即可.【详解】解:11x a x b ->⎧⎨+<⎩①②,由①得:1x a >+,由②得:1x b <-,解集是10x -<<,11,10a b ∴+=--=,解得2,1a b =-=,则原式2024(21)1=-+=,故选B .6.“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某班为了解同学们某季度学习“青年大学习”的情况,从中随机抽取6位同学,经统计他们的学习时间(单位:分钟)分别为:78,85,80,90,80,82.则这组数据的众数和中位数分别为()A .80和81B .81和80C .80和85D .85和807.如图,将平行四边形ABCD 沿对角线BD 折叠,使点A 落在E 处.若156∠=︒,242∠=︒,则A ∠的度数为()A .108︒B .109︒C .110︒D .111︒8.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为()A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+9.一次函数y kx b =+的图象与与反比例函数my x=的图象交于(,2)A a ,(2,1)B -,则不等式mkx b x+>的解集是()A .10x -<<或2x >B .1x <-或1x >C .<2x -或02x <<D .1x <-或02x <<【答案】D【分析】本题是一次函数图象与反比例函数图象的交点问题,利用函数图象得到当一次函数∵反比例函数my x=的图象过(A a ∴22(1)m a =⨯=-,∴1a =-,∴()1,2A -,由函数图象可知,当一次函数y =10.在平面直角坐标系中,二次函数22y x mx m m =++-(m 为常数)的图象经过点(0,12),其对称轴在y 轴右侧,则该二次函数有()A .最大值394B .最小值394C .最大值8D .最小值8【答案】B【分析】本题主要考查了二次函数的性质以及二次函数的最值,正确得出m 的值是解题关键.依据题意,将(0,12)代入二次函数解析式,进而得出m 的值,再利用对称轴在y 轴右侧,得出23m =-,再利用二次函数的性质求得最值即可.【详解】解:由题意可得:212m m =-,解得:14m =,23m =-.二次函数22y x mx m m =++-,对称轴在y 轴右侧,二、填空题11.口袋中有红色、黄色、蓝色的玻璃球共80个,小华通过多次试验后,发现摸到红球、黄球的频率依次是45%、25%,则估计口袋中篮球的个数约为个.【答案】24【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【详解】∵红球、黄球的频率依次是45%、25%,∴估计口袋中篮球的个数≈(1﹣45%﹣25%)×80=24个.故答案为24.【点睛】解答此题关键是要先计算出口袋中篮球的比例再算其个数.部分的具体数目=总体数目×相应频率.12.若直线1y x =-向上平移2个单位长度后经过点()2,m ,则m 的值为.【答案】3【分析】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.根据平移的规律求出平移后的解析式,再将点()2,m 代入即可求得m 的值.【详解】解: 直线1y x =-向上平移2个单位长度,∴平移后的直线解析式为:1y x =+.平移后经过()2,m ,∴213m =+=.故答案为:3.13.如图,在ABC 中,6cm AB AC ==,60BAC ∠=︒,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为.∵OD OB =,∴ABC ODB ∠=∠,∵AB AC =,∴ABC C ∠=∠,∴C ODB ∠=∠,14.如图,点,A a a ⎛⎫⎪⎝⎭和,B b b ⎛⎫ ⎪⎝⎭在反比例函数(0)y k x =>的图象上,其中0a b >>,若AOB 的面积为8,则ab=.15.如图,在ABC 中,AB AC =,点D 是边BC 的中点,过点D 作边AB 的垂线,交AB 于点E ,连接CE ,若2DE =,4AE =,则CE =.∴AD BC ⊥,DE ⊥ 90BDE ADE ∠+∠=∴∠=∠BDE DAE ,∴BED DEA ∽ ,DE BE三、解答题16.计算:22112sin 60|1|2-⎛⎫--︒++- ⎪⎝⎭17.先化简,再求值:2124x x ⎛⎫÷- ⎪+-,其中2x =.18.为了使同学们进一步了解中国航天科技的快速发展,某中学八年级组织了一场手抄报比赛,要求每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,年级随机抽取了部分同学统计所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.(1)八年级共抽取了______名学生;并补全折线统计图;(2)该活动准备在七年级开展,七年级共有568人,根据八年级样本的数据统计估计七年级选取C、D两个主题共有______名学生;(3)若七年级的小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.(2)解:510 56821340+⨯=名,∴根据八年级样本的数据统计估计七年级选取故答案为:213;(3)解:画树状图如下:由树状图可知共有16种等可能的结果,其中小林和小峰选择相同主题的结果有∴小林和小峰选择相同主题的概率为41 164=.19.尚品文具店长期销售甲、乙两种笔记本.2月份文具店花费3000元一次性购买了两种笔记本共170本,此时甲、乙两种笔记本的进价分别为15元和20元.(1)求2月份文具店购进甲、乙两种笔记本的数量;(2)3月份两种笔记本基本售完,文具店准备继续进货,此时两种笔记本进价有所调整.文具店花费1440元、1320元分别一次性购买甲、乙两种笔记本,已知购买甲种笔记本比乙种笔记本的数量多50%,甲种笔记本比乙种笔记本的进价少6元,求第二次购买乙种笔记本的数量.【答案】(1)购进甲种笔记本80本,乙种笔记本90本(2)第二次购买乙种笔记本60本20.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E .点F 在AC 的延长线上,且12∠=∠CBF CAB .(1)求证:直线BF 是O 的切线;(2)若3AB =,sin 5CBF ∠,求BF 的长.【答案】(1)见解析(2)4【分析】本题主要考查了切线的判定,等腰三角形的性质,三角函数的定义,熟练掌握各种性质是解题的关键.(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两21.【项目式学习】项目主题:车轮的形状项目背景:在学习完圆的相关知识后,九年级某班同学通过小组合作方式开展项目式学习,深入探究车轮制作成圆形的相关原理.【合作探究】(1)探究A 组:车轮做成圆形的优点是:车轮滚动过程中轴心到地面的距离始终保持不变.另外圆形车轮在滚动过程中,最高点到地面的距离也是不变的.如图1,圆形车轮半径为4cm ,其车轮最高点到地面的距离始终为______cm ;(2)探究B 组:正方形车轮在滚动过程中轴心到地面的距离不断变化.如图2,正方形车轮的轴心为O ,若正方形的边长为6cm ,车轮轴心O 距离地面的最高点与最低点的高度差为______cm ;(3)探究C 组:如图3,有一个正三角形车轮,边长为6cm ,车轮轴心为O (三边垂直平分线的交点),车轮在地面上无滑动地滚动一周,求点O 经过的路径长.探究发现:车辆的平稳关键看车轮轴心是否稳定,即车轮的轴心是否在一条水平线上运动.【拓展延伸】如图4,分别以正三角形的三个顶点A ,B ,C 为圆心,以正三角形的边长为半径作60︒圆弧,这样形成的曲线图形叫做“莱洛三角形”.“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心O并不稳定.(4)探究D组:使“莱洛三角形”以图4为初始位置沿水平方向向右滚动.在滚动过程中,其“最高点”和“车轮轴心O”均在不断移动位置,那么在“莱洛三角形”滚动一周的过程中,其“最高点”和“车轮轴心O”所形成的图形按上、下放置,应大致为______.22.如图,等腰Rt ABC △中,90ACB ∠=︒,AC BC =,点D 为BC 边上一点,CE AD ⊥于点E ,延长BE 交AC 于点F .(1)求证:22AE AC ED CD=;(2)当EF 平分AEC ∠时,求BC DC的值;(3)当点D 为BC 的三等分点时,请直接写出AF FC 的值.(3)解:作DP BF∥交当23 CDBC=时,∴23CPCF=,tan ECD∠22AE ACED CD=,2 DE CD∴=,。
