固体物理学:红外和Raman光谱分析
红外光谱(IR)和拉曼光谱(Raman)

3.3红外分光光度计
按分光器将红外分光光度计分为四代: 以人工晶体棱镜作为色散元件的第一代; 以光栅作为分光元件的第二代; 以干涉仪为分光器的傅里叶变换红外光度计是第3代;
用可调激光光源的第4代仪器。
3.3.1双光束红外分光光度计的工作原理:
3.3.2 红外分光光度计的主要部件:
(1)光源: 光源的作用是产生高强度、连续的红外光。 (a)硅碳棒。由硅碳砂加压成型并经锻烧做成。工作温 度1300~1500℃,工作寿命1000小时。硅碳棒不需要预热, 寿命也较长。价格便宜。
波长或波数可以按下式互换:
_
( cm-1)=1/λ(cm)=104/λ(μm)
在2.5μm处,对应的波数值为: _ = 104/2.5 (cm-1)=4000cm-1
一般扫描范围在4000~400cm-1。 波长在2.5~25μm,叫中红外区。 波长0·75~2·5μm叫近红外区。 波长在25~100μm叫远红外区。
到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
近来,已采用可调激光器作为光源来代替单色器,研制 成功了激光红外分光光度计,即第四代红外分光光度计, 它具有更高的分辨率和更广的应用范围,但目前还未普及。
υ as
面内变 形振动
δ 面内
面外变 形振动 δ 面外
面内摇摆 ρ
剪式振动
δs
面外摇摆 ω 扭曲振动 τ
跃迁时能级变化的大小为:as > s > δ。
能级变化大的出峰在高频区,即波数值大;能级变化小 的出峰在低频区,即波数值小。
红外光谱IR和拉曼光谱Raman课件

优缺点分析
IR光谱
优点是检测的分子类型广泛,可用于多种类型的化学分析;缺点是需要样品是固态或液态,且某些基团可能无法 检测。
Raman光谱
优点是无需样品制备,对气态、液态和固态样品都适用;缺点是检测灵敏度相对较低,可能需要更长的采集时间 和更强的光源。
选择与应用指南
选择
根据样品的类型和所需的化学信息,选择合适的分析方法。对于需要检测分子振动信息 的样品,IR光谱更为合适;而对于需要快速、非破坏性检测的样品,Raman光谱更为
领域的研究和应用。
04
CATALOGUE
红外光谱(IR)与拉曼光谱( Raman)比较相似性与差异性Fra bibliotek相似性
两种光谱技术都利用光的散射效应来 检测物质分子结构和振动模式。
差异性
IR光谱主要检测分子中的伸缩振动, 而Raman光谱则主要检测分子的弯曲 振动。此外,IR光谱通常需要样品是 固态或液态,而Raman光谱对气态和 液态样品也适用。
拉曼散射是由于物质的分子振动或转动引起的,散射光的频率与入射光的频率不同 ,产生拉曼位移。
拉曼散射的强度与入射光的波长、物质的浓度和温度等因素有关。
拉曼活性与光谱强度
拉曼活性是指物质在拉曼散射中的表 现程度,与物质的分子结构和对称性 有关。
在拉曼光谱实验中,可以通过控制入 射光的波长和强度,以及选择适当的 实验条件来提高拉曼光谱的强度和分 辨率。
红外光谱解析
特征峰解析
根据红外光谱的特征峰位置和强 度,推断出分子中存在的特定振
动模式。
官能团鉴定
通过比较已知的红外光谱数据,可 以鉴定分子中的官能团或化学键。
结构推断
结合其他谱图数据(如核磁共振、 质谱等),可以推断分子的可能结 构。
物理学中的红外光谱和拉曼光谱

物理学中的红外光谱和拉曼光谱红外光谱和拉曼光谱是物理学中常见的两种光谱分析技术。
红外光谱(Infrared Spectroscopy)是通过测量吸收红外光的能力来分析物质的分子结构和化学键的情况;而拉曼光谱(Raman Spectroscopy)则是通过测量分子和晶格结构对入射光的散射来分析物质的分子结构和化学键的状态。
这两种光谱分析技术已成为当今科学技术领域中不可或缺的重要工具。
红外光谱常用于分析物质的分子结构,还可分析分子中的化学键。
分子中的原子可通过它们的质量、电荷和其环境对红外光的散射和吸收,发生振动和旋转。
每个分子都有自己的特定振动模式,包括结构和运动序列。
当红外光照射样品时,这些振动模式会形成一个可识别和特异的吸收图谱。
