单位根检验内容及标准规定样式分析

单位根检验内容及标准规定样式分析
单位根检验内容及标准规定样式分析

第八章 单位根检验

由于非平稳过程可能存在严重的伪回归问题,所以在对序列进行估计之前,需要检验序列的平稳性。本章介绍了严格的平稳性的统计检验方法--单位根检验。在简要介绍四种主要的非平稳随机过程以产输出单位根检验原理之后,文章主要介绍ADF 检验及PP 检验法,以及介结构突变和单位根检验。 8.1 四种典型非平稳过程简介

前面我们知道,若一个时间序列含有某种变动趋势,即该序列的均值或自协方差函数随时间而改变,则称该序列为非平稳序列。下面介绍四种典型的非平稳过程。

8.1.1随机游走过程

t t t y y ξ+=-1,t=1,2,... (8.11)

若}{t ξ为独立随机分布,即()0=t E ξ,()∞<=2σξt D 。则称}{t y 为随机游走过程(Random Walk Process )。随机游动过程是单位根过程的特例。在现实经济社会中,如股票价格的走势便是随机游走序列。下图是t t t y y ξ+=-1,

()1,0∈t ξ生成的序列。

图8.11 随机游走过程t t t y y ξ+=-1,()1,0∈t ξ生成的序列图

8.1.2随机趋势过程

t t t y y ξα++=-1,),0(2

σξIID t ∈, (8.12)

其中α称为漂移项,由于序列一阶差分后便趋于平稳,又称随机趋势过程为差分平稳过程。

图8.12 t t t y y ξ++=-11.0,()1,0∈t ξ生成的序列

8.1.3趋势平稳过程

t t t y ξβα++= ,其中t t t νρξξ+=-1,1<ρ,),0(2σν∈t (8.13)

由于t t t y ξαβ+=-,即当减去退势后为平稳过程,故趋势平稳过程又称为退势平稳过程。

由t t t y ξβα++=,t t t νρξξ+=-1知:

11)1(--+-+=t t t y ξβα (8.14)

将(4)两边同时乘以ρ,与(3)两边同时相减,整理可得:

t t t y t y νρβα+++=-1'' , ),0(2σν∈t (8.15)

其中,ρβρααα+-=',ρβρβ-=' 这样便得出趋势平稳过程的另一种形式。

图8.13t t t y t y ν+++=-101.001.0,),0(2σν∈t 生成的序列

8.1.4趋势非平稳过程

t t t y t y ξβα+++=-1,),0(2σξIID t ∈ (8.16)

其中α称为漂移项,t β称为趋势项。这种过程在实际经济中很少见。 8.2 单位根检验 8.2.1 DF 检验

考虑AR(1)回归模型

,),0(2σξIID t ∈ (8.21)

(1) 如果 -1< β <1,则}{t y 平稳。

(2) 如果β=1,t y 序列是非平稳序列。(8.21)式可写成:t t y ξ=?显然t y 的差分序列是平稳的。

(3) 如果 ρ 的绝对值大于1,(8.21)式可写成: 。序列发散,且其差分序列是非平稳的。

因此,判断一个序列是否平稳,可以通过检验β是否严格小于1来实现。

t t t y y ξβ+=-1t

t t y y ξβ+-=?)1(

生成随机游走过程:t t t y y ξ+=-1,00=y ,),0(2σξIID t ∈, OLS 估计式为:t t t y y ξβ+=-1

零假设和备择假设分别为1:;1:10<=ββH H

得到β的估计值β

?,并对其进行显著性检验的方法,构造检验β?显著性的 t 统计量。但是,Dickey-Fuller 研究了这个t 统计量在原假设下已经不再服从t 分布,它依赖于回归的形式(是否引进了常数项和趋势项) 和样本长度T 。

构造DF 统计量

∑=--=

-=T

t t y

s s DF 2

2

1

/

)(1?)

?(1?ξβββ, ∑=-=T T t T s 2

2

?11)(ξξ (8.22)

Mackinnon 进行了大规模的模拟,给出了不同回归模型、不同样本数以及不同显著性水平下的临界值,如表8.21。

8.21DF 分布百分位数表

模型(a ):数据生成过程:t t t y y ξ+=-1,00=y ,),0(~2σξIID t OLS 估计式:t t t y y ξβ+=-1 1:0=βH ;1:1<βH

模型(b ):数据生成过程:t t t y y ξ+=-1,00=y ,),0(~2σξIID t OLS 估计式:t t t y y ξβα++=-1 10:0==βα;H ;11:1<≠βα;H

模型(c ):数据生成过程:t t t y y ξα++=-1,00=y ,),0(~2σξIID t OLS 估计式:t t t y y ξγβα+++=-t 1

01:00===γβαα,;H ;01:00≠<≠γβαα,;H

这样,就可以根据需要,选择适当的显著性水平,通过t 统计量来决定能否拒绝原假设。这一检验被称为Dickey-Fuller 检验(DF 检验)

根据Mackinnon 给出的临界值,若用样本计算的DF>临界值,则接受原假设,t y 非平稳;若DF<临界值,则拒绝原假设,接受备择假设。

2.ADF 检验(Augmented Dickey-Fuller Test) 关于AR(p)过程

,t=1,2,…. (8.23) 上式存在p 阶序列相关,用p 阶自回归过程来修正,在上式两端减去1-t y ,通过添项和减项的方法,可得

(8.24)

