食品价格波动的数学建模

合集下载

农产品价格波动预测模型研究

农产品价格波动预测模型研究

农产品价格波动预测模型研究随着全球农业市场的日益发展,粮食和其他农产品的价格波动引起了广泛关注。

农产品价格的波动对农民、消费者和政府都有重要影响。

因此,研究农产品价格波动的预测模型变得尤为重要。

农产品价格波动预测模型的研究涉及多个因素,如天气变化、供求关系、市场情绪等。

下面,本文将介绍几种常见的农产品价格波动预测模型。

首先,基于时间序列分析的模型是预测农产品价格波动的常用方法之一。

通过分析历史数据和价格的变化趋势,时间序列模型可以帮助我们预测未来的价格走势。

常用的时间序列模型包括ARIMA模型和GARCH模型。

ARIMA模型基于自回归和移动平均的概念,可以捕捉价格序列中的趋势和季节性。

而GARCH模型则可以捕捉价格序列的波动性。

这些模型可以为政府和农民提供决策依据,以应对农产品价格波动带来的挑战。

其次,基于机器学习的模型是预测农产品价格波动的新兴方法之一。

机器学习模型可以通过对大量历史数据的学习,识别出隐藏在数据背后的模式和关联。

随着大数据技术的发展,机器学习模型在农产品价格预测方面的应用逐渐增多。

例如,支持向量机(SVM)模型和随机森林模型在农产品价格波动预测方面表现出良好的效果。

这些模型可以提供更准确的预测结果,并帮助农民和投资者制定更有针对性的决策。

此外,基于供求关系的模型也是预测农产品价格波动的一种常见方法。

供求关系是决定价格波动的重要因素之一。

当供应增加或需求减少时,价格通常会下降。

相反,当供应减少或需求增加时,价格通常会上涨。

通过分析供求关系的变化,可以构建模型来预测农产品价格的波动。

政府可以通过控制供需关系来调节农产品价格的波动,以保护农民和消费者的利益。

最后,市场情绪和心理因素也对农产品价格波动起着重要作用。

市场情绪是指投资者的情绪和预期对价格波动的影响。

当投资者对农产品市场有积极的情绪和预期时,价格通常会上涨。

相反,当投资者对农产品市场有消极的情绪和预期时,价格通常会下降。

因此,研究市场情绪和心理因素对农产品价格波动的影响,可以提高对价格变动的预测能力。

数学建模—食品价格波动模型

数学建模—食品价格波动模型
对问题 1,只需画出它的价格波动折线图以及它的涨跌幅图就可以观察出食 品的经济波动特点,同时在这些价格波动过程中,对于影响因素给予考虑说明即 可。
对问题 2,建立线性回归模型,计算出食品价格的线性方程,对食品价格走 势进行预测,同时用 MATLAB 对其经行线性拟合,得到它的拟合曲线,用最小二 乘法得到的方程用来对模型进行检验。
如上图所示:大米、水果的价格涨跌幅分别为 0,面粉、鸭、鸡蛋的价格涨幅分 别为 0.2%、0.3%、2.5%,豆制品、食用油、肉、鸡、鱼、菜的价格跌幅分别为 -0.2%、-0.1%、-1.3%、-0.2%、-0.6%、-2.0%。
如上图所示:大米、面粉、豆制品、鸡、鸭、鸡蛋、水果的价格涨幅分别为 0.2%、 0.8%、0.2%、0.5%、0.6%、0.7%,食用油、肉、鱼、菜的价格跌幅分别为-0.1%、 -1.4%、-0.2%、-3.5%。
食品价格变动分析模型
西安建筑科技大学
队员:××× ××× ×××
2014 年 5 月 3 日
食品价格变动分析模型 摘要
本文针对 50 个城市的食品价格变动情况,建立了两个符合实际情况的模型。 模型一:线性回归模型,建立了时间和食品价格的线性方程模型,运用最小二二 乘法求得在 5 月份的价格走势情况,具有较好的短中期预测效果。 模型二:灰色关联度模型,求解出食品价格波动特点和 CPI 波动的关联度,从而 由关联度的高低来判断是否可以通过食品种类计算和预测 CPI。
对问题 3,建立灰色关联度模型,通过计算出食品价格与 CPI 的关联度的大 小,来决定是否可以通过监测尽量少的食品种类来对 CPI 进行预测、计算;同时, 我们选取了不同地区的相同时间内同种食品种类来计算其关联度的大小,来回答 题中的问题。

