马尔可夫分析法
马尔可夫分析法

马尔可夫分析法马尔可夫分析法是俄国数学家马尔可夫在1907年提出, 并由蒙特·卡罗加以发展而建立起的一种分析方法。
它主要用于分析随机事件未来发展变化的趋势, 即利用某一变量的现在状态和动向去预测该变量未来的状态及动向, 以便采取相应的对策。
1马尔可夫过程及马尔可夫链 [3]定义1设随机序列{X(n) ,n=0, 1, 2, …}的离散状态空间为E, 若对于任意m个非负整数n1,n2, …,nm(0≤n1<n2<…<nm) 和任意自然数k, 以及任意i1,i2, …,im,j∈E满足 [3]P{X(nm+k) =j|X(n1) =i1,X(n2) =i2, …,X(nm)=im}=P{X(nm+k) =j|X(nm) =im} (1) [3]则称X(n) ,n=0, 1, 2, …}为马尔可夫链。
[3]在式(1) 中, 如果nm表示现在时刻,n1,n2, …,nm-1表示过去时刻,nm+k表示将来时刻, 那么此式表明过程在将来nm+k时刻处于状态j仅依赖于现在nm时刻的状态im, 而与过去m-1个时刻n1,n2, …,nm-1所处的状态无关, 该特性称为马尔可夫性或无后效性。
式(1) 给出了无后效性的表达式。
[3]2齐次马尔可夫链和k步转移概率 [3]P{X(nm+k) =j|X(nm) =im},k≥1称之为马尔可夫链在n时刻的k 步转移概率, 记为Pij(n,n+k) 。
转移概率表示已知n时刻处于状态i, 经k个单位时间后处于状态j的概率。
若转移概率Pij(n,n+k) 是不依赖于n的马尔科夫链, 则称为齐次马尔可夫链。
这种状态只与转移出发状态i、转移步数k及转移到达状态j有关, 而与n无关。
此时,k 步转移概率可记为Pij(k) , 即 [3]Pij(k) =Pij(n,n+k) =P{X(n+k) =j|X(n) =i},k>0 (2) [3]式中,0≤Ρij(k)≤1,∑j∈EΡij(k)=10≤Ρij(k)≤1,∑j∈EΡij(k)=1。
马尔可夫过程收敛性分析方法与判定

马尔可夫过程收敛性分析方法与判定马尔科夫过程收敛性分析方法与判定马尔科夫过程是概率论中一个重要的概念,用于描述一类具有“无后效性”的随机现象,其状态转移满足马尔科夫性质。
在实际问题中,我们经常需要研究马尔科夫过程的收敛性,以便判断系统是否趋向于稳定状态。
本文将介绍几种常见的马尔科夫过程收敛性分析方法及其判定准则。
一、平稳分布存在性对于马尔科夫过程,如果存在一个分布π,使得对任意状态i和状态j,都有π(i)p(i,j)=π(j)p(j,i),则称π为该马尔科夫过程的平稳分布。
若该过程中的状态转移概率矩阵P满足某些条件,我们可以判断该过程是否存在平稳分布。
1.1 集合可达性首先,我们需要判断状态转移概率矩阵P的集合可达性。
如果所有状态之间都是互相可达的,即对于任意状态i和状态j,都存在一个非负整数n,使得P^n(i,j)>0,则该马尔科夫过程集合可达。
如果集合可达,那么存在平稳分布π。
1.2 遍历性除了集合可达性,我们还需要考虑马尔科夫过程的遍历性。
如果该过程是集合可达的,并且存在一个状态i,使得从i出发,可以以概率1返回i,则该过程是遍历的。
对于遍历的马尔科夫过程,存在平稳分布π。
1.3 非周期性最后,我们需要判断该马尔科夫过程是否为非周期的。
如果所有状态的周期都是1,即对于任意状态i,只要P(i,j)>0,则状态j的周期为1,那么该过程是非周期的。
非周期的马尔科夫过程存在平稳分布π。
二、收敛性判定基于平稳分布存在性的分析,我们可以进一步讨论马尔科夫过程的收敛性。
根据收敛性的不同程度,我们可以将其分为以下几种情况:2.1 集合收敛如果马尔科夫过程的状态空间是有限的,且存在一个集合S,使得对任意状态x∉S,都存在一个状态y∈S,使得P(x,y)>0,则我们称该过程存在集合收敛。
