小学奥数圆的周长与面积
小学奥数 五年级奥数竞赛班 讲义 [第21讲]圆和扇形的周长与面积(一)
![小学奥数 五年级奥数竞赛班 讲义 [第21讲]圆和扇形的周长与面积(一)](https://img.taocdn.com/s3/m/81beaf87cc175527072208c6.png)
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!
1.一个圆的直径增加 5 米,那么该圆的周长增加(
)米。( 取 3)
A.10
B.15
C.20
D.25
2.如下图所示:一个大圆内有 3 个小圆,其直径的和等于大圆的直径。那么大圆周长与所
有小圆周长之和哪个长?(
)
B.12
C.20
D.28
4
A.相等
B.大圆周长
C.所有小圆周长之和
D.无法确定
3
3.下图中阴影部分的面积是(
)
A.0.5
B.1
C.1.5
D.2
4.如下图,一个半径为 3 厘米的半圆,以半圆的半径为边长做一个正方形,那么图中阴影
部分的面积是多少?( 取 3)(
)
A.4.5 平方厘米
B.6 平方厘米
C.6.75 平方厘米
D.9 平方厘米
圆和扇形的周长与面积(一)
圆是最美的图形 1.圆上各点到圆心的距离相等。 2.疯狂对称。
1
在一个直径为 d 米的地球仪赤道上用铁丝打一个箍,需要多长的铁丝?如果要把这个铁丝箍 向外扩张 1 米(即直径增加 2 米),需要增加多长的铁丝?地球的赤道半径约是 6370 千米, 如果我们也可以给地球的赤道上用铁丝打一个箍,再把这个铁丝箍向外扩张 1 米,需要增加 多长的铁丝?(圆周率可直接用π表示,不需要代入数值)
一个大圆内有 4 个小圆,其直径的和等于大圆的直径。 问:大圆周长与所有小圆周长之和哪个长?为什么?
如图,阴影部分的面积是多少?
如图,ABCD 是边长为 10 厘米的正方形,且 AB 是半圆的直径,则阴影部分的面积是______ 平方厘正方形 ABCD 的边长为 4 厘米,分别以 B、D 为圆心以 4 厘米为半径在正方形内画圆。 求阴影部分面积。(π取 3)
小学五年级奥数 圆和扇形的周长与面积(二)

圆和扇形的周长与面积(二)本讲主线1. 不规则图形的求解4. 其他相关扇形:2. 差不变和等积变形弓形=扇形-△弯角=正方形-扇形.r2. 圆的面积:S=πr2谷子=弓形面积×23. 扇形:在圆的基础上×360120°5 5【例2】(★★★)板块一:不规则图形的常用解法求图中阴影部分的面积。
(π取3)如图, ABCD是正方形,且 FA=AD=DE=1,求阴影部分的面积。
(π取3.14 ) 45°45°20cm1【例4】(★★★)板块二:差不变和等积变形如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分【例3】(★★★☆)面积是多少?(圆周率取 3.14)DE 在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。
(圆周率取3 )AC FB【例5】(★★★★)如图,矩形ABCD中,AB= 6厘米,BC= 4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB= 4厘米,求阴影部分的面积。
(π取3)5. 圆中的直角三角形:顶点在圆上,并且经过圆心的三角形是直角三.C△ABC中,∠C=90°r B【超常大挑战】(★★★★)已知AB、AC、BC分别为3个半圆的直径. 请证明:阴影部分的面积=△ABC的面积. AB C 2知识大总结【今日讲题】1. 公式:圆=π×r2n扇形=圆×3602. 基本模型:弓形,弯角,谷子3. 不规则图形:割补、平移、旋转、对称4. 两个考点:⑴同加同减差不变⑵等积变形5. 一个模型:两个月亮换个三角A例1~超常大挑战【讲题心得】____________________________________________________________【家长评价】______________________________________________________________B C3。
小学数学奥数中常用的数据及规律

小学数学奥数中常用的数据及规律常用数学数据和规律圆周率常用数据:圆周率是一个重要的数学常数,通常用符号π表示。
在小学奥数中,常用的圆周率数据是3.14.我们可以通过简单的乘法来计算圆的周长或面积。
例如,半径为1cm的圆的周长是3.14×1=3.14cm,直径为2cm的圆的周长是3.14×2=6.28cm。
常用特殊数的乘积:在小学奥数中,有一些特殊的数字乘积是经常用到的。
例如,25×3=75,25×4=100,25×8=200,125×3=375,125×4=500,125×8=1000,625×16=,37×3=111.常用平方数:平方数是一个整数与自己相乘的结果。
在小学奥数中,常用的平方数有1²=1,2²=4,3²=9,4²=16,5²=25,6²=36,7²=49,8²=64,9²=81,10²=100,20²=400,30²=900,40²=1600,50²=2500,60²=3600,70²=4900,80²=6400,90²=8100,100²=.常用分数与小数的互化:在小学奥数中,我们需要学会将分数和小数互相转换。
例如,1/2可以转换为0.5,3/4可以转换为0.75,1/5可以转换为0.2,2/5可以转换为0.4,3/5可以转换为0.6,4/5可以转换为0.8,1/8可以转换为0.125,3/8可以转换为0.375,5/8可以转换为0.625,7/8可以转换为0.875,1/20可以转换为0.05,3/20可以转换为0.15,5/20可以转换为0.25,9/20可以转换为0.45,11/20可以转换为0.55,1/25可以转换为0.04,2/25可以转换为0.08,3/25可以转换为0.12,4/25可以转换为0.16,6/25可以转换为0.24.常用立方数:立方数是一个整数与自己相乘再与自己相乘的结果。
六年级圆的周长奥数题