猪肉价格的数学模型 - 统计教育学会

猪肉价格的数学模型 - 统计教育学会

猪肉价格的统计模型摘要本文就猪肉价格预测的问题,根据题目中的条件和要求,在合理的假设下,建立三个模型。

模型一为简单的直线方程模型;模型二是在采用灰色关联度建立猪肉价格与其影响因素的关系模型后,利用关联度返算,建立猪肉价格预测模型;模型三是建立养猪场盈亏平衡点等式模型。

通过求解这三个模型,很好的解决了问题。

在问题一中,利用半数平均法,建立猪肉价格预测模型。

首先通过对2000年1月至2009年6月我国猪肉价格数据的分析,得出猪肉价格在短期内呈线性增长趋势,然后用直线方程拟合该时间序列(猪肉价格随时间变化的序列),在完全确定直线方程模型后,通过该方程求出时间序列的各趋势值,接着运用EXCEL 软件作出二者的曲线并进行比较,证明该直线方程模型的可行性,最后在此基础上,预测出2009年下半年猪肉价格的趋势值。

在问题二中,确定影响猪肉价格的因素,采用灰色关联法,建立猪肉价格与其影响因素的关系模型。

首先使用季节平均法得出猪肉价格的季节指数(1234'1,'0.98,' 1.08,' 1.13S S S S ====),其次对猪肉价格与玉米价格时间序列图进行观察比较,易知两者变化呈正相关,然后利用灰色关联法,以往年的猪肉价格作为参考序列,以往年的玉米价格和季节指数作为比较序列,求出玉米价格和猪肉价格和季节指数与猪肉价格的关联度分别为0.755和0.972。

最后,利用关联度返算,推导得出猪肉价格的预测公式: 2.92109.26'i X G S =++.在问题三中,首先根据猪的不同重量,将猪分为三个成长阶段:1Kg ~15Kg 为幼年期;15Kg ~90Kg 为成长期;90Kg ~100Kg 为成年期。

由于猪的体重从5到100公斤呈正态分布,可以算出三个阶段的猪的数量分别为5,990,5。

然后根据猪场收入与成本建立猪场盈亏平衡点等式模型,可以得到猪粮比为6.5:1,即该养猪场的盈亏平衡点。

数学建模___城市居民食品分析及价格预测

数学建模___城市居民食品分析及价格预测

数学建模___城市居民食品分析及价格预测在全球粮食短缺状况日益严重的今天,食品价格的变化,对城市居民的财务状况以及城市经济发展造成了一定的影响,因此分析和预测城市居民食品价格变化及居民消费习惯,以便促进政府在经济支出和社会抚养上更有效地作出决策采用数学建模方法将是一种有效的选择。

建模目标:本模型旨在分析城市居民食品的价格趋势,以便预测和控制城市居民的消费习惯及社会经济发展,发现城市居民在各类食品上的消费水平及支出模式。

建模框架:一般来说,这种食品价格趋势的建模框架有动态的市场均衡模型,收入及城乡收入效应模型,商品交换模型,均衡模型,价格收入离散模型,而且许多模型都可以通过增加外生变量来改进效果。

在这里,本文采用商品交换模型,更详细地探讨城市居民食品价格的变化规律,从而分析城市居民的消费习惯及结构。

建模方法:(1)首先,本模型假定城市居民在价格和收入条件下,有理性和绝对可行的消费策略,并考虑到消费者本身特定的物价反应,以及商品间的竞争性和外生变量的影响,消费均衡价格可以通过最小化商品价格组合成本函数来定义。

(2)其次,具体来说,本模型旨在拟合城市居民食品的价格和量的关系,对价格、收入、市场竞争力及分类的商品的消费习惯、偏好等进行模拟,从而预测未来价格的变化趋势,并且针对价格变化和消费偏好,更好地组合食品,从而得到最小价格组合商品。

(3)最后,还可以针对特定城市居民通过拟合贚州经济的收入状况及消费习惯,更进一步确定消费效应并建立实证模型,从而推出更为具体的消费决策和微调政策,进一步促进政府的财政支出及营建社会的抚养体系。

综上,通过应用数学建模,本文进一步分析城市居民食品的价格趋势,有助于政府和社会更好地控制和预测城市居民的消费习惯及经济状况。

食品价格变动分析

食品价格变动分析

2014年8月24日模拟三承诺书我们仔细阅读了数学建模竞赛的竞赛规则我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): C所属学院(请填写完整的全名):机电工程学院参赛队员(打印并签名) 1. 张亚明2. 张威3. 刘焱焱日期: 2014 年8 月 24日2014年河南科技大学数学建模竞赛选拔编号专用页评阅编号(评阅前进行编号):评阅记录(评阅时使用):评阅人评分备注食品价格变动分析摘要本文对全国50个城市主要食品平均价格变动情况的问题进行了建模、求解和相关分析。