这意味着在该马尔科夫过程中,只要初始状态不在S中,最终都会进入集合S。
2.2 周期性收敛如果马尔科夫过程的状态空间是有限的,且存在一个状态S,使得从任意初始状态开始,最终都会以周期n(n>1)回到S,则我们称该过程存在周期性收敛。
马尔科夫分析法

谢谢大家
使用原理——概率矩阵
由概率向量构成的方阵即行和列相同的矩 阵称为概率矩阵。马尔可夫分析法预测用 的全部为正概率矩阵。
应用领域
马尔可夫 分析法运用
预测 稳定
科学应用
排队理论 统计学的建模 信号模型 地理统计学 人口模拟预测 基因预测
商业运用
市场预测 风险管理 投资预测 人力资源
① 根据历史数据推算各类人员的转移率,迁出转移 率的转移矩阵P; ② 统计作为初始时刻点的各类人员分布状况S0; ③ 建立马尔可夫模型,预测未来各类人员供给状况S。
实例分析
了解企业岗位设置
假设某企业的岗位设置如下高级经理、部门经理、业务主管 和技术人员, 则N=4
了解企业各岗位人员分布
通过调查, 期初该企业各岗位的人员数量P1,P2,P3,P4分别 为10,25,35,50。 那么(P1,P2,P3,P4)=(10,25,35,50)为不同岗位 人员的初始分布矩阵。
Company Logo
为什么他们都能采用马尔可夫分析法? 答案: 其一,他们都具有马尔可夫性的时间序列(T), 并且各时刻的状态转移概率(P)保持稳定。 其二,马尔可夫分析法是用来稳定预测的。
人力资源中的运用 预测未来组织中规模和分布的演变情况。
举例:未来的升迁、转职、调配或离职等情况。
具体步骤
实例分析 了解企业内部各岗位人员流动情况
调查得出企业内部人员流动情况如下本年度高级经理留 任的有70%、离职的有30%;部门经理晋升为高级经理的有 10%、留任部门经理的有70%、离职的有20%;业务主管晋 升为部门经理的有20%、留任业务主管的有60%、调换担任 技术人员的有10%、离职的有10%;技术人员晋升为业务主 管的有20%。留任技术人员的有60%,离职的有20%。
马尔可夫过程收敛性分析准则

马尔可夫过程收敛性分析准则马尔可夫过程是一种在离散或连续时间和状态空间中描述随机变化的数学模型。
它具有“无后效性”的特征,即未来的状态仅依赖于当前状态,而与过去的状态无关。
马尔可夫过程的收敛性分析是研究该过程在长时间内是否趋于稳定的重要问题。
本文将介绍马尔可夫过程收敛性的几个常用准则。
一、有限状态马尔可夫链收敛性准则对于有限状态马尔可夫链,其状态空间是有限的。
收敛性准则告诉我们在什么条件下,该过程的状态分布会趋于稳定。
1. 遍历性:一个有限状态马尔可夫链是遍历的,当且仅当从任意一个状态出发,经过有限步骤后,可以到达任意状态。
2. 不可约性:若有限状态马尔可夫链的任意两个状态都是连通的,即存在一条路径可以从任意一个状态转移到另一个状态,则称该马尔可夫链是不可约的。
3. 平稳分布:若有限状态马尔可夫链存在一个状态分布向量,使得该分布向量与转移概率无关,并且在经过足够长时间的转移后,状态分布保持不变,则称该分布向量为平稳分布。
定理:有限状态马尔可夫链是收敛的,当且仅当它是遍历的、不可约的,并且存在唯一的平稳分布。
二、连续时间马尔可夫链收敛性准则对于连续时间马尔可夫链,其状态变化是连续的。
收敛性准则告诉我们何时该过程的状态转移概率会趋于稳定。
1. 非爆发性:如果连续时间马尔可夫链从任意状态出发,经过有限时间可以返回该状态的概率为1,则称该马尔可夫链是非爆发的。
2. 非周期性:如果连续时间马尔可夫链不存在周期,即不存在一个正整数k,使得从任意状态出发,经过k个时间单位返回原来的状态的概率为1,则称该马尔可夫链是非周期的。