其中 , 。

零假设和备择假设为:1:0=βH ;1:1<βH 。原假设为至少存在一个单位根;备选假设为:序列不存在单位根。序列t y 可能还包含常数项和时间趋势项。

判断φ的估计值φ

?是接受原假设或者接受备选假设,进而判断一个高阶自相关序t p i i t i t t y y y ξηβα+++=∑-=--1

1

1Δ∑==p

i i 1

ββ∑+=-=p

i j j

i 1

βηt p t p t t t y y y y ξβββα+++++=--- 2211

列AR(p) 过程是否存在单位根。

类似于DF检验,Mackinnon通过模拟也得出了不同回归模型、不同样本数以及不同显著性水平下的临界值。这使我们能够很方便的在设定的显著性水平下判断高阶自相关序列是否存在单位根。并且,Said-Dickey(1984)证明(8.24)式中的β的DF统计量的分布与(8.11)式中β的DF统计量相似。当(8.24)式中分别加入漂移项和趋势项后,其β的DF统计量的分布分别与(8.12)式和(8.13)式中β的DF统计量相似。这样,DF和ADF检验法可以共用一个DF 分布百分位数表,作为临界值的参考。

在进行ADF检验时,必须注意以下两个实际问题:

第一,必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。

第二,选择哪种形式很重要,检验显著性水平的t统计量在原假设下的渐近分布依赖是否存在常数项、趋势项,对应临界值也不同。

若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序列中存在单位根,则检验回归形式选择含有常数,意味着所检验的序列具有线性趋势,一个简单易行的办法是画出检验序列的曲线图,通过图形观察原序列是否在一个偏离0的位置随机变动或具有一个线性趋势,进而决定是否在检验时添加常数项。

若原序列中不存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有线性趋势;若原序列中存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有二次趋势。同样,决定是否在检验中添加时

间趋势项,也可以通过画出原序列的曲线图来观察。如果图形中大致显示了被检验序列的波动趋势呈非线性变化,那么便可以添加时间趋势项。 8.3.PP 检验

Phillips 和Perron 构建了PP 统计量p p t ,检验一阶自回归AR (1)的平稳性,对于

(8.31)

方程原假设和备择假设为

接受原假设,则存在单位根;拒绝原假设则不存在单位根。PP 统计量具体构造形式如下:

σ

γγφφ?2)()(

210

?

002

10

?,f s f T f t t p p --

= (8.82)

式中,0f 是频率为零时的残差谱密度估计值,φ?t 是φ

?的t 统计量,σ?是回归残差的标准差,0γ是回归残差的一致估计量。

同ADF 检验的t 统计量一样,通过模拟可以给出PP 统计量在不同显著水平下的临界值。PP 检验中的滞后阶数可以有AIC 准则等方法确定。

8.3结构突变与单位根检验 8.31三种形式的结构突变

首先从理论上分析三种突变情况。第一,均值突变的随机游走过程和均值突变的退势平稳过程;第二,斜率突变的随机游走过程和斜率突变的退势平稳过程;

t

t t y y ξβ+=-1??

?<=1

:1

:10ββH H

第三,均值、斜率双突变的随机游走过程和均值斜率双突变的退势平稳过程。以样本容量T为200,突变点发生在t=100为例定义三种类型的虚拟变量如下:

1)脉冲式虚拟变量

101

t

101

t

1

=

?

?

?

=,

DP,如下图:

图8.31脉冲式虚拟变量

2)阶跃式虚拟变量

100

t

100

t

1

>

?

?

?

=,

DL,如下图:

图8.32 阶跃式虚拟变量

3)

累进式虚拟变量1

2

t t 2

10

1

121

t i i t t i i i i i t t t t t t DT <≥<≤?????--=,,如下图:

图8.33 累进式虚拟变量

8.32三种外生结构突变模型

Perron (1990)给出了结构突变点已知条件下的单位根检验方法。结构突变点已知时,称其为外生性结构突变点。假定发生结构突变的时点已知为b t 。

模型1:原假设:t y 为均值突变(水平)的单位根过程;备择假设:t y 为含有一个均值突变点(水平)的退势平稳过程。

H10:t y 为均值突变(水平)的单位根过程,即t y 在b t +1期发生脉冲式突变,表达式为:

t t t DP y y t ξρα+++=-1 (8.31)

其中t DP 代表脉冲虚拟变量。定义为:

1

+ t t 1

t t 01t b b ≠+=???=,DP

其中b t +1表示突变发生时点。因为模型是动态,一个时刻的脉冲式信息冲击要扩散到序列的以后各个时期。(8.31)可以写为:

?????∑∑++=+++=t

t t

t y t y t ξαξρα00y y b

b t t t t ≤>,, (8.32)

H11:t y 为含有一个均值突变点(水平)的退势平稳过程,表达式为

t t DL y t ξρβα+++=t (8.33)

其中t DL 是阶跃式虚拟变量,定义为:

b

b

t t t DL ≤>???=t t 01,

模型2:原假设:t y 为结构突变的单位根过程;备择假设:t y 为斜率突变的退势平稳过程。

H20:从b t +1期开始发生漂移项α突变(由于是动态模型,实际上是序列发生斜率突变)的单位根过程。其表达式为:

t t t DL y t ξρα+++=-1y ,)0(~I t ξ。 (8.34)