六年级圆的周长奥数题一、基础题型1. 一个圆的半径是3厘米,它的周长是多少厘米?- 解析:根据圆的周长公式C = 2π r(其中C表示周长,π通常取3.14,r为半径)。
当r = 3厘米时,C=2×3.14×3 = 18.84厘米。
2. 已知圆的直径是8分米,求这个圆的周长。
- 解析:因为圆的周长C=π d(d是直径),当d = 8分米时,C = 3.14×8=25.12分米。
3. 一个圆的半径扩大到原来的2倍,它的周长扩大到原来的几倍?- 解析:设原来圆的半径为r,则原来的周长C_1 = 2π r。
半径扩大2倍后变为2r,此时周长C_2=2π×(2r) = 4π r。
C_2div C_1=(4π r)div(2π r)=2,所以它的周长扩大到原来的2倍。
4. 有一个圆形花坛,半径是5米,在它的周围铺一条宽1米的小路,求小路的外沿周长是多少米?- 解析:小路的外沿半径为5 + 1=6米。
根据圆的周长公式C = 2π r,当r = 6米时,C=2×3.14×6 = 37.68米。
5. 一个半圆的直径是10厘米,求这个半圆的弧长(周长的一半)。
- 解析:圆的周长C=π d,半圆的弧长为(1)/(2)π d。
当d = 10厘米时,弧长=(1)/(2)×3.14×10 = 15.7厘米。
二、组合图形中的圆周长问题6. 正方形的边长为10厘米,在正方形内画一个最大的圆,求这个圆的周长。
- 解析:正方形内最大的圆的直径等于正方形的边长,即d = 10厘米。
根据圆的周长公式C=π d,C = 3.14×10 = 30.4厘米。
7. 长方形的长是12厘米,宽是8厘米,在长方形内画一个最大的半圆,求这个半圆的弧长。
- 解析:因为长方形的长是12厘米,宽是8厘米,所以这个半圆的直径最大为12厘米。
半圆的弧长=(1)/(2)π d=(1)/(2)×3.14×12 = 18.84厘米。
六年级上册奥数题圆的面积

小学六年级奥数教材课程圆的周长和面积一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。
画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等。
通过圆心,并且两端在圆上的线段叫做直径。
在同一个圆中,所有的直径都相等,且等于半径的2倍。
圆心决定圆的位置,半径决定圆的大小。
任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫圆周率。
如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径,π表示圆周率,就有C dπ=或2C r。
π是一个无限不循环小数,π=3.14159265358979323846…。
圆的周长:C=2πr 或C=πd,圆的面积:S=πr 2。
圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过对图形的割补、旋转、平移、等积变形等方法加以解决。
需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。
(本讲π均取 3.14)例1、上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过途径的长度是多少米?(得数保留一位小数)分析与解法:钟面的直径是5.8米这个条件是直接的,时针长指的是半径。
解:钟面的面积是:3.14×(5.8×2)2≈26.4(平方米)。
时针绕一圈时针尖端走过途径的长度是:2×3.14×2.7≈17.0(米)。
例2、如图所示,试比较大圆的面积与阴影部分的面积、大圆的周长与阴影部分的周长。
图图(1)分析与解法:本题有两问,一是比较阴影部分面积与大圆的面积;二是比较阴影部分周长与大圆的周长。
为了考虑问题方便,我们把图经过割补成图(1),在图(1)中更容易看出大圆与小圆阴影部分的关系。
学习目标总结重点AOB解:先比较大圆面积与阴影部分的面积。
设大圆半径为r,则小圆半径为r,大圆面积为S 1=πr 2。
二年级奥数(圆形)-附答案