2024年广东省深圳福田区中考一模数学答案及评分标准
福田区2023-2024学年第二学期九年级中考适应性考试数学参考答案及评分标准二、填空题(每小题3分,共15分)(说明:填空题的结果不化简的不给分)三、解答题16. 解:原式= 1(3)42--+⨯…………4分(每个考点给1分) = . …………5分17. 解:原式=222(2)222(2)x xx x x--⎛⎫+⋅⎪---⎝⎭…………4分=222x xx-⋅-…………5分=2x. …………6分当x=4时,原式=42=2. …………7分18.解:(1)③④…………2分(对一个给1分,多选不给分)(2)事件①:第一天,丁考查B景点;事件②:第一天,戊考查A景点(合理即可给分)……………………4分(3)评价:①小明的解法不对.……………………5分②错误原因是:表格中列举的6种人员分布状态,并非6种等可能结果.丁、戊两名同学与景点的匹配关系,可能形成如下几种等可能结果列表法:丁A B CA AA AB ACB AB BB BCC AC BC CC戊………7分树状图法:说明:第(2)问的答案是开放的;第(3)问,采取开放性评价方式:能指出小明解法错误的,给1分,能正确指出错误原因的,另加2分,但本题总得分不得超过8分.19. 解:(1)设“K 牌甜筒”的进价为元/个,则“文创雪糕”的进价为(+1)元/个. 依题意得,…………1分80012001m m =+.…………2分 解得,=2. …………3分经检验,=2是原方程的解. …………4分 所以,+1=3.答:“K 牌甜筒”的进价为2元/个,“文创雪糕”的进价为3元/个. …………5分 (2)依题意得,(20200)(3)(20020200)(52)w x x x =-+-++--=220320600x x -+-. …………6分当=32082(20)-=⨯-<10时,每天总利润最大. …………7分此时,20820040y =-⨯+=(个), 200-40=160(个) …………8分 答:当文创雪糕销售单价为8元时,每天总利润最大.为获得最大利润,笑笑应购进40个“文创雪糕”,160个“K 牌甜筒”. …………8分20.(1)证明:方法1:如图1,∵ AB 是圆O 的直径, ∴ ∠ADB =90°.所有可能出现的结果:AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC.A B C ABCABCABC开始………7分∵ CE ∥AD ,∴ ∠1=∠ADB =90°. ……………………………1分 ∵ D 为弧AC 的中点, ∴ ∠ABD =∠CBD .又, GB =GB ,∠1=∠BGC =90°.∴ △GBC ≌△GBE (ASA) , ……………………………2分 ∴ EB =CB .又, ∠ABD =∠CBD ,DB =DB ,∴ △DCB ≌△DEB , …………………………3分 ∴ DC =DE . …………………………4分方法2:证△GBC ≌△GBE (ASA),同方法一 ……………………………2分 ∵ △GBC ≌△GBE , ∴ GE=GC ,EB=CB ,∴ DB 垂直平分EC , ……………………………3分 ∴ DE=DC. ……………………………4分 说明:直接由“角平分线与垂线合一”得“等腰”或“垂直平分线”的,建议扣1分. (2)如图2,连接OD ,OC ;OD 交EC 于点K .∵ 弧AC =弧BC , ∴ ∠AOC =90°.又,D 为弧AC 的中点, ∴ ∠AOD =∠COD =45°. ∵ OD =OA ,∴ ∠ADO =∠DAO =245180︒-︒=67.5°. 同理可得, ∠ODC =∠OCD =245180︒-︒=67.5°. ∵ EC ∥AD , ∴ ∠ADO =∠DKF =67.5° . ………………………………………………5分 ∵ DF 是圆O 的切线, ∴ OD ⊥DF , ∴ ∠ODF =90°.∴ ∠FDC =∠ODF -∠ODC =22.5°,且∠F =22.5°, ∴ DC =CF ,∠DCE =45° . ………………………………………………6分图1图2由(1)知,DC =DE , ∴ ∠DEC =∠DCE =45°.∴ △DCE 是等腰直角三角形. ∵ 弧AD 与弧CD 相等, ∴ CD =AD . ∵ AD =2,∴ AD =DE =DC =CF =2. …………………………………………7分在等腰直角三角形DCE 中, EC =22DE DC +=2,∴ EF =EC +CF =2+2. …………………………………………8分21.解:(1)如图3所示: …………………………………………2分(边界线,阴影区域各一分)(2) 填“等比性质”或“等比定理”或“比例的性质”均给分. ………………3分d z 800=…………………………………………5分(3)①抛物线解析式为40545012++-=x x y .…………………………………7分 或写成21(20)4850y x =--+. …………………………………7分解:如图4,M 刚好进入感应区时,05.01=d ,02=d ,此时05.021=-=d d d ,此时,1600005.0800==z (mm )=16(m ). 因CD =10 mm ,f =4 mm ,可得,OP 所在直线解析式为:x y 54-=,图3令y =16,得x =-20,即,P (-20,16). 当M 经过点r O 的正上方时,视差02.0=d 此时,4000002.0800==z (mm )=40(m ), 即,抛物线与y 轴交点的坐标为(0,40), 当d 减小到上述1d 的13时,z =31648⨯=(m ), 之后d 开始变大,z 开始变小, 即,抛物线顶点的纵坐标为48.设抛物线解析式为)0(2≠++=a c bx ax y , 将(-20,16),(0,40)等代入得,2164002040448.4a b c c ac b a ⎧⎪=-+⎪⎪=⎨⎪-⎪=⎪⎩,, 解得,145b =,2125b =-.因为,a <0,对称轴在y 轴右侧,所以,b >0.故,b =54, 此时,a =501-.所以,抛物线解析式为40545012++-=x x y . ② 易知,直线OD 的解析式为x y 54=, …………………………………8分得,2451440.505y x y x x ⎧=⎪⎪⎨⎪=-++⎪⎩,解得,1x =520,2x =520-(舍)此时,y =516.所以,物体M 刚好落入“盲区”时,距离基线的高度为516m. …………………9分图422.(1)D …………3分(2)①22x y +的最小值为40- …………4分 理由如下:如图5,连接BP ,BD .则,BD ==. ………………4分由(1)知,22222x y PD +=+, ………………5分 所以,当PD 最小时,22x y +最小, ………………5分 而,PD ≥BD -BP=2(等号成立时,点P 位于BD 上).所以,22x y +的最小值为()2222+=40- ………………6分 ② x y -的最大值为 ………………8分 此时,PD的长为 ………………10分 略解:求x y -的最大值.解法1:如图6,把△ABP 绕点B 顺时针旋转90,得△CBE ,此时,x y EC PC PE -=-=≤.(等号成立时,P ,E ,C 三点共线,存在两种不同的位置情形,如图6-1,6-2所示)ECCC图5图6图6-1图6-2解法2:如图6-3,在AB ,BC 上分别取点M ,N ,使BM =BN =1,则易得△MBP ∽△PBA ,所以,12MP BP PA AB ==,所以,MP =1122PA x =,同理,1122PN PC y ==, 又MP PN -≤MN =P 在直线MN 与⊙B 的交点上),所以,x y -≤略解:求此时PD 的长.由(1)知,2224PD x y =+-解法1:如图6-1,在△EBC 中,EB =2,BC =4,45BEC ∠=,通过解斜三角形EBC ,可得 ,E C x ==,此时,PC y ==,在图6-2中,同理可得,PC y ==,EC x =,无论哪种情况,12xy ==.而,22224()24PD x y x y xy =+-=-+-, 把上述结果代入,得22212428PD =+⨯-=.所以,此时,PD =解法2:如图6-4,通过构造圆的两条割线,可得,△MCP ∽△ECN ,得,2612xy CP CE CM CN =⋅=⋅=⨯=,又,x y -=所以,222232x y x y xy +=-+=所以,222432428PD x y =+-=-=.所以,此时,PD =CNCC图6-4解法3:如图6-5,连接AC ,由旋转性质,可得AP EC ⊥,此时,222AP PC AC +=,即,(22232x y +==,所以,222432428PD x y =+-=-=.所以,此时,PD =解法4:如图6-6,连接BD ,交MN 于点F ,连接AC ,则BD AC ⊥,又易得MN ∥AC ,所以,BD MN ⊥,易得,BF =,DF = 当M ,N ,P 三点共线时,PF=,所以,PD ==CC图6-5。