其中t DL 是阶跃式虚拟变量,定义为:

b

b

t t t DL ≤>???=t t 01,

表示在)1(+≥b t t 时,模型漂移项,即序列的斜率由α突变到ρα+。 对于取对数的经济变量,像对国内生产总值取对数之后,对应其增长率发生突变。

H21:从b t +1期开始,含有斜率突变的退势平稳过程。其表达式为:

t t DT t y t ξρβα+++=, (8.35)

其中t DT 是阶跃式虚拟变量,定义为:

b

b

b t t t t t DT ≤>-???=t t 0,

模型3:原假设:t y 为均值和斜率双突变的单位根过程;备择假设:t y 为均值和斜率双突变的退势平稳过程。

H30:从b t +1时期开始,t y 同时发生脉冲式突变和漂移项突变,即序列的截距和斜率同时发生突变的单位根过程,表达式为:

t t t t DL DP y y t ξρρα++++=-211,)0(~I t ξ (8.36)

其中t DP 代表脉冲虚拟变量,t DL 是阶跃式虚拟变量。定义为:

1+ t t 1t t 01t b b ≠+=???=,DP ,b

b

t t t DL ≤>???=t t 01,;

表示从)1(+≥b t t 时开始,1ρ表示截距发生突变,2ρ表示斜率发生突变。从截距为0、斜率为α突变到截距为1ρ、斜率为α+2ρ。

H31:从b t +1时期开始,t y 同时发生脉冲式突变和漂移项突变的退势平稳过程,表达式为

t t t DL DP y t ξρρβα++++=21t (8.37)

其中t DP 代表脉冲虚拟变量,t DL 是阶跃式虚拟变量。定义为:

1+ t t 1t t 01t b b ≠+=???=,DP ,b

b

t t t DL ≤>???=t t 01,。

Perron 指出,对于在趋势或水平值存在结构突变的过程来说,如果不考虑这种突变,当用ADF 统计量检验单位根时,将会把一个带结构突变的平稳过程误判为随机趋势的单位根过程。也就是说,若进行单位根检验时不考虑结构突变,会导致检验功效降低。

下面以均值突变的平稳自回归为例介绍为什么检验结果却得出是单位根过

程的结论。

图8.31.a t y 时间序列图 图8.31.a t y 散点图

图8.31 平稳自回归过程t t t y y ξ+=-15.0,)1,0(~N t ξ(file :genr1,y1)

图8.32.a t y 时间序列图 图8.32.b t y 散点图 图8.32 均值突变平稳自回归过程t t t D y y ξ++=-55.01,)1,0(~N t ξ,D=0,(T=1~100);D=1,(T=101~200) (file :genr1,y2)

经检验得到平稳自回归过程t t t y y ξ+=-15.0中t y 的自相关系数为0.51,应该是平稳过程。当均值发生突变时(从0变为10),均值突变平稳自回归过程

t t t D y y ξ++=-55.01对应的自相关系数变为0.97,该值很接近单位根。

下面利用单位根检验式分析。不考虑均值突变直接对均值突变平稳自回归过

程t t t D y y ξ++=-55.01,)1,0(~N t ξ,D=0,(T=1~100);D=1,(T=101~200)进行单位根检验,得到:

t t t t y y ξ+?--=?--111186.00048.0y (8.38)

(-0.6*) (-1.65) DW=2.00

由上式可知,ADF=-0.6>-1.95。可见,由于ADF 检验式没有考虑均值突变,检验结果t y 存在单位根。这样导致检验功效降低的原因在于未考虑序列中存在的结构突变。用虚拟变量

101t 101

t 01≤>???=,D

区别突变前后两个时期,得到ADF 检验式如下:

t D ξ++=?4600.4y 4598.0-y 1-t t (8.39)

(-13.36*

) (7.57) DW=2.0

因为ADF=-13.36<-1.95,虚拟变量系数有极高的显著性,所以t y 为带有均值突变的退势平稳过程。

8.33结构突变点已知情况下的单位根检验方法

前面介绍了突变点已知情况下的三种模型,并且指出对于在趋势或水平值存在结构突变的过程来说,如果不考虑突变,当用ADF 统计量检验单位根时将会导致检验功效降低。下面将介绍突变点已知情况下序列单位根的检验方法。

首先根据具体情况,按上述三个备择假设模型(8.33)、(8.35)、(8.37)之一回归,然后逐一进行退势、退均值变化,即从t y 中剔除漂移项。固定趋势和结构变化的影响,所得为退结构残差,用)

(t i ∧ξ表示。其中i=1,2,3,分别与(8.33)、(8.35)、(8.37)式相对应回归得到的残差序列。ADF 检验式为:

t i j i i υξφξηξ+?+=?∑=∧∧∧p

1

j )

(j -t )

(1-t )

(t ,i=1,2,3。 (8.310)

定义η所对应的统计量)(ηt 为AOADF )(i ,它并不服从标准的ADF 分布。其渐近分布与获得残差序列的回归式i 和突变点的位置T b /t =γ有关。

AOADF )(i 临界值表如下,由表(8.31)可知,AOADF )(i 统计量的临界值小于相应ADF 临界值,并以λ=0.5(结构突变点发生在样本区间的中心点)时达到最大。给定检验水平和λ值,由下式关系存在:

)))1(2(3(AOADF AOADF AOADF << (8.310)

表8.31 AOADF )(i 统计量在λ已知和λ未知条件下以及最小t 统计量检验用渐近临界值

以模型1为例,单位根检验步骤如下:

第一步,按备择假设模型形式(8.33)对t y 进行退势,由

t t DL y t ∧

+++=ξρβαt (8.311)

得到退势序列:

t t DL y t

∧∧∧---=ρβαξt (8.312)

第二步,对退势序列t ∧

ξ做单位根检验,得到:

-∧∧∧+=t t t υξβξ1 (8.313)

-∧

∧∧

+=?t t t υξρξ1 (8.314)

需要注意的是,退势序列的单位根检验统计量)(∧βt 、)(∧

ρt 不服从DF 分布,必须查阅Perron (1997)提供的临界值表,如表8.31所示。

如果(8.313)或(8.314)式中的∧

t υ时自相关的,则应该用以下两个表达式检验单位根。

=-∧-∧

∧∧+?+=∑t k

i t t t υξπξβξ1

i i 1 (8.315)

或 ∧

=-∧-∧

∧∧+?+=?∑t k

i t t t υξπξρξ1

i i 1 (8.316)

案例一1275天新上证综指的收盘价格的单位根检验

选例背景

上海证券交易所在05年底为配合股权分置改革工作,适应市场需求,将选择已完成股权分置改革的沪市上市公司组成样本,发布新上证综指,以反映这批股票的市场走势,为投资者提供新的投资尺标。上证所将于2006年第一个交易日发布新上证综指。新上证综指发布以2005年12月30日为基日,以当日所有样本股票的市价总值为基期,基点为1000点。新上证综指简称“新综指”,指数代码为000017。

“新综指”是我国证券市场由权威机构发布的反映股权分置改革实施后公司概况的指数,随着股权分置改革的全面推进,此后不断有新的样本股加入“新综指”。随着市场大部分上市公司完成股改,“新综指”逐渐成为主导市场的核心指数。

案例1内容

本文选取2006年第一个交易日至2011年4月8日共1275天新上海证券价格综合指数开盘价格为样本做单位根检验。该序列如图1。

图1.1275天“新综指”开盘价格序列图

(1)ADF检验法

由图可粗略判断该序列并非随机趋势序列,也非随机趋势非平稳序列,基于对股票性质的认识可粗滤判断该序列为随机游走序列。

双击序列名,打开序列窗口,选择View/Unit Root Test,得到如下图对话框

图2.单位根检验对话框

检验类型默认为ADF 检验,滞后阶数默认根据SIC 准则确定,选择无趋势无漂移项,点击OK,得到该序列ADF 检验结果如下图所示:

图3.(1)式ADF 检验结果

由上图可知,该序列71.1-=ADF t ,均大于1%、5%、10%、下临界值,故接受原假设,该序列存在单位根。进一步在Unit Root Test 下通过选择水平值、一阶差分或二阶差分可确定序列中单位根的个数。如该序列经过一阶差分后,得到如下结果:

1989755.0--=t t Dxzz Dxzz (1)

(-35.3)* DW=1.999

括号中给出的是t 统计量的值,带*号的t 值也就是DF 统计量的值,相应的Eviews 输出结果见下图。

图4.(1)式ADF 检验Eviews 输出结果

单位根过程和单位根检验

第二章 单位根过程和单位根检验 第一节 单位根过程 从本章开始我们进入时间序列的非平稳分析和建模研究。前面的章节的内容主要考虑的是平稳时间序列的建模和预测问题,但对于非平稳的时间序列,只有先进行差分处理,将其转换为平稳的时间序列模型。这样会损失部分信息。本章从理论上介绍非平稳时间序列的性质,讨论非平稳时间序列数据建模的伪回归问题。 非平稳序列的分析建立在维纳过程(布朗运动)和泛函中心极限定理之上。 一. 若干定义 定义1: (1)白噪声过程(white noise ,如图1)。属于平稳过程。 εε2 t t,t y =~iid(0,σ) 图3是日元兑美元差分序列(收益序列),近似于白噪声序列。 (2)随机游走过程(random walk ,如图2)。属于非平稳过程。 εε+2 t t-1t,t y =y ~iid(0,σ) 随机游走的差分过程是平稳过程(白噪声过程)。?yt =t ε。 -3 -2 -1 012 3 100120140160180200220240260280300 white noise -10 -50 510 20 40 60 80 140160y=y(-1)+u 图 1 白噪声序列(σ2=1) 图2 随机游走序列(σ2=1) 随机游走过程是非平稳的,这是因为: +t 012t y =y +u +u +u +t 012t 0E(y )=E(y +u +u +u )=y →∞22t 012t 12t D(y )=D(y +u +u ++u )=E(u +u ++u )=t σ 定义2:单位根过程

随机过程t,{y t =1,2,} 是一单位根过程,若t t-1t y =y +u t =1,2 t u 为一平稳过程,且t t t-s s E(u )=0,cov(u ,u )=μs =0,1,2 定义3:维纳过程 维纳过程(Wiener Process)也称为布朗运动过程(Brownian Motion Process)。 设W(t)是定义在闭区间[0,1]上一连续变化的随机过程,若该过程满足: (a) W(0)=0; (b) 对闭区间[0,1]上任意一组分割 12k 0≤t