3. 平稳速率:对于连续时间马尔可夫链的平稳分布,若其达到平稳状态的速度快于马尔可夫链从初始状态到达其他状态的速度,则该平稳速率满足条件。
定理:连续时间马尔可夫链是收敛的,当且仅当它是非爆发的、非周期的,并且存在平稳分布。
三、其他收敛性准则除了上述几个常用的收敛性准则外,还存在其他判断马尔可夫过程收敛性的方法。
《马尔可夫链分析法》课件

马尔可夫链分析法具有无后效性 、离散性和随机性,适用于描述 大量随机现象,如股票价格、人 口迁移等。
马尔可夫链分析法的应用领域
金融领域
马尔可夫链分析法用于描述股票价格、汇率等金融市场的随机波 动,以及风险评估和投资组合优化。
自然领域
在生态学、气象学、地质学等领域,马尔可夫链分析法用于描述物 种分布、气候变化、地震等自然现象。
ABCD
云计算应用
利用云计算资源,实现大规模数据的快速处理和 分析。
跨学科合作
加强与其他学科领域的合作,共同推动马尔可夫 链分析法的技术创新和应用拓展。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 03
马尔可夫链分析法的基本步 骤
建立状态转移矩阵
确定系统的状态空间
首先需要确定系统可能的状态,并为其编号。
计算状态转移概率
根据历史数据或实验结果,计算从一个状态转移到另一个状态的 概率。
构建状态转移矩阵
将状态转移概率按照矩阵的形式排列,形成状态转移矩阵。
计算稳态概率
初始化概率向量
系统的长期行为
02
通过分析稳态概率,可以了解系统的长期行为和趋势,例如系
统的最终状态分布、系统的平衡点等。
预测未来状态
03
基于稳态概率,可以对系统未来的状态进行预测,从而为决策
提供依据。
CHAPTER 04
马尔可夫链分析法的应用实 例
人口迁移模型
描述人口迁移的动态过程
马尔可夫链分析法用于描述人口迁移的动态过程,通过分析人口在各个地区之间 的转移概率,预测未来人口分布情况。这种方法可以帮助政府和企业了解人口流 动趋势,制定相应的政策和计划。
马尔科夫模型

马尔柯夫模型这种方法目前广泛应用于企业人力资源供给预测上,其基本思想是找出过去人力资源变动的规律,来推测未来人力资源变动的趋势。
模型前提为:1、马尔柯夫性假定,即t+1时刻的员工状态只依赖于t时刻的状态,而与t-1、t-2时刻状态无关。
2、转移概率稳定性假定,即不受任何外部因素的影响。
马尔柯夫模型的基本表达式为:Ni(t)=ΣNi(t-1)Pji+V i(t)(i,j=1,2,3……,k t=1,2,3……,n)式中:k—职位类数;Ni(t)—时刻t时I类人员数;Pji—人员从j类向I类转移的转移率;V i(t)—在时间(t-1,t)内I类所补充的人员数。
某类人员的转移率(P)=转移出本类人员的数量/本类人员原有总量这种方法的基本思想是:找出过去人事变动的规律,以此来推测未来的人事变动趋势步骤第一步是做一个人员变动矩阵表,表中的每一个元素表示一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。
一般以5——10年为周期来估计年平均百分比。
周期越长,根据过去人员变动所推测的未来人员变动就越准确。
用哲学历年数据束代表每一种工作中人员变动的概率。
就可以推测出未来的人员变动(供给量)情况。
将计划初期每一种工作的人员数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量马尔可夫法的基本思想是找出过去人力资源变动的规律,来推测末来人力资源义动的趋势。
马尔可夫预测模型建立的基础是:马尔柯夫性假定和转移概率稳定性假定,其中马尔柯夫性假定是指事物本阶段的状态只与前一阶段的状态有关,而与以前其他仟何阶段的状态都无关,用于人力资源则指t+时刻的员工状态只依赖于t时刻的状态,而与t-1、t-2时刻状态无关:转移概率稳定性假定,是指在状态变化的过程中,状态数始终保持不变,即不受任何外部因素的影响。