2024年广东省深圳市深圳中学共同体中考一模数学试题(解析版)
2023-2024 学年第二学期模拟考试九年级数学试卷1.答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上.2.考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效.3.全卷共6页,考试时间90分钟,满分100分.一.选择题(共10小题,每小题3分,共30分)1. 某正方体的平面展开图如图所示,则原正方体中与“祖”字所在的面相对的面上的字是()A. 繁B. 荣C. 昌D. 盛【答案】D【解析】【分析】本题主要考查正方体的展开图,熟练掌握正方形的展开图是解题的关键.根据正方形的展开图找到对立面即可得到答案.【详解】解:正方体中与“祖”字所在的面相对的面上的字是“盛”,故选:D.2. 剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .该图不是轴对称图形,是中心对称图形,不符合题意;B . 该图是轴对称图形,不是中心对称图形,符合题意;C .该图既是轴对称图形,又是中心对称图形,不符合题意;D .该图不是轴对称图形,是中心对称图形,不符合题意.故选:B .3. 某校“校园之声”社团招新时,需考查应聘学生的应变能力、知识储备、朗读水平三个项目,布布的三个项目得分分别为85分、90分、92分.若评委按照应变能力占20%,知识储备占30%,朗读水平占50%计算加权平均数来作为最终成绩,则布布的最终成绩为( )A. 85分B. 89分C. 90分D. 92分【答案】C【解析】【分析】本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,根据加权平均数的求法可以求得布布的最终成绩,本题得以解决.【详解】解:根据题意得:8520%9030%9250%90×+×+×=(分), ∴布布的最终成绩是90分.故选:C .4. 图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,60BCD ∠=°,50BAC ∠=°,当MAC ∠为( )度时,AM BE ∥.A. 15B. 65C. 70D. 115【答案】C【解析】 【分析】本题考查了平行线的性质,三角形内角和定理.根据“两直线平行内错角相等”求得ABC ∠的度数,利用三角形内角和定理求得ACB ∠的度数,再利用“两直线平行内错角相等”即可求解.【详解】解:∵AB 、CD 都与地面l 平行,∴AB CD ∥,∴60ABC BCD ∠=∠=°,∵50BAC ∠=°,∴180506070ACB ∠=°−°−°=°,∵AM BE ∥,∴70MAC ACB ∠=∠=°,故选:C .5. 下列计算正确的是( )A. 3332a a a ⋅=B. ()326ab ab =C. 232(3)6ab ab ab ⋅−=−D. ()321052ab ab b ÷−=− 【答案】D【解析】【分析】本题考查幂的运算,涉及同底数幂的乘除法、积的乘方等知识.根据同底数幂的乘除法、积的乘方法则逐一解答.【详解】解:A 、33632a a a a ⋅=≠,故本选项不符合题意;B 、()32366ab a b ab =≠,故本选项不符合题意; C 、22332(3)66ab ab a b ab ⋅−=−≠−,故本选项不符合题意;D 、()321052ab ab b ÷−=−,故本选项符合题意; 故选:D .6. 下列命题正确的是( )A. 在圆中,平分弦直径垂直于弦并且平分弦所对的两条弧B. 顺次连接四边形各边中点得到的是矩形,则该四边形是菱形C. 若C 是线段 AB 的黄金分割点,2AB =,则1AC =−D. 相似图形不一定是位似图形,位似图形一定是相似图形【答案】D【解析】【分析】此题考查了菱形的判定、命题与定理的知识,解题的关键是了解菱形的判定方法、相似图形、中点的四边形的知识,难度不大根据菱形的判定方法、相似图形、中点四边形和黄金分割点判断即可.【详解】解:A 、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,原命题是假命题,不符合题意;B 、顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相互垂直,原命题是假命题,不符合题意;C 、已知点C 为线段AB 的黄金分割点,若2AB =,则1AC =−或3AC =−不符合题意;D 、位似图形一定是相似图形,但是相似图形不一定是位似图形,原命题是真命题,符合题意; 故选:D .7. 古代数学著作《孙子算经》中有“多人共车”问题:今有五人共车,二车空;三人共车,十人步.问人与车各几何?其大意是:每车坐5人,2车空出来;每车坐3人,多出10人无车坐,问人数和车数各多少?设共有x 人,y 辆车,则可列出方程组为( ) A. ()52310y x y x −= +=B. 52310y x y x −= +=C. ()52310y x y x −= +=D. ()52310y x y x −= −=【答案】A【解析】 【分析】本题考查了二元一次方程组的应用,设共有x 人,y 辆车,根据题意,列出方程组,解方程组即可求解,根据题意,找到等量关系,列出二元一次方程组是解题的关键.【详解】解:设共有x 人,y由题意可得,()52310y x y x −= +=, 故选:A .8. 某露营爱好者在营地搭建一种“天幕”(如图1),其截面示意图是轴对称图形(如图2),对称轴是垂直于地面的支杆AB 所在的直线,撑开的遮阳部分用绳子拉直,分别记为AC ,AD ,且2AC AD ==米,CAD ∠的度数为140°,则此时“天幕”的宽度CD 是( )A. 4sin70° 米B. 4cos70°米C. 2sin20°米D. 2cos20°米【答案】A的【分析】本题考查了解直角三角形,等腰三角形三线合一的性质,解题的关键是掌握相关知识的灵活运用.根据正弦的定义,即可求解.【详解】解:2AC AD == 米,对称轴是垂直于地面的支杆AB 所在的直线,CAD ∠的度数为140°,CE DE ∴=,1702CAE CAD ∠=∠=°,sin CECAE AC∠=, sin 2sin 70CE AC CAE ∴=⋅∠=⋅°24sin 70CD CE ∴°,故选:A .9. 已知二次函数 ()20y ax bx c a ++≠图象的一部分如图所示,该函数图象经过点(50),,对称轴为直线2x =.对于下列结论:0b >①;②a c b +<;③多项式2ax bx c ++可因式分解为(1)(5)x x +−;④无论 m 为何值时,242am bm a b +≤+.其中正确个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题主要考查了二次函数图象与系数的关系,二次函数 图象的性质等等:先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为1222x x x +=可得抛物线与x 轴的另一个交点为(1,0)−,由此可判断②;根据抛物线与x 轴的两个交点坐标可判断③;根据函数的对称轴为2x =可知2x =时y 有最大值,由此可判断④.