单位根检验

Exogenous: Constant, Linear Trend Lag Length: 2 (Automatic - based on SIC, maxlag=13) t-Statistic Prob.*Augmented Dickey-Fuller test statistic -1.605700 0.7863 Test critical values:1% level -4.0216915% level -3.44068110% level -3.144830 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(Y)Method: Least Squares Date: 11/12/14 Time: 23:32Sample (adjusted): 4 150 Included observations: 147 after adjustments Variable Coefficient Std. Error t-Statistic Prob. Y(-1)-0.0196270.012223-1.6057000.1106D(Y(-1))0.2535480.081530 3.1098870.0023D(Y(-2))0.2146390.081798 2.6240080.0096C 4.074679 2.403364 1.6954070.0922@TREND("1")0.008884 0.006079 1.461269 0.1462R-squared 0.148873 Mean dependent var 0.430612Adjusted R-squared 0.124898 S.D. dependent var 1.450725S.E. of regression 1.357109 Akaike info criterion 3.482012Sum squared resid 261.5277 Schwarz criterion 3.583727Log likelihood -250.9279 Hannan-Quinn criter. 3.523340F-statistic 6.209410 Durbin-Watson stat 2.054851 Prob(F-statistic) 0.000124 Lag length:2 即滞后阶数为2,则初始估计模型为 0111122t t t t Y c c t Y Y Y λββ---?=+++?+? 因为ADF 的t=-1.6057> 5%level 的t=-3.440681,所以接受H 0,即存在单位根。 (或因为p=0.7863>α=0.05,所以接受H 0,即存在单位根。) 又因为@TREND(“1”)的p=0.1462>α=0.05,所以接受H 0,即c 1显著为0。 则模型改为011122t t t t Y c Y Y Y λββ---?=++?+?

单位根检验内容及标准规定样式分析

第八章 单位根检验 由于非平稳过程可能存在严重的伪回归问题,所以在对序列进行估计之前,需要检验序列的平稳性。本章介绍了严格的平稳性的统计检验方法--单位根检验。在简要介绍四种主要的非平稳随机过程以产输出单位根检验原理之后,文章主要介绍ADF 检验及PP 检验法,以及介结构突变和单位根检验。 8.1 四种典型非平稳过程简介 前面我们知道,若一个时间序列含有某种变动趋势,即该序列的均值或自协方差函数随时间而改变,则称该序列为非平稳序列。下面介绍四种典型的非平稳过程。 8.1.1随机游走过程 t t t y y ξ+=-1,t=1,2,... (8.11) 若}{t ξ为独立随机分布,即()0=t E ξ,()∞<=2σξt D 。则称}{t y 为随机游走过程(Random Walk Process )。随机游动过程是单位根过程的特例。在现实经济社会中,如股票价格的走势便是随机游走序列。下图是t t t y y ξ+=-1, ()1,0∈t ξ生成的序列。

图8.11 随机游走过程t t t y y ξ+=-1,()1,0∈t ξ生成的序列图 8.1.2随机趋势过程 t t t y y ξα++=-1,),0(2 σξIID t ∈, (8.12) 其中α称为漂移项,由于序列一阶差分后便趋于平稳,又称随机趋势过程为差分平稳过程。 图8.12 t t t y y ξ++=-11.0,()1,0∈t ξ生成的序列 8.1.3趋势平稳过程 t t t y ξβα++= ,其中t t t νρξξ+=-1,1<ρ,),0(2σν∈t (8.13) 由于t t t y ξαβ+=-,即当减去退势后为平稳过程,故趋势平稳过程又称为退势平稳过程。 由t t t y ξβα++=,t t t νρξξ+=-1知: 11)1(--+-+=t t t y ξβα (8.14) 将(4)两边同时乘以ρ,与(3)两边同时相减,整理可得: t t t y t y νρβα+++=-1'' , ),0(2σν∈t (8.15) 其中,ρβρααα+-=',ρβρβ-=' 这样便得出趋势平稳过程的另一种形式。

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项 (面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均

Eviews做单位根检验和格兰杰因果分析

Eviews做单位根检验和格兰杰因果分析 一,首先我根据ADF检验结果,来说明这两组数据对数情况下是否是同阶单整的(同阶单整即说明二者是协整的,这是一种协整检验的方法),我对你的两组数据分别作了单位根检验,结果如下: 1.LNFDI水平下的ADF结果: Null Hypothesis: LNFDI has a unit root Exogenous: Constant Lag Length: 2 (Automatic based on AIC, MAXLAG=3) Augmented Dickey-Fuller test statistic t-Statistic Prob.* -1.45226403166189 0.526994561264069 Test critical values: 1% level -4.00442492401717 5% level -3.09889640532337 10% level -2.69043949557234 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 14 从上面的t-Statistic对应的值可以看到,-1.45226403166189大于下面所有的临界值,因此LNFDI在水平情况下是非平稳的。 然后我对该数据作了二阶,再进行ADF检验结果如下: t-Statistic Prob.* - 2.8606168858628 0.0770552989049772 Test critical values: 1% level -4.05790968439663 5% level -3.11990956512408 10% level -2.70110325490427 看到t-Statistic的值小于10% level下的-2.70110325490427,因此可以认为它在二阶时,有90%的可能性,是平稳的。 2.LNEX的结果: 它的水平阶情况与LNFDI类似,T统计值都是大于临界值的。因此水平下非平稳,但是二阶的时候,它的结果如下: t-Statistic Prob.* -4.92297051527175 0.00340857899403409