其基本表达式为:。
(i,j=1,2,3……,kt=1,2,3……,n)式中:k—职位类数;Ni(t)—时刻t时I类人员数:Pji—人员从j类向I类转移的转移率;VI(t)一在时间(t-1,t)内I类所补充的人员数。
马尔可夫分析法

分析各种状态应收账款转为呆账及收回本息的概率。
通过模型计算, 根据马尔可夫链特征向量性质可得: b11表示由N1状态转到N5状态的概率; b12表示由 N1状态转到N6状态的概率; b21表示由N2状态转到 N5状态的概率; b22表示由N2状态转到N6状态的概 率; b31表示由N3状态转到N5状态的概率; b32表示 由N3状态转到N6状态的概率; b41表示由N4状态转 到N5状态的概率; b42表示由N4状态转到N6状态的 概率。
谢谢!
为了动态研究应收账款状态随时间变化的情况, 可 用转移矩阵P来表示每隔1个月的各种状态转移情 况, 用pij表示当前处于Ni状态的应收账款, 1个月后 将处于Nj的概率, 并有:pij≥0, pij=1( i=1, 2, 3, 4, 5, 6; j=1, 2, 3, 4, 5, 6) , 而根据N5、N6是吸收状态, 可得:
在企业客户已拖欠本息达( 逾期) 61 ~120天的应 收账款中, 有23.94%的可能转为呆账、76.06%的 可能付清, 其转化为呆账或收回本息的平均时间 为3.916 598个月; 在企业客户已拖欠本息达( 逾期) 121 ~360天的应收账款中, 有50.12%的可能转为 呆账、49.88%的可能付清, 其转化为呆账或收回 本息的平均时间为3.183 015个月。
其中: T( N1) =m11+m12+m13+m14表示应收账款 由拖欠本息达( 逾期) 0 ~30天转为拖欠本息达( 逾 期) 360天以上或收回本息的平均时间; T( N2)=m21+m22+m23+m24表示应收账款由拖欠 本息达( 逾期) 31 ~60天转为呆账或收回本息的 平均时间; T( N3) =m31+m32+m33+m34表示应收 账款由拖欠本息达( 逾期) 61 ~120天转为呆账或 收回本息的平均时间; T( N4)=m41+m42+m43+m44表示应收账款由拖欠 本息达( 逾期) 121 ~360天转为呆账或收回本息的 平均时间。
马尔科夫分析法

特殊预测法:马尔可夫分析法定义:马尔可夫分析法是应用俄国数学家马尔可夫发现系统状态概率转移过程规律的数学方程,通过分析随机变量的现时变化情况,预测这些变量未来变化趋势及可能结果,为决策者提供决策信息的一种分析方法。
•单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。
在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化,企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。
•市场占有率的预测可采用马尔可夫分析法,也就是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。
俄国数学家马尔可夫在20世纪初发现:一个系统的某些因素在转移中,第N次结果只受第N-1次结果影响,只与当前所处状态有关,与其他无关。
例如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计销售额都无关。
•在马尔可夫分析中,引入状态转移这个概念。
所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转移到另一种状态的概率。