针对问题一,将50个城市作为我国的代表,同时将主要食品进行分类,分析各类食品的波动特点以体现我国食品价格波动的特点。

第一步分析附录中的数据,并对数据进行处理,依据传统食品分类法分为八大类。

第二步根据食品分类结果,通过制作价格波动图及查找资料分析各类食品价格的波动特征,从而体现我国食品价格波动的特点。

针对问题二,我们利用各个食品价格变动折线图,我们根据第一问的图像和方差,将方差接近的放在一起分为四类,在四大类食品中选出具有代表性的食品进行进一步的研究。

首先我们根据问题一的折线图大致推测和实际数据大致吻合的函数类型,应用SPSS软件和MATLAB软件,对相应数据进行线性,二次,三次,对数等多种模型的拟合。

然后利用负相关系数2R值、方程显著性检验F对函数曲线和实际数据的吻合度进行检验。

如果模型的拟合效果较好,就运用拟合函数进行2014年5月份的走势预测,并利用前期数据计算预测值与实际值的相对误差,都处于合理范围内,说明预测有效。

中国粮食价格波动分析_基于ARCH类模型

中国粮食价格波动分析_基于ARCH类模型

2010.4 中国粮食价格波动分析:基于ARCH类模型*罗万纯1刘锐2内容提要:了解粮食价格波动的特征对采取相应政策稳定粮食价格具有重要的现实意义。

本文利用GARCH、GARCH-M、TARCH和EGARCH等ARCH类模型对粮食价格的波动、波动的非对称性进行了分析。

研究表明:籼稻、粳稻、大豆价格没有显著的异方差效应;小麦和玉米价格波动有显著的集簇性;小麦市场和玉米市场没有高风险高回报的特征;小麦价格波动有非对称性,即价格上涨信息引发的波动比价格下跌信息引发的波动大。

本文在此基础上提出:可以利用价格波动的集簇性对未来的价格波动进行预测;要不断完善粮食市场,引导市场参与主体理性投资;要特别关注引起价格上涨的因素并采取相应措施。

关键词:粮食价格波动 ARCH类模型一、引言近年来,中国粮食价格频繁波动。

1997~2007年,籼稻、粳稻、小麦、大豆价格呈现相同的变化趋势,1997年3月至2003年9月价格不断下跌,但从2003年10月开始价格不断上涨。

玉米价格的波动与其他品种粮食价格的波动有些差异,1997年3月至2000年4月不断下跌,但从2000年5月开始呈现在波动中不断上涨的变化趋势。

粮食价格的频繁波动对生产者行为、消费者行为以及宏观经济都产生了重大影响,因此,了解粮食价格波动的特征对采取相应政策稳定粮食价格具有重要的现实意义。

粮食价格波动问题一直备受关注,有很多学者从不同角度进行了研究。

关于粮食价格波动的特点,冯云(2008)的研究表明,粮食价格波动具有集簇性和明显的非对称性。

关于粮食价格波动的影响因素,Lapp and Smith(1992)认为,粮食价格波动水平直接和间接受到宏观经济政策特别是货币政策的影响;钟甫宁(1995)强调了稳定的政策和统一的市场对避免粮食价格人为波动的重要性;柯炳生(1996)认为,农户的粮食储备及其市场反应行为是造成粮食价格波动的重要原因之一;谭江林、罗光强(2009)的研究表明,通货膨胀是粮食价格波动的Granger原因。

食品价格波动的数学建模

食品价格波动的数学建模

题目:食品价格变动分析摘要食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。

本文针对食品价格的预测与分析问题,就2014年1月-2014年4月50个城市主要食品平均价格变动情况进行了数据分析,利用食品分类系统对27种主要食品进行了分类,并通过excle统计软件对价格的波动情况进行了数据汇总和散点图的制作,从而更加直观的描述价格变化,建立基于最小二乘法的多项式拟合函数模型,利用matlab应用软件进行了模型的求解,利用多元线性的回归命令regress进行了显著性检验,很好地解决了对食品波动特点的分析和2014年5月份食品价格走势进行预测的问题。

在数据分析之前,我们通常需要先将数据标准化。

本文利用“最小—最大标准化”的方法对原始数据进行了标准化处理,故可以不考虑27种食品的规格等级和计量单位对食品价格波动和预测的影响,从而简化了问题分析的复杂性,增加了数据分析的综合性。