【详解】解:∵抛物线开口向下,∵对称轴为直线22b x a=−=, ∴40b a =−>,结论①正确;∵抛物线与x 轴一个交点为()50,,且对称轴为直线2x =, ∴抛物线与x 轴的另一个交点为()1,0−,即当=1x −时,0y =,∴0a b c −+=,∴a c b +=,结论②错误;∵抛物线2y ax bx c ++与x 轴的两个交点为()1,0−,()50,, ∴多项式2ax bx c ++可因式分解为()()15a x x +−,结论③错误;∵对称轴为直线2x =,且函数开口向下,∴当2x =时,y 有最大值,由2y ax bx c ++得,当2x =时,42y a b c =++,当x m =时,2y am bm c ++,∴无论m 为何值时,242am bm c a b c ++≤++,∴242am bm a b +≤+,结论④正确;综上:正确的有①④.故选:B .10. 如图,菱形ABCD 的边长为3cm ,60B ∠=°,动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA −−运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm /s 的速度沿着边 BA 向A 点运动,到达点A 后停止运动,设点P 的运动时间为()s x ,BPQ 的面积为y 2cm ,则y 关于x 的函数图象为( )的A. B.C. D.【答案】D【解析】【分析】本题考查动点问题的函数图象.根据拐点得到各个自变量范围内的函数解析式是解决本题的关键.用到的知识点为:30°的直角三角形三边比是:2.易得点P 运动的路程为3x cm ,点Q 运动的路程为x cm .当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上,过点Q 作QE BC ⊥于点E ,求得QE 的长度,然后根据面积公式可得y 与x 关系式;当点P 在线段CD 上时,12x <≤,BQ 边上的高是AB和CD 之间的距离,根据面积公式可得y 与x 之间的关系式;当点Q 在线段AD 上时,23x <≤,作出BQ 边上的高,利用三角形的面积公式可得y 与x 的关系式.然后根据各个函数解析式可得正确选项.【详解】解: 点P 的速度是3cm/s ,点Q 的速度为1cm/s ,运动时间为(s)x ,∴点P 运动的路程为3x cm ,点Q 运动的路程为x cm .①当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上.过点Q 作QE BC ⊥于点E ,90BEQ ∴∠=°.60B ∠=° ,30BQE ∴∠=°.12BE x ∴=cm .QE x ∴cm .22113(cm )22BPQ S BP QE x ∆∴=⋅=×.2(01)y x x ∴=≤≤. ∴此段函数图象为开口向上的二次函数图象,排除B ;②当12x <≤时,点P 在线段CD 上,点Q 在线段AB 上.过点C 作CF AB ⊥于点F ,则CF 为BPQ 中BQ 边上的高.90BFC ∴∠=°.60ABC ∠=° ,30BCF ∴∠=°.3cm BC = ,3cm 2BF ∴=.CF ∴.211(cm )22BPQ S BQ CF x ∆∴=⋅=.(12)y x x ∴=<≤. ∴此段函数图象为y 随x 的增大而增大的正比例函数图象,故排除A ;③当23x <≤时,点P 在线段AD 上,点Q 在线段AB 上.过点P 作PM AB ⊥于点M .90M ∴∠=°.四边形ABCD 是菱形,AD BC ∴∥.60ABC ∠=° ,60MAP ∴∠=°.30APM ∴∠=°.由题意得:(93)cm APx =−. 93cm 2x AM −∴=.PM ∴.211)22BPQ S BQ PM x ∆∴=⋅=.y ∴ ∴此段函数图象为开口向下的二次函数图象.故选:D .二.填空题(共5小题)11. 分解因式:244xy xy x −+=____________________【答案】()221x y −【解析】【分析】先提取公因式x ,再利用完全平方公式进行二次分解即可.【详解】解:244xy xy x −+=()2441x y y −+=()221x y −,故答案为:()221x y −.【点睛】本题考查提公因式法与公式法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12. a 是方程210x x −−=的一个根,则代数式2202422a a −+的值是______.【答案】2022【解析】【分析】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.由题意得21a a −=,根据()2220242220242a a a a −+=−−,利用整体思想即可求解.【详解】解:由题意得:210a a −−=∴21a a −= ∴()22202422202422024212022a a a a −+=−−=−×= 故答案为:202213. 如图,在ABC 中,40B ∠=°,50C ∠=°,通过观察尺规作图的痕迹,可以求得DAE ∠=___________.【答案】25°##25度【解析】【分析】本题主要考查线段垂直平分线的性质、角平分线的定义、三角形内角和定理等知识点,熟练掌握线段垂直平分线的性质、角平分线的定义是解答本题的关键.由题可得,直线DF 是线段AB AE 为DAC ∠的平分线,再根据线段垂直平分线的性质、角平分线的定义以及三角形内角和定理求解即可.【详解】解:由题可得,直线DF 是线段AB 的垂直平分线,AE 为DAC ∠的平分线,∴AD BD DAE CAE =∠=∠,, ∴40B BAD ∠=∠=°, ∴80ADC B BAD ∠=∠+∠=°,∵50C ∠=°,∴180805050DAC ∠=°−°−°=°, ∴1252DAE CAE DAC ∠=∠=∠=°, 故答案为:25°.14. 如图,在平面直角坐标系中,四边形OABC 为菱形,反比例函数()0,0k y k x x =≠>的图象经过点C ,交AB 于点D ,若2sin 3B =,6OCD S =△,则k 值为___________.【答案】【解析】【分析】过点C 作CE OA ⊥于点E ,根据菱形性质,得2sin sin 3CE AOC B OC ∠==∠= ,设2CE a =,则3OC OA a ==,再表示出点C 的坐标,根据26212菱形OCD OABC S S ==×= 列方程即可求出a 的值及k 的值.【详解】解:过点C 作CE OA ⊥于点E ,四边形OABC 为菱形,,OC OA AOC B ∴=∠=∠,2sin sin 3CE AOC B OC ∴∠==∠=, 设2CE a =,则3OC OA a ==,在Rt OEC △中,OE =,,2)C a ∴26212菱形OCD OABC S S ==×= ,又3212菱形OABC S OA CE a a =×=×= ,0a > ,a ∴,C,k =的故答案为:【点睛】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、三角函数等知识,关键是辅助线的作法.15. 如图,矩形ABCD 的长BC =,将矩形ABCD 对折,折痕为PQ ,展开后,再将C ∠ 折到DFE ∠的位置,使点 C 刚好落在线段AQ 的中点 F 处,则折痕DE =___________.【解析】 【分析】本题考查了矩形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解决问题的关键是作辅助线,构造相似三角形.过点F 作GH BC ⊥于H ,交AD 于G ,不妨设CQDQ a ==,可求得AQ ,AD ,DG ,FG ,FH 的值,证明DGF FHE △∽△,从而求得EF ,进而求得CE 和BE 的值,从而求得结果.【详解】解:如图,设DQCQ a ==,则22DF CD DQ a ===, 四边形ABCD 是矩形,90∴∠=∠=°C ADC ,BC AD =,F 是AQ 的中点,24AQ DF a ∴==,AD BC ∴===== ∴1a =∴1DQCQ ==,2DF CD ==,4AQ =, 过点F 作GH BC ⊥于H ,交AD 于G ,90GHC ∴∠=°,∴四边形CDGH 是矩形,2GH CD ∴==,GH CD ∥,AFG AQD ∴△∽△, ∴12AG FG AF AD DQ AQ ===,12AG AD ∴==,1122FG DQ ==, 13222FH GH FG ∴=−=−=, 90DGF FHE ∠=∠=° ,90HFE HEF ∴∠+∠=°,、90DFE C ∠=∠=° ,90DFG HFE ∴∠+∠=°,DFG HEF ∴∠=∠,DGF FHE ∴△∽△, ∴DG DF FH EF=,∴2EF=,EF ∴,CE EF ∴==,DE ∴===. 