•马尔可夫分析法的一般步骤为:•1、调查目前的市场占有率情况;•2、调查消费者购买产品时的变动情况;•3、建立数学模型;•【•4、预测未来市场的占有率。
例一:一个800户居民点,提供服务的A、B、C三家副食品店,从产品、服务等方面展开竞争,各自原有稳定的居民户购买者开始出现了变化。
经过调查获得上月与本月三家商店的居民资料如表1;两个月中三商店都失去一些客户,同时也都赢得了一些客户,其转移变化资料如表2。
用马尔科夫法预测稳定状态下三商店的市场占有率。
表1表2例二:假定某小区有1000户居民,每户居民每月用一块香皂,并且只购买A牌、B牌、C牌。
8月份使用A牌香皂居民有500户,使用B 牌居民有200户,使用C牌居民有300户。
据调查9月份使用A牌香皂仍在使用的有360户,50户表示要改买B牌,90户表示要改买C牌;在使用B牌的用户中,120户仍在使用B牌,表示改买A牌的有40户,改买C牌的有40户;在使用C牌的用户中,表示仍在使用的有230户,有30户表示改买A牌,有40户表示改买C牌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Company Logo
为什么他们都能采用马尔可夫分析法? 答案: 其一,他们都具有马尔可夫性的时间序列(T),
并且各时刻的状态转移概率(P)保持稳定。 其二,马尔可夫分析法是用来稳定预测的。
人力资源中的运用
➢ 预测未来组织中规模和分布的演变情况。
举例:未来的升迁、转职、调配或离职等情况。
➢ 具体步骤
① 根据历史数据推算各类人员的转移率,迁出转移 率的转移矩阵P;
② 统计作为初始时刻点的各类人员分布状况S0; ③ 建立马尔可夫模型,预测未来各类人员供给状况S。
实例分析
➢了解企业岗位设置
假设某企业的岗位设置如下高级经理、部门经理、业务主管 和技术人员, 则N=4
➢了解企业各岗位人员分布
通过调查, 期初该企业各岗位的人员数量P1,P2,P3,P4分别 为10,25,35,50。 那么(P1,P2,P3,P4)=(10,25,35,50)为不同岗位 人员的初始分布矩阵。
谢谢大家
LOGO
马尔可夫分析法
演讲者:黄水清
演讲内容
1
背景介绍
2
原理介绍
3
应用领域
4
人力资源中的应用
背景介绍
Байду номын сангаас
无后效性
马尔可夫链
马尔可夫 分析法
来力试移状的验过对态工事结程马自近效的具物果的尔然期性研,的仅集预可界状。究第取合测夫和态,次决称时称链社有试于 为不为的会 关验第马需马演界, 结与一尔要尔变有果事次可大可趋一仅物试夫量夫势类取的验链的分和事决过结。统析状物于去果或计法态的第状称,资。加变依一态时料它以化此次无间是,分过类试只关和预析程推验需,状测,与称,结近用态技事这为果期以均术物一无,资预离中的系第后料测散一列一就事的种转次可物马有预未 测尔未可来夫, 过既程可。用于短期预测也可用于长期预测。
实例分析
➢了解企业内部各岗位人员流动情况
调查得出企业内部人员流动情况如下本年度高级经理留 任的有70%、离职的有30%;部门经理晋升为高级经理的有 10%、留任部门经理的有70%、离职的有20%;业务主管晋 升为部门经理的有20%、留任业务主管的有60%、调换担任 技术人员的有10%、离职的有10%;技术人员晋升为业务主 管的有20%。留任技术人员的有60%,离职的有20%。
使用原理——概率矩阵
由概率向量构成的方阵即行和列相同的矩 阵称为概率矩阵。马尔可夫分析法预测用 的全部为正概率矩阵。
应用领域
马尔可夫 分析法运用
预测 稳定
科学应用
➢ 排队理论 ➢ 统计学的建模 ➢ 信号模型 ➢ 地理统计学 ➢ 人口模拟预测 ➢ 基因预测
商业运用
➢ 市场预测 ➢ 风险管理 ➢ 投资预测 ➢ 人力资源