对于问题一,因为食品种类的繁多使分析工作寸步难行,首先要对所涉及的主要食品进行分类,于是利用食品分类系统将食品分成7类,建立数据分析模型,利用excle 做散点图进行价格变动分析对于问题二,鉴于数据标准化和平均化处理后的数据仍然杂乱无章,对其进行二次累加使其关联性更好的表现,找出其表现的规律性,在此基础上建立基于最小二乘法的多项式拟合模型,利用三次多项式对7类食品的相对价格走势进行拟合,并依次用多元线性回归分析对7类食品拟合后的函数进行显著检验,通过拟合函数预测 2014年5 月的食品价格走势。

最后是对模型的评价和推广,其中,利用固定属性的分类方法可以应用到多个领域,excle统计软件很好的描述了数据的变化,基于最小二乘法的多项式拟合精度很高,能够得到良好的预测结果,回归分析中的regress命令是十分有效的matlab检验工具,检验具有较强的实用和推广价值。

关键词:食品分类系统最小二乘法回归分析 regress 多项式拟合食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。

数学建模论文-生猪价格[1]

数学建模论文-生猪价格[1]

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学院(请填写完整的全名):参赛队员(打印并签名) :1.2.3.日期: 2010 年 5 月 29 日评阅编号(教师评阅时填写):生猪价格问题摘要本文主要就生猪价格下跌原因以及如何制定合理的生猪价格定价策略问题采用线性回归和对数线性模型以及统计学知识对其进行分析。

问题一,采用线性回归法,对猪肉价格的发展趋势进行短期预测。

首先通过对2009年12月到2010年5月我国猪肉价格分析得出,猪肉价格在短期内呈线性下降趋势,得到线性方程^t S a bt =+,然后用根据这个线性方程拟合该时间序列上的猪肉变化趋势,再与实际的变化曲线进行比较,说明此方法的可行性,并对2010年6月的猪肉价格进行预测。

问题二,首先根据猪的不同重量,将猪分为三个成长阶段:5Kg ~25Kg 为幼年期;25Kg ~90Kg 为成长期;90Kg ~110Kg 为成年期。

由于猪的体重从5到110公斤呈正态分布,可以算出这三个阶段的猪的数量比为6:988:6。

然后根据猪场收入与成本建立猪场盈亏平衡点等式模型362%100n X G m ⨯⨯⨯=⨯生。

可以得到猪粮比约为6:1,即该养猪场的盈亏平衡点,从而得问题四出定价策略的数学模型中的猪粮比参数s 。

接着对2009年12月到2010年5月的猪肉价格和猪料价格进行统计,分别求出他们之间的猪料比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:食品价格变动分析
摘要
食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。

本文针对食品价格的预测与分析问题,就2014年1月-2014年4月50个城市主要食品平均价格变动情况进行了数据分析,利用食品分类系统对27种主要食品进行了分类,并通过excle统计软件对价格的波动情况进行了数据汇总和散点图的制作,从而更加直观的描述价格变化,建立基于最小二乘法的多项式拟合函数模型,利用matlab应用软件进行了模型的求解,利用多元线性的回归命令regress进行了显著性检验,很好地解决了对食品波动特点的分析和2014年5月份食品价格走势进行预测的问题。

在数据分析之前,我们通常需要先将数据标准化。

本文利用“最小—最大标准化”的方法对原始数据进行了标准化处理,故可以不考虑27种食品的规格等级和计量单位对食品价格波动和预测的影响,从而简化了问题分析的复杂性,增加了数据分析的综合性。

对于问题一,因为食品种类的繁多使分析工作寸步难行,首先要对所涉及的主要食品进行分类,于是利用食品分类系统将食品分成7类,建立数据分析模型,利用excle 做散点图进行价格变动分析
对于问题二,鉴于数据标准化和平均化处理后的数据仍然杂乱无章,对其进行二次累加使其关联性更好的表现,找出其表现的规律性,在此基础上建立基于最小二乘法的多项式拟合模型,利用三次多项式对7类食品的相对价格走势进行拟合,并依次用多元线性回归分析对7类食品拟合后的函数进行显著检验,通过拟合函数预测 2014年5 月的食品价格走势。

最后是对模型的评价和推广,其中,利用固定属性的分类方法可以应用到多个领域,excle统计软件很好的描述了数据的变化,基于最小二乘法的多项式拟合精度很高,能够得到良好的预测结果,回归分析中的regress命令是十分有效的matlab检验工具,检验具有较强的实用和推广价值。