吸收的图谱可分为不同的区域,每个区域可对应特定的化学键或分子结构。
通过识别样品中各区域的特征吸收带,研究人员可以分析样品中存在的分子结构和化学键种类,从而了解样品的组成和特性。
与红外光谱相比,拉曼光谱具有更高的分辨率和更广的适用范围。
拉曼光谱中的散射光谱是通过入射光与样品分子或物质中发生的振动和旋转的相互作用而产生的。
这种光谱分析方法具有非破坏性、快速和高灵敏度等优点。
由于在红外光谱中存在的低频振动模式在拉曼光谱中也很活跃,因此该技术与红外光谱相比较而言,可提供更准确和更灵敏地分析可得到更高的分辨率。
目前,世界上许多领先的科学研究机构和实验室都应用拉曼光谱技术来研究从天体物质到分子生物学等研究值得注意的范围,以展现其在此领域中不可或缺的作用。
虽然红外光谱和拉曼光谱技术在科学、医学和工程领域中都有着广泛的应用,但这些技术也存在一些仍需注意、继续深究的领域。
例如,在生物医学领域中,研究人员正在探索利用红外光谱和拉曼光谱技术来识别癌细胞、病毒和菌株。
这些应用还需要更多的研究、开发和改进,才能更好地用于检测、治疗和预防世界各地所面临的健康问题。
综而言之,红外光谱和拉曼光谱技术在物理学中的应用非常广泛,并成为现代科学研究中不可或缺的重要工具。
红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别1)拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。
2)在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。
3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。
所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。
4)拉曼光谱与红外光谱可以互相补充、互相佐证。
红外光谱与拉曼光谱的比较1、相同点对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。
因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。
2、不同点(1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;(2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移;(3)两者的产生机理不同。
红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。
拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。
散射的同时电子云也恢复原态;(4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。
而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池;(6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。
物理实验技术中的红外与拉曼光谱分析方法

物理实验技术中的红外与拉曼光谱分析方法红外光谱和拉曼光谱是物理实验中常用的分析方法,能够帮助科学家研究物质的结构和性质。
本文将探讨红外光谱和拉曼光谱的原理、应用以及在物理实验技术中的重要性。
在物理实验中,红外光谱和拉曼光谱被广泛应用于分析不同材料的化学成分和结构。
红外光谱通过测量物质吸收或散射红外光的波长来确定其分子振动信息,从而帮助科学家鉴定和定量分析物质。
而拉曼光谱则是通过测量物质散射光的频率来研究物质的分子振动和晶格振动。
这两种光谱技术在物理实验中有着广泛的应用,不仅可以用于化学、材料科学等领域的研究,还可以用于生物医学等领域的研究。
红外光谱分析方法的原理基于分子的振动吸收。
每个分子都有一些特定的频率,当红外光与分子相互作用时,分子会吸收特定频率的能量并发生振动。