二年级奥数(圆形)-附答案题目一:计算圆的周长问题:一个圆形的周长是16厘米,求该圆的半径和面积。
答案:根据圆的周长公式可知,周长等于2πr(其中r为圆的半径),所以可以得到以下方程式:16 = 2πr求解上述方程式,解得r = 8/π 厘米。
接着,我们可以使用圆的面积公式计算圆的面积。
根据公式,圆的面积等于πr²,将半径代入计算可得:面积= π * (8/π)² = 64/π 平方厘米。
所以该圆的半径为8/π 厘米,面积为64/π 平方厘米。
题目二:计算扇形的面积问题:一个扇形的半径为10米,弧长为5米,求该扇形的面积。
答案:扇形的面积可以通过使用扇形面积公式来计算。
根据公式,扇形的面积等于弧长除以圆的周长乘以圆的面积。
首先,我们需要计算圆的周长,可以使用圆的周长公式计算:周长= 2πr = 2π * 10 = 20π 米。
然后,我们可以计算扇形的面积,将已知的半径和弧长代入公式:面积= (5 / 20π) * π * 10² = 10 平方米。
所以该扇形的面积为 10 平方米。
题目三:计算圆环的面积问题:一个圆环的外半径为12厘米,内半径为8厘米,求该圆环的面积。
答案:圆环的面积可以通过使用圆环面积公式来计算。
根据公式,圆环的面积等于外圆面积减去内圆面积。
首先,我们可以计算外圆的面积和内圆的面积,使用圆的面积公式:外圆面积= π * (12²) = 144π 平方厘米。
内圆面积= π * (8²) = 64π 平方厘米。
然后,我们可以计算圆环的面积,将已知的外圆面积和内圆面积相减:面积= 144π - 64π = 80π 平方厘米。
所以该圆环的面积为80π 平方厘米。
以上是二年级奥数圆形相关问题的答案。
希望对您有帮助!。
小学圆的面积奥数题100道及答案(完整版)

小学圆的面积奥数题100道及答案(完整版)题目1一个圆的半径是3 厘米,它的面积是多少平方厘米?答案:圆的面积= π×半径×半径,即3.14×3×3 = 28.26(平方厘米)题目2圆的直径是8 分米,求面积。
答案:半径= 8÷2 = 4 分米,面积= 3.14×4×4 = 50.24(平方分米)题目3一个圆的周长是18.84 米,求其面积。
答案:周长= 2×π×半径,所以半径= 18.84÷(2×3.14)= 3 米,面积= 3.14×3×3 = 28.26(平方米)题目4圆的面积是12.56 平方厘米,求半径。
答案:3.14×半径×半径= 12.56,半径×半径= 4,半径= 2 厘米题目5直径为10 厘米的圆,面积比半径为6 厘米的圆的面积小多少?答案:直径10 厘米的圆半径为5 厘米,面积为 3.14×5×5 = 78.5 平方厘米;半径6 厘米的圆面积为3.14×6×6 = 113.04 平方厘米,小113.04 - 78.5 = 34.54 平方厘米题目6一个圆的半径扩大3 倍,面积扩大多少倍?答案:原来面积= π×半径×半径,半径扩大3 倍后,面积= π×(3×半径)×(3×半径)= 9×π×半径×半径,面积扩大9 倍题目7两个圆的半径分别是2 厘米和3 厘米,它们面积的和是多少?答案:面积分别为3.14×2×2 = 12.56 平方厘米,3.14×3×3 = 28.26 平方厘米,和为12.56 + 28.26 = 40.82 平方厘米题目8一个圆的面积是50.24 平方分米,在里面画一个最大的正方形,正方形的面积是多少?答案:圆的半径= √(50.24÷3.14)= 4 分米,正方形的对角线是圆的直径为8 分米,正方形面积= 对角线×对角线÷2 = 8×8÷2 = 32 平方分米题目9圆的半径由4 厘米增加到6 厘米,面积增加了多少平方厘米?答案:原来面积= 3.14×4×4 = 50.24 平方厘米,新面积= 3.14×6×6 = 113.04 平方厘米,增加了113.04 - 50.24 = 62.8 平方厘米题目10在一个边长为8 厘米的正方形中画一个最大的圆,圆的面积是多少?答案:圆的直径= 8 厘米,半径= 4 厘米,面积= 3.14×4×4 = 50.24 平方厘米题目11已知圆的面积是28.26 平方米,求周长。
六年级奥数6