三.解答题(共7题,共55分)16 计算:4cos30°﹣2|+)0+(﹣13)﹣2. 【答案】8. .【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】4cos30°﹣2|++(﹣13)-2=214(211()3−+−+=219−++−+=8.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.17. 先化简:231(1)224x x x −−÷++,再从1−,0中选取适合的数字求这个代数式的值. 【答案】21x +,当0x =时,值为2 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的减法,再计算除法运算,得到化简的结果,结合分式有意义的条件,把0x =代入计算即可. 【详解】解;231(1)224x x x −−÷++()()()1123222x x x x x +−+−÷++ ()()()221211x x x x x +−⋅++− 21x =+, ∵分式有意义,∴1x ≠±且2x ≠−, ∴当0x =时,原式2201=+; 18. 某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位:min ),并对数据进行了整理,描述,部分信息如下: a .每天在校体育锻炼时间分布情况:每天在校体育锻炼时间x (min ) 频数(人) 百分比6070x ≤<14 14% 7080x ≤<40 m 8090x ≤< 3535% 90x ≥n 11% b .每天在校体育锻炼时间在8090x ≤<这一组的是:80 81 81 81 82 82 83 83 84 84 84 84 84 85 85 85 85 85 85 85 85 86 87 87 87 87 87 88 88 88 89 89 89 89 89根据以上信息,回答下列问题:(1)表中m =______,n =______;(2)若该校共有1000名学生,估计该校每天在校体育锻炼时间不低于80分钟的学生的人数;(3)该校准备确定一个时间标准p (单位:min ),对每天在校体育锻炼时间不低于p 的学生进行表扬.若要使25%的学生得到表扬,则p 的值可以是______.【答案】(1)40%,11(2)460人(3)86(答案不唯一)【解析】【分析】(1)根据所有组别的频率之和为1求出m 即可;用组别6070x ≤<的频数除以频率得到参与调查的学生人数,进而求出n 的值即可;(2)用1000乘以样本中每天在校体育锻炼时间不低于80分钟的学生的人数占比即可得到答案; (3)把每天在校体育锻炼时间从低到高排列,找到处在第75名和第76名的锻炼时间即可得到答案.【小问1详解】解:由题意得,114%35%11%40%m =−−−=,1414%100÷=人,∴这次参与调查的学生人数为100人,∴10011%11n =×=,故答案为:40%,11;【小问2详解】解:()100011%35%460×+=人,∴估计该校每天在校体育锻炼时间不低于80分钟的学生的人数为460人;【小问3详解】解:把每天在校体育锻炼时间从低到高排列,处在第75名和第76名的锻炼时间分别为85min 86min 、, ∵要使25%的学生得到表扬,∴8586p <≤,∴p 的值可以为86,故答案为:86(答案不唯一).【点睛】本题主要考查了频率与频数分布表,用样本估计总体等等,灵活运用所学知识是解题的关键. 19. 如图,在ABC 中,AB BC =,AB 为O 的直径,AC 与O 相交于点 D ,过点D 作DE BC ⊥于点E ,CB 延长线交O 于点F .(1)求证:DE 为O 的切线;(2)若1BE =,2BF =,求【答案】(1)见解析;(2).【解析】【分析】(1)根据已知条件证得OD BC 即可得到结论;(2)如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,构建矩形ODEH ,根据矩形的性质和勾股定理即可得到结论.【小问1详解】证明:OA OD = ,BAC ODA ∴∠=∠,AB BC = ,BAC ACB ∴∠=∠,ODA ACB ∴∠=∠,OD BC ∴ .DE BC ⊥ ,DE OD ∴⊥,OD 是O 的半径,DE ∴是O 的切线;【小问2详解】解:如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,∴四边形ODEH 是矩形,OD EH ∴=,OH DE =,OH BF ⊥ ,2BF =,112BH FH BF ∴===, 2OD EH BH BE ∴==+=,24AB OD ∴==,OH ==DE OH ∴==2BD ∴=,AD ∴【点睛】本题考查了切线的判定,勾股定理,矩形的判定与性质,垂径定理,等腰三角形的性质.解题的关键:(1)熟练掌握切线的判定;(2)利用勾股定理和垂径定理求长度.20. 2024年龙年春晚吉祥物形象“龙辰辰”正式发布亮相,作为中华民族重要的精神象征和文化符号,千百年来,龙的形象贯穿文学、艺术、民俗、服饰、绘画等各个领域,也呈现了吉祥如意、平安幸福的美好寓意.吉祥物“龙辰辰”的产生受到众人的热捧.某工厂计划加急生产一批该吉祥物,决定选择使用A 、B 两种材料生产吉祥物.已知使用B 材料的吉祥物比A 材料每个贵50元,用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍.(1)求售卖一个A 材料、一个B 材料的吉祥物各需多少元?(2)一所中学为了激励学生奋发向上,准备用不超过3000元购买A 、B 两种材料的吉祥物共50个,来奖励学生.恰逢工厂对两种材料吉祥物的价格进行了调整:使用A 材料的吉祥物的价格按售价的九折出售,使用B 材料的吉祥物比售价提高了20%,那么该学校此次最多可购买多少个用B 材料的吉祥物?【答案】(1)购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元(2)该学校此次最多可购买10个B 材料的吉祥物【解析】【分析】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.(1)设使用A 材料生产的吉祥物的单价为x 元/个,则使用B 材料生产的吉祥物的单价为(50)x +元/个,利用数量=总价÷单价,结合用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍,可列出关于x 的分式方程,解之经检验后,可得出使用A 材料生产的吉祥物的单价,再将其代入(50)x +中,即可求出使用B 材料生产的吉祥物的单价;(2)设该学校此次购买m 个使用B 材料生产的吉祥物,则购买()50m −个使用A 材料生产的吉祥物,利用总价=单价×数量,结合总价不超过3000元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.【小问1详解】解:设购买一个A 材料的吉祥物需x 元,则购买一个B 材料的吉祥物需()50x +元, 依题意,得:30001500450x x =×+, 解得:50x =,经检验,50x =是原方程的解,且符合题意,∴50100x ,答:购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元;【小问2详解】设该学校此次购买m 个B 材料的吉祥物,则购买()50m −个A 材料的吉祥物,依题意,得:()()5090%50100120%3000m m ×−+×+≤,解得:10m ≤.∴m 的最大值为10,答:该学校此次最多可购买10个B 材料的吉祥物.21. 【项目式学习】【项目主题】自动旋转式洒水喷头灌溉蔬菜【项目背景】寻找生活中的数学,九(1)班分四个小组,开展数学项目式实践活动,获取所有数据共享,对蔬菜喷水管建立数学模型,菜地装有1个自动旋转式洒水喷头,灌溉蔬菜,如图1所示,观察喷头可顺、逆时针往返喷洒.【项目素材】素材一:甲小组在图2中建立合适的直角坐标系,喷水口中心O 有一喷水管OA ,从A 点向外喷水,喷出的水柱最外层的形状为抛物线.