这些吸收带的位置和强度可以提供关于分子结构和化学键的信息。
通过红外光谱分析,科学家可以研究材料的组成、纯度、分子间的相互作用等。
拉曼光谱与红外光谱不同,它是通过测量物质分子或晶格的光散射来研究其结构和性质的。
当光线通过物质时,其中一部分光线将散射出去,在散射过程中,光子与物质相互作用发生频率的变化,这就是拉曼散射现象。
通过测量散射光的频率,可以获得物质的拉曼光谱。
拉曼光谱可以提供关于物质的化学组成、晶格结构以及分子之间的相互作用等信息。
在物理实验中,红外光谱和拉曼光谱被广泛使用于材料科学的研究中。
例如,科学家可以利用红外光谱和拉曼光谱来研究有机化合物、聚合物材料以及表面涂层等材料的结构和性质。
通过分析这些材料的光谱数据,科学家可以进一步了解它们的热稳定性、力学性能和化学反应性等。
此外,红外光谱和拉曼光谱还可以应用于催化剂的研究、纳米颗粒的表征以及生物医学领域的研究中。
物理实验技术中的红外光谱和拉曼光谱分析方法的重要性不可忽视。
这些分析方法不仅提供了关于物质结构和性质的重要信息,还可以帮助科学家设计和合成新材料,改善现有材料的性能。
物理实验中的拉曼与红外光谱测试方法

物理实验中的拉曼与红外光谱测试方法导言:在物理实验中,拉曼和红外光谱测试是两种常用的方法。
这两种方法在研究物质的结构和性质方面有着重要的应用。
本文将依次介绍拉曼和红外光谱测试的原理、设备以及应用领域。
一、拉曼光谱测试方法拉曼光谱测试方法是一种基于物质分子振动转换能级的光散射现象的测试技术。
当物质受到激发光束的照射时,一部分光子将通过物质,而另一部分光子则与物质分子进行作用,发生散射。
这种散射光中,有一部分光子的频率发生了微小的变化,称为拉曼散射光。
通过分析拉曼散射光的频率变化,可以了解物质的化学键、分子结构以及晶格振动等信息。
拉曼光谱测试设备主要由激光器、样品台、光谱仪和检测器等组成。
激光器发射一束单色激光,并将其聚焦在待测物质上。
光谱仪记录散射光的频率变化,并将其转换为拉曼光谱图。
通过分析拉曼光谱图的峰位和峰形,可以获得物质的信息。
拉曼光谱测试具有非破坏性、无需特殊处理样品的优点,广泛应用于材料科学、化学和生物医学等领域。
从材料科学的角度来看,拉曼光谱测试可以用于研究材料的结构、相变以及材料表面特性等。
在化学领域,拉曼光谱测试可以帮助分析物质的成分、化学键的强度以及反应过程等。
此外,生物医学研究中的荧光探针、细胞成像以及体内分子探测等都可以通过拉曼光谱测试实现。
二、红外光谱测试方法红外光谱测试方法是一种基于物质在红外光区吸收光的特性的测试技术。
物质吸收红外光的波长范围通常为2.5到25微米,这个范围对应于物质分子振动和转动能级之间的能量差。
通过测量物质在红外光区的吸收光谱,可以对物质的组成、结构和化学键进行研究。
红外光谱测试设备主要由红外光源、样品台、光谱仪和检测器等组成。
红外光源发射一束宽带红外光,并将其传递到待测物质上。
光谱仪记录吸收光的变化,并将其转换为红外光谱图。
通过分析红外光谱图中吸收峰的位置和强度,可以获得物质的信息。
红外光谱测试被广泛应用于化学、材料学和生物科学等领域。
在化学领域,红外光谱测试可以帮助分析物质的结构、成分和化学键的类型。
红外光谱和拉曼光谱

2.红外光谱的指纹区
1350~400cm-1的低频区称为指纹区。
主要包括 C―O , C―O―C , C―X 的伸缩振动,C―C骨架振动和=CH, =CH2的向外弯曲振动 这个区域吸收峰稠密,差别细微, 不好辨认。 650~910cm-1区域有称为苯环取代区。
三、影响官能团吸收频率的因素
1.内部因素 主要指分子的内部结构对基团频率位移 的影响。 (1).诱导效应 由于取代基具有不同的电负性,通过静 电诱导作用引起分子中化学键电荷分布的变 化,改变了键力常数而导致基团频率位移的 效应称为诱导效应。
图7.21 苯酰胺
五、胺、腈和硝基化合物
1. 胺 主要特征峰 3500~3300 cm-1 (脂肪胺较弱, 芳香较强) 伯胺双峰,仲胺单峰,叔胺无此峰
δNH
1650~1590 cm-1伯胺 , 1500 cm-1仲胺 在