圆的周长和面积【典型例题】如图所示,A圆的半径为3厘米,B圆的半径为4厘米,如果A圆不动,B圆沿A 圆的圆周滚动,当B圆滚动到原处时,B圆自身滚动了多少圈B【举一反三】1.如图所示,圆的面积等于长方形的面积,圆的周长是30厘米. 求图中阴影部分的周长是多少厘米?2.圆的面积计算公式是通过把圆转化成长方形推导出来的,把一个圆转化成长方形,长方形的周长比圆的周长多8厘米,原来长方形的周长是多少厘米?7.如图所示,半圆内有一个直角三角形,AB长4厘米,AC长3厘米,求阴影部分的面积。
分数应用题【题型概述】我们知道:知道一个数的几分之几是多少,应该列方程计算,今天,我们就学习这种类型的应用题。
【典型例题】41,第二小组做了13多10个4.晶晶有一些邮票,她把其中的16 多6张送给小芳,把其中的15少8张送给小青,自己还留下40张。
晶晶原来有多少张邮票?5.一只空水缸,早晨放满了水,白天用去其中的15,傍晚又用去29升,这时,水缸中的水比半缸多1升。
求早晨放入水缸多少升水?16只123第二小时行了余下路程的821,8.某人从甲城到乙城需要2小时,第一小时走全程的13多50千米,第二小时的行程等于第一小时的910.求甲乙两城的距离。
【题型概述】记得在学习分数乘法巧算的时候,我们曾拆分分数,运用乘法分配律进行巧算,这样的方法在分数除法中同样适用。
【典型例题】458(14 +0.75) ÷(212 ×0.4+145÷1.8)【题型概述】今天,我们学习在分数除法中如何灵活使用乘法分配律。
【典型例题】414 ÷5+212 ×0.2+514 ×156. (212003 ×958 +720022003 ×9.625)÷9614。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数圆的周长与面积 It was last revised on January 2, 2021
第11讲圆的周长与面积(一)
例1:右图中大圆的周长与大圆中四个小圆周长的和相比,谁大?
思路分析:设大圆的直径为D,四个小圆的直径为d1,d2,d3,d4,则有D= d1+d2+d3+d4。
大圆的周长=πD,四个小圆周长的和
=πd1+πd2+πd3+πd4=π(d1+d2+d3+d4),显然两周长相等。
解:两圆周长相等。
例2:求右图中阴影部分的周长。
思路分析:阴影部分周长包括三个部分:半圆的直径(扇形的
一条半径);二是半圆的弧长;三是圆心角为30°的扇形的弧长。
解:半圆的弧长:×30÷2=(厘米)
扇形的弧长:2××30÷12=(厘米)
阴影部分周长:++30=(厘米)
例3:如右图,已知正方形的面积是60平方厘米,求圆的面积。
思路分析:圆的面积公式是S=πr2,但这里不能求出半径。
我们可以将r2看作一个整体,就可以求出圆的面积。
解:×(60÷4)=(平方厘米)
例4:右图中,三个圆的面积都是200平方分米,求阴影部分面积。
思路分析:首先三个圆的半径相等,而阴影部分拼起来正好是
一个半圆。
(三角形内角和为180°)
解:200÷2=100(平方分米)
例5:下图中,圆的半径为6厘米,求阴影部分面积。
思路分析:将左图沿水平直径折叠,使阴影部分拼合成两个三角形,如图
(a )。
再将图(a )带阴影的三角形绕长方形AB 边中点O 逆时针方向旋转90°,于是两个带阴影的三角形就拼合成了一个正方形,如图(b )。
解:S=6×6=36(平方厘米)
例6:求右图中阴影部分的面积。
(单位:厘米)
思路分析:连结点A 与圆心O 。
阴影部分的面积可用扇形
ABO 的面积减去△ABO 的面积求得。
阴影部分的面积还可以
用半圆的面积先减去扇形AOC 的面积,再减去△ABO 的面积
求得。
解法一:12÷2=6(厘米) ×62×(180-30×2)÷360-6×÷2
=(平方厘米)
解法二:×62÷2-×62×60÷360-6×÷2=(平方厘米)
例7:如图是由正方形和半圆形组成的图形。
其中P 点为半圆周的中点,Q 点为正方形一边的中点。
已知正方形的边长为10,那么阴影部分的面积是多少(π取)
思路分析:过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以O 为AB 中点。
有2ABCD DPC 101S 1010100S 12.522
ππ=⨯==⨯⨯=半圆,(). 作业:
1.图中的等边三角形边长10厘米,求阴影部分周长。
2.右图中有A 、B 、C 三个圆,已知C 圆的半径是1厘米,
求 A 、B 两个圆的周长相差几厘米?
3.求图中阴影部分的周长。
(单位:厘米)
4.如右图,在正方形ABCD中,BD=20厘米,另外C又在以A为圆心的圆周上。
求阴影部分的面积。
5.如图,正方形面积是90平方厘米,求阴影部分面积。
6.如下图,已知AD=BD=3厘米,求阴影部分面积。
7.如上图半圆内有一个直角三角形ABC,AB长3厘米,AC长4厘米,求阴影部分面积。
(AB2+AC2=BC2)
8.右图中,圆O的直径为8厘米,求阴影部分面积。
9.如右图,圆的直径AB=6厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30°,求阴影部分面积。
1.
2.2**1=(厘米)
3.
4.114平方厘米
5.
6.
7.
8.
9.
[2×2-×(2÷2)2]×2=(平方厘米)。