以水平方向为x 轴,点O 为原点建立平面直角坐标系,点A (喷水口)在y 轴上,x 轴上的点D 为水柱的最外落水点.素材二:乙小组测得种植农民的身高为1.75米,他常常往返于菜地之间.素材三:丙小组了解到需要给蔬菜大鹏里拉一层塑料薄膜用来保温保湿,以便蔬菜更好地生长.【项目任务】任务一:丁小组测量得喷头的高OA =23米,喷水口中心点O 到水柱的最外落水点D 水平距离为8米,其中喷出的水正好经过一个直立木杆EF 的顶部F 处,木杆高3EF =米,距离喷水口4OE =米,求出水柱所在抛物线的函数解析式.任务二:乙小组发现这位农民在与喷水口水平距离是p 米时,不会被水淋到,求 p 的取值范围. 45°,截面如图3,求薄膜与地面接触点与喷水口的水平距离是多少米时,喷出的水与薄膜的距离至少是10厘米?(直接写出答案,精确到0.1米).【答案】任务一:2152643y x x =−++;任务二:1 6.5p <<;任务三:8.4米. 【解析】 【分析】任务一:运用待定系数法求解即可;任务二:求出当 1.75y =时x 的值,则p 的取值在这两根之间;(3)设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MN GQ m ==,则直线GM 与直线y x =−平行,则MP =,直线GM 的解析式是:y x b =−+,联立方程组得到关于x 的一元二次方程,利用Δ0=求出b 的值,从而求出OM ,继而求出OP ,从而得解. 【详解】解:任务一:由题意得抛物线过点203A,,()80D ,,()43F ,, 设抛物线的解析式为2y ax bx c ++, 将点203A ,,()80D ,,()43F ,代入得:2364801643c a b c a b c = ++= ++=, 解得:165423a b c =− = =, ∴水柱所在抛物线的函数解析式为2152643y x x =−++;; 任务二:当 1.75y =时,2152 1.75643x x −++= 解得121 6.5x x ==, ∴ p 的取值范围是:1 6.5p <<;任务三:∵薄膜所在平面和地面的夹角是45°,∴薄膜所在的直线与直线y x =−平行,如下图所示:设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MNGQ m ==,则直线GM 与直线y x =−平行.又∵薄膜所在平面和地面的夹角是45°,即45MPN ∠=°,∴MN NP =,MP =, 设直线GM 的解析式是:y x b =−+, 直线GM 的解析式与抛物线解析式联立得:2152643y x x y x b =−++ =−+∵这个到薄膜最近的点是G , ∴方程2152643x x x b −++=−+,即有20192643x x b −+=−两个相等得实数根, ∴2912Δ40463b =−−××−=, 解得:79396b =, ∴直线GM 的解析式是:79396y x =−+, 令793096y x =−=+, 解得: 79396x =∴793096M,,793m 96OM =,∴793968.4m OP OM MP =+=≈, 答:求薄膜与地面接触点与喷水口的水平距离是8.4米时,喷出的水与薄膜的距离至少是10厘米【点睛】本题考查待定系数法求二次函数解析式,二次函数的图象与性质,等腰直角三角形的判定与性质,二次函数与几何综合等知识,利用数形结合思想解题是关键.22. 【综合与实践】【问题背景】在四边形ABCD 中,E 是CD 边上一点,延长BC 至点F 使得CF CE =,连接DF ,延长BE 交DF 于点G .【特例感知】(1)如图1,若四边形ABCD 是正方形时.①求证:BCE DCF ≌;②当G 是DF 中点时,F ∠=__________度; 【深入探究】(2)如图2,若四边形ABCD 是菱形,2AB =,当G 为DF 的中点时,求CE 的长;【拓展提升】(3)如图3,若四边形ABCD 是矩形,3AB =,4AD =,点H 在BE 的延长线上且满足5BE EH =,当EFH 是直角三角形时,请直接写出CE 的长.【答案】(1)①见解析;②67.5;(2)2;(3)411,43或2. 【解析】【分析】(1)①运用正方形的性质和SAS 即可证明; ②连接BD ,则1452CBD ABC ∠=∠=°,运用全等三角形的性质和三角形的内角和推导90BGF ∠=°,从而得出BG 垂直平分DF ,继而求出CBE ∠,从而得解;(2)点G 作GM BC ∥交CD 于M ,设GM x =,则2CE CF x ==,12ME x =−,证明MGE CBE ∽得到MG ME CB CE=,从而列出方程求解即可; (3)说明90FEH ∠<°,从而分当90H ∠=°时和当90EFH ∠=°时两种情况,运用相似三角形对应边成比例列出方程求解即可.【详解】(1)①∵四边形ABCD 是正方形,∴BC DC =,90BCE DCF ∠=∠=°.又∵CE=CF ,∴()SAS BCE DCF ≌.②连接BD ,∵四边形ABCD 是正方形, ∴1452CBD ABC ∠=∠=°, 由①得:BCE DCF ≌,∴BEC F ∠=∠,又∴90CBE F CBE BEC ∠+∠=∠+∠=° ∴()18090BGFCBE F ∠=°−∠+∠=°, 又∵G 是DF 中点,∴BG 垂直平分DF ,∴BD BF =,∴BG 平分CBD ∠,122.52CBE CBD ∠=∠=°, ∴9067.5F CBE ∠=°−∠=°,故答案为:67.5;(2)过点G 作GM BC ∥交CD 于M ,∵DG FG =,∴1DM CM ==,12MG CF =. 设GM x =,则2CE CF x ==,12ME x =−.∵GM BC ∥,∴MGE CBE ∠=∠,GME BCE ∠=∠.∴MGE CBE ∽. ∴MG ME CB CE=.即1222x x x −=,解得11x =−,21x −(舍去).∴CE=2−.(3)CE 的长为411,43或2. 理由如下: ∵四边形ABCD 是矩形,3AB =,4AD =∴3AB CD ==,4AD BC ==,∴CE BC <,BEC CBE ∠>∠,∴45BEC ∠>°,又∵CE CF =,∴45FEC CFE ∠=∠=°,∴18090FEH FEC BEC ∠=°−∠−∠<°,当90H ∠=°时,如下图所示:设CE CF a ==,则BE ,4BF BC CF a =+=+, 又∵5BE EH =,∴65BH BE ==, ∵90H BCE ∠=∠=°,FBH EBC ∠=∠,∴BFH BEC △∽△, ∴BF BH BE BC == 解得:2a =或43,即2CE =或43当90EFH ∠=°时,过点H 作HN BC ⊥于M ,如下图所示:则CE HN ∥,∴BCE BNH △∽△ ∴56BCCE BE BN NH BH ===,即456CE BN NH ==, ∴245BN =,45CN BN BC =−=,65NH CE =,∵45CFE ∠=°,90EFH ∠=°,∴45HFN ∠=°,FN HN =, ∴6455CN CF FN CE CE =+=+=, ∴411CE =, 综上所述:CE 的长为411,43或2. 【点睛】本题考查正方形的性质,菱形的性质,矩形的性质,相似三角形的判定与性质,等腰三角形的判定与性质,直角三角形存在性问题等知识,灵活运用相似三角形的判定和性质解决问题是解题的关键.。
深圳一模数学试题及答案初中
深圳一模数学试题及答案初中一、选择题(每题3分,共30分)1. 若一个数的平方等于4,则这个数是()。
A. 2B. -2C. 2或-2D. 以上都不是答案:C2. 下列哪个选项是等腰三角形的内角和?()A. 180°B. 360°C. 540°D. 720°答案:A3. 如果a和b是两个不同的实数,且a+b=5,那么a²+b²的值是()。
A. 25B. 10C. 15D. 20答案:C4. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?()A. 9πB. 18πC. 27πD. 36π答案:C5. 已知函数y=2x+3,当x=2时,y的值是()。
A. 7B. 5C. 4D. 3答案:A6. 一个等差数列的前三项分别是2,5,8,那么它的公差d是()。
A. 3B. 4C. 5D. 6答案:A7. 一个三角形的两边长分别为4和6,且这两边的夹角为60°,那么这个三角形的面积是()。