脂肪胺中强度很弱,在芳ቤተ መጻሕፍቲ ባይዱ伯胺和仲胺中强度很强
νCN νNH
1360~1020 cm-1
νC―O
1320~1200cm-1
图7.17 二乙酮、丙醛及丙酰氯
4.酰胺
νNH
3500~3100 cm-1
νC=O δNH
(1)伯酰胺
(2)仲酰胺
1680~1630cm-1
1550~1460 cm-1
(3)叔酰胺
νNH 3350 和 3180 cm-1双峰 νNH 3270 cm-1锐利单峰 无νNH峰
(3). 2000~1500cm-1 这是双键的伸缩振动区, 也可以说是红外谱中的重要区域主要有 C=C, C=O,C=N,―NO2等的伸缩振动。
芳环的骨架振动约在 1450 , 1500 , 1580 , 1600cm-1 。杂芳环与苯环有相似 之处,也在这一区域有吸收。
红外光谱(IR)和拉曼光谱(Raman)

第二代红外光谱仪的色散元件是衍射光栅。 第三代红外分光光度计的色散元件是迈克逊干涉仪,不用狭缝。
(3)检测器 检测器是测量红外光强度的大小并将其变为电讯号的装置。主要有真空热电偶、高莱池和热电量热计三种。
3.3.3. 傅里叶变换红外分光光度计
M2
M1 光源
M4
分束器
样品
检测器
M3
迈克逊干涉仪
FTIR不用狭缝,消除了狭缝对光谱能量的限制,使光能的利用率大大提高。 傅里叶变换红外分光光度计还具有以下特点:
(1)分辨率高,可达0.lcm-1,波数准确度高达0.0lcm-1。 (2)扫描时间短,在几十分之一秒内可扫描一次。可用于快速化学反应的追踪、研究瞬间的变化、解决气相色谱和红外的联用问题。
近来,已采用可调激光器作为光源来代替单色器,研制成功了激光红外分光光度计,即第四代红外分光光度计,它具有更高的分辨率和更广的应用范围,但目前还未普及。
3.1.2红外光谱法的特点 (1)红外光谱是依据样品 吸收谱带的位置、强度、形状、个数,推测分子中某种官能团的存在与否,推测官能团的邻近基团,确定化合物结构。
谱带的位置(波数)由能级变化的大小确定。 谱带的位置(波数)也就是振动时吸收红外线的波数。
谱带的强度主要由两个因素决定:
一是跃迁的几率,跃迁的几率大,吸收峰也就强。 二是振动中偶极矩变化的程度。瞬间偶极矩变化越大,吸收峰越强。
跃迁的几率与振动方式有关: 基频(V0→V1)跃迁几率大,所以吸收较强; 倍频(V0→V2)虽然偶极矩变化大,但跃率几率很低,使峰强反而很弱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r e
ⅱ瞬间偶极矩;非对称分子;
红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带.
②拉曼活性振动 诱导偶极矩 ρ = αE 非极性基团,对称分子;
拉曼活性振动—伴随有极化率变化的振动。 对称分子:
对称振动→拉曼活性。 不对称振动→红外活性
4.选律 ν1S C Sபைடு நூலகம்
振 动 自 由度: 3N- 4 = 4
Rayleigh (Elastic) Scattering
Actually the effect is MUCH stronger than Raman scattering
Stokes 1st order
Anti-Stokes 1st order
Stokes 2nd order
-500
0
500
1000
5)C-C伸缩振动在拉曼光谱中是强谱带。
6)醇和烷烃的拉曼光谱是相似的:I. C-O键与C-C键的力常数 或键的强度没有很大差别。II. 羟基和甲基的质量仅相差2 单位。 III.与C-H和N-H谱带比较,O-H拉曼谱带较弱。
7)有些材料尽管可以用红外谱研究,但Raman谱研究也许更 方便,或者能提供补充信息。
• Raman光谱更适合研究生物分子,因为红外对水特别敏 感,不能用水溶液。而Raman可以。 •共振Raman散射对于研究有机分子常常更有优势。
• 无机材料Raman光谱比红外光谱更适宜用于振动谱研 究。
• 特别是很多无机材料溶于水。
E0基态, E1振动激发态; E0 + hν0 , E1 + hν0 激发虚态;
获得能量后,跃迁到激发虚态.