面板数据的单位根检验

;. 面板数据的单位根检验 1 LLC (Levin-Lin-Chu ,2002)检验(适用于相同根(common root )情形) LLC 检验原理是仍采用ADF 检验式形式。但使用的却是it y ?和it y 的剔出自相关和确定项影响的、标准的代理变量。具体做法是(1)先从? y it 和y it 中剔出自相关和确定项的影响,并使 其标准化,成为代理变量。(2)用代理变量做ADF 回归,*?ij ε=ρ*ij ε% + v it 。LLC 修正的?()t ρ 渐近服从N(0,1)分布。 详细步骤如下: H 0: ρ = 0(有单位根); H 1: ρ < 0。LLC 检验为左单端检验。 LLC 检验以如下ADF 检验式为基础: ? y it = ρ y i t -1 +∑=i k j j i 1γ? y i t -j + Z it 'φ + εit , i = 1, 2, …, N ; t = 1, 2, …, T (38) 其中Z it 表示外生变量(确定性变量)列向量,φ 表示回归系数列向量。 (1)估计代理变量。首先确定附加项个数k i ,然后作如下两个回归式, ? y it = ∑=i k j j i ? 1 γ? y i t -j + Z it '?φ +t i ε?

;. y i t -1 = ∑=i k j j i ~1 γ ? y i t -j + Z it 'φ%+1 ~-it ε 移项得 t i ε ?= ? y it -∑=i k j j i ?1 γ? y i t -j - Z it '?φ 1 ~-it ε= y it -∑=i k j j i ~1 γ? y i t -j - Z it 'φ% 把t i ε?和1 ~-it ε标准化, * ?ij ε= t i ε?/s i *ij ε%= 1~-it ε/s i 其中s i , i = 1, 2, …, N 是用(38)式对每个个体回归时得到的残差的标准差,从而得到? y it 和y it -1 的代理变量*?ij ε和* ij ε%。

面板数据分析简要步骤与注意事项面板单位根面板协整回归分析

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实 际意义的。这种情况称为称为虚假回归或伪回归( spurious regression )。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的 IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。 由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分 别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统 量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计 量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验 LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我 们说此序列是平稳的,反之则不平稳。 如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认

单位根与协整检验

一、单位根检验的回顾 1、在实际应用中,何种情况下需要对单位根进行检验? 答:理论上,你在实际应用过程中,如果你遇到的样本是时间序列形式的,都要进行单位根检验。原因是,如果你的时间序列数据是单位根的话,类似于你的数据的变化是很不规则的,好像一个“醉汉”。从计量角度看,它影响了我们假设检验当中的“仪器”的准确性。 2、单位根检验的数学形式,或说你应当用数学方式会表述单位根检验的原假设。 3、学会在eviews上对一个时间序列变量进行单位根检验。 (1)如果一个变量具有单位根的特征,那么表示这个变量经过一次差分,就会变成平稳的。 (2)在eviews中,单位根检验的对象是series object。也就是,你要先打开一个series object,然后,在打开的窗口中点击view来观察这个序列是否具有单位根的特征。(3)要特别注意的是,eviews上如果你不

能拒绝你所检验的变量对象是一个单位根,那么此时并不一定表明你所检验的变量一定是I(1),也可能是I(2)或I(3)等更高阶的单整。要注意的是,只要你检验的变量是非平稳的,都会接受原假设。 (4)在eveiws单位根检验要遵循如下的步骤:第一,先对变量(比如Y)进行水平数据的单位根检验(level);第二,如果水平数据拒绝原假设(即不存在单位根),那么检验停止,说明水平数据是一个平稳的时间序列变量;第三,如果水平数据的检验接受原假设,仅能说明你检验的变量是非平稳的,此时需要继续对这个变量的一阶差分进行单位根检验(1S difference)。如果此时拒绝原假设,那么,检验停止,表明这个变量要经过两次差分才会平稳,否则,继续对二阶差分进行单位根检验(1S difference)。总之,检验的目的是判断,到底你所检验的变量经过几次差分后才会平稳?所以,检验一定要到差分平稳后为止。 (5)对你而言,由于有不同的单位根检验方法,所以一个不错的选择是,你同时用不

单位根过程和单位根检验

第二章单位根过程和单位根检验 第一节单位根过程 从本章开始我们进入时间序列的非平稳分析和建模研究。前面的章 节的内容主要考虑的是平稳时间序列的建模和预测问题,但对于非平 稳的时间序列,只有先进行差分处理,将其转换为平稳的时间序列模 型。这样会损失部分信息。本章从理论上介绍非平稳时间序列的性质, 讨论非平稳时间序列数据建模的伪回归问题。 非平稳序列的分析建立在维纳过程(布朗运动)和泛函中心极限定 理之上。 若干定义 定义1: (1) 白噪声过程(white noise ,如图1 )。属于平稳过程。 2 Y t =也 t ?iid (0,(T ) 图3是日元兑美元差分序列(收益序列),近似于白噪声序列。 (2) 随机游走过程(random walk ,如图2)。属于非平稳过程 2 Y t =Y t-i ;t, i ?iid (0,(T ) 随机游走过程是非平稳的,这是因为: y t =y o + U i + U 2 + W u t E(y t ) = E(y 0 + U 1+ U 2+丨1( u 」= y o 2 2 — D(y t ) = D(y o + U i + U 2 + IH+U t ) = E(u i + U 2 + 1卄+U t ) = t ^一 : 定义2 :单位根过程 随机过程{y t,t = 1,2,|||}是一单位根过程,若y t =y t_i + u t = 1,2||| U t 为一平稳过程,且 E(U t )= 0,cov(U t ,U t-s )= Ms S= 0,1,2||| CT 2 =1 ) 随机游走的差分过程是平稳过程(白噪声过程)。心yt = §