关键词:食品分类系统最小二乘法回归分析 regress 多项式拟合
食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。

2000年以来,我国城镇居民家庭食品消费支出占总支出的比重一直维持在36%以上。

在收入增长缓慢的情况下,食品价格上涨将使人民群众明显感到生活成本增加,特别是食品价格上涨将降低低收入群体的生活质量。

为监测食品价格的实际变化情况,国家统计部门定期统计50个城市主要食品平均价格变动情况,数据见附件1。

居民消费者价格指数(CPI),是根据与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。

附件2提供了近期居民消费者价格指数数据。

请根据以上信息(附件中只是列出了近期食品价格以及CPI数据,如希望利用更长时间周期内的数据信息,请自行查找,但必须在论文中注明数据来源!),建立数学模型解决以下问题:
(1)根据附件以及相关统计网站的数据,分析我国食品价格波动的特点。

(2)对2014年5月份食品价格走势进行预测。

(3)目前统计部门需要监测大量食品价格变动情况以计算居民消费者价格指数变动情况,能否仅仅通过监测尽量少的食品种类(这里,食品种类是指附件1表格中的商品名称,可以认为每一种商品名称即为一种食品种类)价格即能相对准确地计算、预测居民消费者价格指数?在同样精度要求下,不同地区所选取的食品种类以及种类数目是否一致?请至少选择两个有特点的城市进行说明。

二、模型假设
(1)食品零售价格每十天的平均价格与食品每日的价格偏差很小;
(2)食品的分类是按分类系统来划分的,同类食品的价格波动幅度可大可小,只要总体趋势相同即可;
(5)每一种食品的价格走势与每一大类的价格走势相同;
(6)预测时不考虑极为特殊的情况引起的价格波动,如突发性的自然灾害
(7)假设在所预测的时间范围内国家政府不采取能影响CPI正常走势的相关措施和制定相关法规。

三、符号说明
1、
x——时间(以10天为一单位)
i
h——拟合后的函数
2、
i
y——标准平均化后的价格
3、
i
g——累计一次的时间序列
4、
i
f——累计两次的时间序列
5、
i
6、P——与F对应的概率
4.1问题分析
该问题主要分析我国食品波动的特点,对27种食品一个一个的进行波动分析和特点描述显然是不现实的,它不能反映食品的波动,因此对食品分类描述就显得尤为重要。

4.2建立模型
4.2.1食品分类:
利用食品分类系统并结合附件1中所列的主要食品,可以将食品具体分为七大类: 1、粮食及制品:规格等级为粳米的大米,标准粉和富强粉的面粉;2、豆制品:豆腐;3、食用油:压榨一级的花生油,5L 桶装的大豆油,以及散装的菜籽油;4、肉及其制品:猪肉后腿肉,五花肉,牛肉,羊肉,白条鸡,鸡胸肉和白条鸭;5、蛋及其蛋制品:鸡蛋;6、水产类活鲤鱼,活草鱼,带鱼;7、蔬菜水果类大白菜,油菜,芹菜,黄瓜,西红柿,豆角,土豆,苹果,香蕉 4.2.2数据分析模型:
根据提供的数据,计算2014年1月-4月所给数据中每类食物的平均价格,利用excle 统计软件绘制散点图,描述价格变化曲线,及各类食品的变化特点结果如下: 1)、
特点:价格逐渐上升,幅度逐渐增大。

平均价格 粮食及制品
豆制品 食用油 肉及其制品
蛋及其蛋制品 水产类
蔬菜水果

1 5.3
4.43 17.44333 34.48714286 10.06 20.21 6.77777778 2
5.286666667
4.42 17.49333 34.43857143 10.05 20.356667 6.97444444 3
5.3
4.46 17.49333 34.82285714 10 21.353333 7.93444444
4 5.303333333 4.48 17.51 34.84428571 9.88 21.606667 8.08
5 5.306666667 4.4
6 17.53 34.46857143 9.58 20.973333 7.58444444 6 5.30666666
7 4.46 17.51 34.11714286 9.41 20.706667 7.48555556 7 5.306666667 4.47 17.48667 33.90571429 9.46 20.563333 7.48444444
8 5.313333333 4.46 17.45667 33.69285714 9.7 20.473333 7.32 9 5.343333333 4.47 17.45333 33.49571429 9.76 20.446667 7.07888889
10 5.346666667
4.48
17.37333
33.33428571
9.75
20.453333
6.84。

相关文档
最新文档