A. 6√3B. 3√3C. 2√3D. √3答案:B8. 如果一个数的立方等于-8,那么这个数是()。
A. 2B. -2C. 4D. -4答案:B9. 一个长方体的长、宽、高分别为2,3,4,那么它的体积是()。
A. 24B. 12C. 8D. 6答案:B10. 一个二次函数的图像开口向上,且顶点坐标为(1, -4),那么它的对称轴是()。
A. x=1B. x=-1C. x=2D. x=0答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长为________。
答案:512. 一个数的绝对值是5,那么这个数可以是________或________。
答案:5或-513. 一个正数的平方根有两个,它们互为相反数,其中一个是3,那么这个正数是________。
答案:914. 一个数的立方根是2,那么这个数是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012深圳中考一模数学试题及答案一、选择题(每小题2分,共30分) 1.计算12-的结果是( ).A .-2B .2C .21-D .21 2.如果a 与-3互为相反数,那么a 等于( ). A .3 B .-3 C .31 D .31-3.计算32)(a 的结果是( ).A .5a B .6a C .8a D .9a 4.已知⎩⎨⎧1,2==y x 是方程kx -y =3的解,那么k 的值是( ). A .2 B .-2 C .1 D .-1 5.如果2)2(2-=-x x ,那么x 的取值范围是( ).A .x ≤2B .x <2C .x ≥2D .x >26.如果一元二次方程0232=-x x 的两个根是1x ,2x ,那么21x x ⋅等于( ). A .2 B .0 C .32 D .32- 7.抛物线11)(y 2+-=x 的顶点坐标是( ). A .(1,1) B .(-1,1) C .(1,-1) D .(-1,-1)8.观察下列“风车”的平面图案:其中是中心对称图形的有( ).A .1个B .2个C .3个D .4个 9.在△ABC 中,∠C =90°,tan A =1,那么cot B 等于( ). A .3 B .2 C .1 D .33 10.在比例尺是1∶38000的南京交通游览图上,玄武湖隧道长约7 cm ,它的实际长度约为( ).A .0.266 kmB .2.66 kmC .26.6 kmD .266 km11.用换元法解方程xx x x+=++2221,如果设y x x =+2,那么原方程可变形为( ). A .022=++y y B .022=--y yC .022=+y y -D .022=+-y y12.如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,PC 切⊙O 于点C ,PC =3,PB =1,则⊙O 的半径等于( ).A .25 B .3 C .4 D .29 13.正方形ABCD 的边长是2 cm ,以直线AB 为轴旋转一周,所得到的圆柱的侧面积为( ).A .16π2cm B .8π2cm C .4π2cm D .42cm14.一根1 m 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( ). A .m )21(3 B .m )21(5 C .m )21(6 D .m )21(12 15.如图,一张矩形报纸ABCD 的长AB =a cm ,宽BC =b cm ,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于( ).A .1:2B .2:1C .1:3D .3:1二、填空题(每小题2分,共10分) 16.4的平方根是________. 17.计算=+82________.18.在实数范围内分解因式:=+-3322x x ________.19.如图,正六边形DEFGHI 的顶点都在边长为6 cm 的正三角形ABC 的边上,则这个正六边形的边长是________ cm .20.如图,⊙O 的两条弦AB 、CD 相交于点P ,PD =2PB ,PC =2 cm ,则PA =________ cm .三、(每小题5分,共25分)21.计算)(22abb a a ab a -- .22.解方程组⎩⎨⎧.122,02=+=-xy x y x23.已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴的交点的个数.24.如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F .求证:(1)△BDE ≌△CDF ;(2)∠A =90°时,四边形AEDF 是正方形.25.一定质量的氧气,它的密度ρ(3kg/m )是它的体积V (3m )的反比例函数,当V =103m 时,3kg/m 1.43=ρ. (1)求ρ与V 的函数关系式;(2)求当3m 2=V 时氧气的密度ρ.四、(每小题5分,共10分)26.一个长方形足球场的长为x m ,宽为70 m .如果它的周长大于350 m ,面积小于75602m ,求x 的取值范围,并判断这个球场是否可以用作国际足球比赛.(注:用于国际比赛的足球场的长在100 m 到110 m 之间,宽在64 m 到75 m 之间.)27.公交508路总站设在一居民小区附近.为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20 23 26 25 29 28 30 25 21 23 (1)计算这10个班次乘车人数的平均数;(2)如果在高峰时段从总站共发车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人.五、(本题7分)28.如图,∠POQ =90°,边长为2 cm 的正方形ABCD 的顶点B 在OP 上,C 在OQ 上,且∠OBC =30°,分别求点A 、D 到OP 的距离.六、(第29题6分,第30题8分,共14分)29.只利用一把有刻度的直尺,用度量的方法,按下列要求画图: (1)在图(1)中用下面的方法画等腰三角形ABC 的对称轴;(1)①量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ②画直线AD ,即画出等腰三角形ABC 的对称轴.(2)在图(2)中画∠AOB 的对称轴,并写出画图的方法.(2)30.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图(1)中的三角形被一个圆所覆盖,图(2)中的四边形被两个圆所覆盖. 回答下列问题:(1) (2)(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是________ cm ;(2)边长为 1 cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是________ cm ;(3)长为 2 cm ,宽为 1 cm 的矩形被两个半径都为r 的圆所覆盖,r 的最小值是________ cm ,这两个圆的圆心距是________ cm .七、(本题7分)31.某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.八、(本题8分) 32.如图,直线434+=x y 与x 轴、y 轴分别交于点M 、N .(1)求M 、N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,512为半径的圆与直线434+=x y -相切,求点P 的坐标.九、(本题9分)33.如图,⊙O 与⊙O ′相交于A 、B 两点,点O 在⊙O ′上,⊙O ′的弦OC 交AB 于点D .(1)求证:OD OC OA ⋅=2;(2)如果OC BC AC 3=+,⊙O 的半径为r .求证:r AB 3=参考答案一、选择题(每小题2分,共30分)1.D 2.A 3.B 4.A 5.C 6.B 7.A 8.B 9.C 10.B 11.D 12.C 13.B 14.C 15.A二、填空题(每小题2分,共10分)16.±2 17.23 18.2)3(-x 19.2 20.4 三、(每小题5分,共25分) 21.