单位根过程

单位根过程 1、为什么进行单位根检验 单位根检验是检验序列中是否存在单位根,因为存在单位根就是非平稳时间序列了。单位根就是指单位根过程,可以证明,序列中存在单位根过程就不平稳,会使回归分析中存在伪回归。但是进行单位根检验的序列需服从I(d)过程。当然从变量的自相关图和偏相关图也可以判断序列是否平稳,但准确度不高。而单位根检验平稳性是比较准确的,主要方法是DF检验以及ADF检验。 2、什么是单位根检验 单位根检验是针对宏观经济数据序列、货币金融数据序列中是否具有某种统计特性而提出的一种平稳性检验的特殊方法,单位根检验的方法有很多种,包括ADF检验、PP检验、NP检验等。单位根检验时间序列的单位跟研究是时间序列分析的一个热点问题。 时间序列矩特性的时变行为实际上反映了时间序列的非平稳性质。对非平稳时间序列的处理方法一般是将其转变为平稳序列,这样就可以应用有关平稳时间序列的方法来进行相应得研究。对时间序列单位根的检验就是对时间序列平稳性的检验,非平稳时间序列如果存在单位根,则一般可以通过差分的方法来消除单位根,得到平稳序列。 对于存在单位根的时间序列,一般都显示出明显的记忆性和波动的持续性,因此单位根检验是本书中有关协整关系存在性检验和序列波动持续性讨论的基础。 3、单位根过程 定义2-1 随机序列{x_t },t=1,2,…是一单位根过程,若x_t=ρx_t-1+ε,t=1,2…(1)其中ρ=1,{ε}为一平稳序列,且 E[ε]=0, V(ε)=σ<∞, Cov(ε,ε)=μ<∞这里τ=1,2…。特别地,若{ε}是独立同分布的,且E[ε]=0,V(ε)=σ<∞,则式(1)就变成一个随机游走序列,因此随机游走序列是一种最简单的单位根过程。将式(1)改写为下列形式:( 1-ρL)x_t=ε,t=1,2,…其中L 为滞后算子,1-ρL为滞后算子多项式,其特征方程为1-ρz=0,有根z= 。当ρ=1时,时间序列存在一个单位根,此时{ }是一个单位根过程。当ρ<1时,{x_t}为平稳序列。而当ρ〉1时,{x_t}为一类具有所谓爆炸根的非平稳过程,它经过差分后仍然为非平稳过程,因此不为单整过程。一般情况下,单整过程可以称作单位根过程。在经济、金融时间序列中,常会遇到ρ非常接近1的情况,成为近似单位根现象。近似单位根是介于平稳序列I(0)和单正序列I(1)之间。一般情况下,单整过程可以称作单位根过程。 4、单位根检验的基础 单位根检验是建立ARMA模型、ARIMA模型、变量间的协整分析、因果关系检验等的基础。自Nelson和Plosser利用ADF检验研究了美国名义GNP等14 个历史经济和金融时间序列的平稳性以后,单位根检验业已成为分析经济和金融时间序列变化规律和预测的重要组成部分。因此,单位根检验作为一种特殊的假设检验,其可靠性的研究以及如何寻求可靠性较高的检验方法或统计量多年来一直是时间序列分析中的重要课题。

单位根检验

单位根检验、协整检验和格兰杰因果关系检验三者 之间的关系 实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。 一、讨论一 1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。 2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。 3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验 A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性 B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)

4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews 这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别 二、讨论二 1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。 2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。 3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。2)协整检验中要用到每个序列的单整阶数。3)判断时间学列的数据生成过程。 三、讨论三 其实很多人存在误解。有如下几点,需要澄清: 第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。 第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。 第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可

用EVIEWS处理时间序列汇总

应用时间序列分析 实验手册

目录 目录 (2) 第二章时间序列的预处理 (3) 一、平稳性检验 (3) 二、纯随机性检验 (9) 第三章平稳时间序列建模实验教程 (10) 一、模型识别 (10) 二、模型参数估计(如何判断拟合的模型以及结果写法) (14) 三、模型的显著性检验 (17) 四、模型优化 (18) 第四章非平稳时间序列的确定性分析 (19) 一、趋势分析 (19) 二、季节效应分析 (34) 三、综合分析 (38) 第五章非平稳序列的随机分析 (44) 一、差分法提取确定性信息 (44) 二、ARIMA模型 (58) 三、季节模型 (62)

第二章时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例2.1 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据

文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据

2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图

100 200300400 5006001960 1970198019902000 YEAR O U T P U T 图3:年份和产出的散点图 (二)自相关图检验 例2.3 导入数据,方式同上; 在Quick 菜单下选择自相关图,对Qiwen 原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析

eviews各种检验

(一)、ADF是单位根检验,第一列数据y做ADF检验,结果如下 Null Hypothesis: Y has a unit root Exogenous: Constant, Linear Trend 外因的 Lag Length: 0 (Automatic based on SIC, MAXLAG=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.820038 0.0213 Test critical values: 1% level -4.098741 5% level -3.477275 10% level -3.166190 在1%水平上拒绝原假设,序列y存在单位根,为不平稳序列。但在5%、10%水平上均接受原假设,认为y平稳。 对y进行一阶差分,差分后进行ADF检验: Null Hypothesis: Y has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -9.328245 0.0000 Test critical values: 1% level -2.599934 5% level -1.945745 10% level -1.613633 可见,在各水平上y都是平稳的。因此,可以把原序列y看做一阶单整。 第二列xADF检验如下: Null Hypothesis: X has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic based on SIC, MAXLAG=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.216737 0.0898 Test critical values: 1% level -4.098741 5% level -3.477275