(1928年印度物理学家Raman C V 发现;1960年快速发展)
1. Raman散射 E1 + hν0 Raman散射的两种 E2 + hν0
跃迁能量差:
∆E=h(ν0 - ∆ν) 产 生 stokes 线 ; 强
拉曼活性
ν2 S C S
红外活性
ν3 S C S
ν4
红外活性
红 外 光谱 —源 于偶 极 矩变 化 Raman光 谱 —源于 极 化 率变 化
对 称 中 心 分 子 CO2,CS2等 , 选 律 不 相 容 。
无 对 称 中心 分 子( 例如 SO2等 ) ,三 种 振动 既 是 红外 活 性振动,又是拉曼活性振动。
• 传统投射式红外谱仪适合中红外波段应用。 • FTIR谱仪更适合在远红外波段应用,但现在也已经普
遍应用于中红外波段。
• FTIR使用的光学元件较少,不用狭缝,因此光通量大。 此外,测量比较节约时间。
红外光谱测量中使用的元器件
• 光源:钨灯用于近红外、电热棒用于中红外、高压水 银弧光灯用于远红外波段。(同步辐射光源)
谱带, 随单键→双键→三键谱带强度增加。 2)红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一
般较弱或强度可变,而在拉曼光谱中则是强谱带。
3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对称 伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。 红外光谱与此相反。
2. Raman位移
对不同物质: ∆ν不同; 对同一物质: ∆ν与入射光频率无关;表征分子 振-转能级的特征物理量;定性与结构分析的依据; Raman散射的产生:光电场E中,分子产生诱导 偶极距ρ
ρ = αE α 分子极化率;
Raman散射的经典理论
6
3.红外活性和拉曼活性振动
eE
①红外活性振动 ⅰ永久偶极矩;极性基团;
红外和Raman光谱分析
第一章:红外和Raman光谱介绍
• 什么是红外光谱?什么是Raman光谱 • 红外谱仪和 Raman谱仪 • 红外光谱和Raman光谱方法的特点 • 红外光谱和Raman光谱研究的基本问题
Raman Intensity (a.u.)
Raman Spectrum of Si (300 K)
5
Raman散射基本原理
Rayleigh散射:
激发虚态
h(ν0 - ∆ν)
弹性碰撞;
无能量交换,仅
改变方向; Raman散射:
hν0
非 弹性碰撞
E1 + hν0 E0 + hν0
hν0 hν0
hν0 + ∆ν
;方向 改变且有 E1
V=1
能量交换;
E0
V=0
Rayleigh散射
Raman散射 h ∆ν
Raman Shift (cm -1)
更全面了解Raman Spectrum
红外和Raman光谱的比较
1
红外光谱仪光路示意图
2
FT-IR谱仪工作原理
FT-IR谱仪是基于Michelson干涉仪
单色光λ入射,干涉强度的变化
两列单色光λ1 、λ2入射,干涉强度的变化
普通光入射后,干涉强度的变化
传统红外光谱仪和FTIR谱仪特点
Raman光 谱 应 用
由 Raman光谱 可 以获 得 分子 和 固体 材 料振 动 谱特 征, 由此 可 以 获得分子各种结构信息和固体材料结构、组分等各种信息。
对于有机分子,Raman可以用来进行研究,但是红外相对于 Raman的优点是前者方便定量化。 1)同种分子的非极性键S-S,C=C,N=N,C≡C产生强拉曼
• FTIR谱仪更适合在远红外波段应用,但现在也已经普 遍应用于中红外波段。
• FTIR使用的光学元件较少,不用狭缝,因此光通量大。 此外,测量比较节约时间。
其它红外光谱测量方法
• 红外光谱的测量有很多方法,这些方法可分为:色散 法、FTIR和非色散法(滤波法)。
• 非色散法多用于特定的检测。例如用于气体的分析等。 优点是方便使用,缺点是参数变动困难。
• 针对特殊的样品和特殊的需要,有很多特殊的红外测 量方法。如光电导法、辐射量热法、光声光谱法、光 热光谱法、反射式、内反射式、消逝波式等
反射测量方法
3
内反射测量方法
• 光电导测量 • 量热法 • 1-辐射量热法 • 2-光声光谱法 • 3-光热光谱法
4
红外光谱能够得到的信息
分子振动模式
分子振动模式
;基态分子多;
∆E=h(ν0 + ∆ν) 产 生 反 stokes 线 ;
弱;
h(ν0 - ∆ν) E1 V=1 E0 V=0
STOKES
Raman位移:
Raman 散射 光与 入
射光频率差∆ν; ν0 - ∆ν
hν0 h(ν0 + ∆ν) h ∆ν
ANTI-STOKES
Rayleigh
ν0
ν0 + ∆ν