(本题5分)解:原式ab b a a b a a 222)(--=÷………………………………………………………2分 ))(()(2b a b a aba b a a -+-=⋅…………………………………………………4分 ba b+=.………………………………………………………………………5分22.(本题5分)解:由①,得y =x .③ 把③代入②,得12222=+x x .……………………………………………………………1分 解得 2±=x .……………………………………………………………………………3分 当x =2时,y =2.当x =-2时,y =-2.∴ 原方程组的解是⎩⎨⎧,2,211==y x ⎩⎨⎧--.2,222==y x ………………………………………………5分23.(本题5分) 解:根据题意,得a -2=-1. ………………………………………………………………………………1分∴ a =1.………………………………………………………………………………2分∴ 这个二次函数解析式是22-x y =.……………………………………………3分 因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与x 轴有两个交点.……………………………………………………………………………………5分 24.(本题5分)(1)证明:∵ AB =AC ,∴ ∠B =∠C .………………………………………1分 ∵ DE ⊥AB ,DF ⊥AC ,∴ ∠BED =∠CFD =90°.…………………………………………………………2分 ∵ BD =CD ,∴ △BED ≌△CFD .………………………………………………3分 (2)∵ ∠AED =∠AFD =∠A =90°,∴ 四边形AEDF 是矩形.……………………………………………………………4分 ∵ △BED ≌△CFD ,∴ DE =DF .∴ 四边形AEDF 是正方形.…………………………………………………………5分 25.(本题5分) 解:(1)设V k=ρ.……………………………………………………………………1分 当3m 10=V 时,3kg/m 43.1=ρ. ∴ 1043.1k= ∴ 3.14=k .………………………………………………………2分∴ ρ与V 的函数关系式是V 3.14=ρ…………………………………………………3分(2)当3m 2=V 时,15.723.14==ρ(3kg/m ).∴ 当3m 2=V 时,氧气的密度为3kg/m 7.15.……………………………………5分四、(每小题5分,共10分) 26.(本题5分) 解:根据题意,得…………………………………………………………………2分解①,得x >105.解②,得x <108.∴ 105<x <108.………………………………………………………………………4分 ∴ 这个球场可以用作国际足球比赛.………………………………………………5分 27.(本题5分)解:(1))2405340125(10125--++++++--+=x =25(人).…………………………………………………………………2分 ∴ 这10个班次乘车人数的平均数是25人.…………………………………………3分 (2)60×25=1500(人).………………………………………………………………4分∴ 估计在高峰时段从总站乘该路车出行的乘客共有1500人.……………………5分五、(本题7分)28.解:过点A 、D 分别作AE ⊥OP ,DF ⊥OP ,DG ⊥OQ ,垂足分别为E 、F 、G . …………………………………………………………………………………………………1分 在正方形ABCD 中,∠ABC =∠BCD =90°. ∵ ∠OBC =30°,∴ ∠ABE =60°. 在Rt △AEB 中, 323260sin ==⋅⋅︒=AB AE (cm ).……………………………………………3分 ∵ 四边形DFOG 是矩形,∴ DF =GO . ∵ ∠OBC =30°,∴ ∠BCO =60°. ∴ ∠DCG =30°.在Rt △DCG 中,323230cos ==⋅⋅︒=CD CG (cm )……………………………………………5分 在Rt △BOC 中,121==BC OC (cm ).……………………………………………6分 ∴ )13(+=+==CG OC GO DF cm .答:点A 到OP 的距离为3cm ,点D 到OP 的距离为(13+)cm .……………7分 六、(第29题6分,第30题8分,共14分) 29.(本题6分)(1)画图正确;…………………………………………………………………………2分 (2)画图正确.…………………………………………………………………………4分 画图方法:①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD .②连结CD ,量出CD 的长,将线段CD 二等分,画出线段CD 的中点E .③画直线OE .直线OE 即为∠AOB 的对称轴.……………………………………6分 30.(本题7分)(1)22;………………………………………………………………………………2分 (2)33;………………………………………………………………………………4分(3)22,1.………………………………………………………………………… 8分七、(本题7分)31.解:设每盏灯的进价为x 元.………………………………………………………1分根据题意,得x x x95)5400(4=--.…………………………………………………4分 解这个方程,得101=x ,7802=-x .…………………………………………………6分 经检验,这两个根都是原方程的根,但进价不能为负数,所以只取x =10.答:每盏灯的进价为10元.……………………………………………………………7分 八、(本题8分)32.解:(1)当x =0时,y =4.当y =0时,0434=+-x .∴ x =3. ∴ M (3,0),N (0,4).……………………………………………………………2分 (2)①当1P 点在y 轴上,并且在N 点的下方时,设⊙1P 与直线434+=-x y 相切于点A ,连结A P 1,则A P 1⊥MN .∴ ︒∠∠901==MON AN P ∵ M N O NA P ∠∠=1,∴ AN P 1∆∽MON ∆. ∴MNN P MO A P 11=.在Rt △OMN 中,OM =3,ON =4,∴ MN =5. 又∵5121=A P ,∴ 41=N P . ∴ 1P 点坐标是(0,0).………………………………………………………………3分 ②当2P 点在x 轴上,并且在M 点的左侧时,同理可得2P 点坐标是(0,0).……4分 ③当3P 点在x 轴上,并且在M 点的右侧时,设⊙3P 与直线434+=-x y 相切于点B ,连结B P 3,则B P 3⊥MN .∴ OA ∥B P 3.∵ OA =B P 3,∴ 33==OM M P .∴ 63=OP .∴ 3P 点坐标是(6,0).……………………………………………6分 ④当4P 点在y 轴上,并且在点N 上方时,同理可得44==ON N P .∴ 84=OP .∴4P 点坐标是(0,8).综上,P 点坐标是(0,0),(6,0),(0,8).………………………………………8分 九、(本题9分)33.证明:(1)连结OB .∵ OA =OB ,∴ ∠OAB =∠OBA . ∵ ∠OCA =∠OBA ,∴ ∠OAB =∠OCA .……………………………………………………………………1分 ∵ ∠AOC =∠DOA ,∴ △AOC ∽△DOA .……………………………………………………………………2分 ∴OAOC OD OA =.∴ OD OC OA ⋅=2.……………………………………………3分 (2)∵ △AOC ∽△DOA ,∴OA OCDA AC =.∴ OADA OC AC =.…………………………………………………5分 同理可得OBDB OC BC =.……………………………………………………………………6分 ∴ OB DB OA DA OC BC OC AC +=+,即 OAABOC BC AC =+. ………………… 7分∵ OC BC AC 3=+,OA =r ,∴ r AB 3=.…………………………………………………………………………9分。