(完整版)EViews面板数据模型估计教程

EViews 6.0 beta在面板数据模型估计中的应用 来自免费的minixi 1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯 2、建立面板数据工作文件workfile (1)最好不要选择EViews默认的blanaced panel 类型 Moren_panel (2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件

3、建立pool对象 (1)新建对象 (2)选择新建对象类型并命名 (3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。,建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图

关闭建立的pool对象,它就出现在当前工作文件中。 4、在pool对象中建立面板数据序列 双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表) 在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。

请看工作文件窗口中的序列名。展开表(类似excel)中等待你输入、贴入数据。 (1)打开编辑(edit)窗口

(2)贴入数据 (3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验 选择单位根检验 设置单位根检验

单位根检验

平稳性的单位根检验:DF检验、ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验 (2011-12-21 12:13:27) ADF检验 作用 检查序列平稳性的标准方法是单位根检验。有6种单位根检验方法:ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验,本节将介绍DF检验、ADF 检验。 比较 ADF检验和PP检验方法出现的比较早,在实际应用中较为常见,但是,由于这2种方法均需要对被检验序列作可能包含常数项和趋势变量项的假设,因此,应用起来带有一定的不便;其它几种方法克服了前2种方法带来的不便,在剔除原序列趋势的基础上,构造统计量检验序列是否存在单位根,应用起来较为方便。 来源 ADF检验是在Dickey-Fuller检验(DF检验)基础上发展而来的。因为DF检验只有当序列为AR(1)时才有效。如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设。在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根。 步骤 一般进行ADF检验要分3步: 1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳; 2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换; 3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了! 在进行ADF检验时,必须注意以下两个实际问题: (1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。 (2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。 ①若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序列中存在单位根,则检验回归形式选择含有常数,意味着所检验的序列具有线性趋势,一个简单易行的办法是画出检验序列的曲线

单位根检验详解

第2节 单位根检验 由于虚假回归问题的存在,因此检验变量的平稳性是一个必须解决的问题。在第十二章中介绍用相关图判断时间序列的平稳性。这一章则给出序列平稳性的严格的统计检验方法,即单位根检验。单位根检验有很多方法,这里主要介绍DF 和ADF 检验。 序列均值为0则无C ,序列无时间趋势则无trend 在介绍单位根检验之前,先认识四种典型的非平稳随机过程。 1、四种典型的非平稳随机过程 (1)随机游走过程。 y t = y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2) 其均值为零,方差无限大(?),但不含有确定性时间趋势。(见图1a )。 -10 -5 5 10 20 40 60 140160y=y(-1)+u 1200 1400 1600 1800 2000 2200 图1a 由y t = y t -1+ u t 生成的序列 图1b 深证成指 (2)随机趋势过程。 y t = α + y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2) 其中α称作位移项(漂移项)。由上式知,E(y 1)= α(过程初始值的期望)。将上式作如下迭代变换, y t = α + y t -1 + u t = α+ (α+ y t -2 + u t -1) + u t = … = αt +y 0 +∑-t i i u 1

y t 由确定性时间趋势项αt 和y 0 +∑-t i i u 1 组成。可以把y 0 +∑-t i i u 1 看作随机 的截距项。在不存在任何冲击u t 的情况下,截距项为y 0。而每个冲击u t 都表现为截距的移动。每个冲击u t 对截距项的影响都是持久的,导致序列的条件均值发生变化,所以称这样的过程为随机趋势过程(stochastic trend process ),或有漂移项的非平稳过程(non-stationary process with drift ),见图2,虽然总趋势不变,但随机游走过程围绕趋势项上下游动。由上式还可以看出,α是确定性时间趋势项的系数(原序列y t 的增长速度)。α为正时,趋势向上;α为负时,趋势向下。 20 40 60 80 stochastic trend process -100 -80-60-40-20 020 1002003004005006007008009001000 y=-0.1+y(-1)+u 图2a 由y t =0.1+ y t -1+ u t 生成的序列 图2b 由y t =- 0.1+ y t -1+ u t 生成的序列 因为对y t 作一次差分后,序列就平稳了, ? y t = y t - y t -1 = α + u t (平稳过程) 所以也称y t 为差分平稳过程(difference- stationary process )。α是? y t 序列的均值,原序列y t 的增长速度。 (3)趋势平稳过程 y t = β0 + β1 t + u t , u t = ρu t -1 + v t , (ρ <1, v t ~ IID(0, σ2)) y t 与趋势值 β0+β1t 不同,差值为u t 。因为u t 是平稳的,y t 只会

单位根检验、协整检验和格兰杰因果

实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。若所有检验序列均服从同阶单整,可构造V AR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。 一、讨论一 1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。 2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。 3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验 A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性 B、JJ检验是基于回归系数的检验,前提是建立V AR模型(即模型符合ADL模式) 4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别 二、讨论二 1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。

相关文档
最新文档