1200W双管正激变换器设计之一——变压器设计
正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
双管正激电源课程设计

双管正激电源课程设计一、课程目标知识目标:1. 让学生掌握双管正激电源的基本工作原理,理解其电路构成及各部分功能。
2. 使学生了解双管正激电源的转换效率、输出特性及其影响因素。
3. 帮助学生掌握双管正激电源的电路参数计算方法,并能进行简单电路的设计。
技能目标:1. 培养学生运用所学知识分析和解决实际电路问题的能力。
2. 提高学生动手实践能力,能够搭建和调试双管正激电源电路。
3. 培养学生团队协作和沟通能力,能在小组讨论中分享观点,共同解决问题。
情感态度价值观目标:1. 培养学生对电子技术学科的兴趣,激发学习热情,形成积极的学习态度。
2. 培养学生严谨、认真、负责的科学态度,注重实践操作的规范性和安全性。
3. 引导学生关注新能源和节能技术,培养环保意识和创新精神。
课程性质分析:本课程属于电子技术领域,以理论教学和实践操作相结合的方式进行。
课程内容紧密结合课本,强调知识的应用性和实践性。
学生特点分析:针对高年级学生,已具备一定的电子技术基础,具有较强的学习能力和动手能力。
此阶段学生思维活跃,善于探究,喜欢挑战。
教学要求:1. 确保学生对双管正激电源的理论知识掌握扎实,能应用于实际电路分析。
2. 注重实践操作,培养学生动手能力,提高学生对电路的实际操作技能。
3. 融入情感态度价值观教育,引导学生形成正确的科学态度和价值观。
二、教学内容1. 理论知识:- 介绍双管正激电源的基本原理,包括开关电源的工作模式、双管正激电路的构成及工作过程。
- 讲解双管正激电源的关键参数,如转换效率、输出电压纹波、频率等,分析影响这些参数的因素。
- 深入探讨电路参数的计算方法,结合实际应用场景进行案例分析。
2. 实践操作:- 指导学生搭建双管正激电源实验电路,进行电路调试和性能测试。
- 安排实验项目,让学生通过实际操作验证理论知识,观察和分析电路性能。
3. 教学大纲:- 第一周:双管正激电源原理及电路构成,进行课堂讲解和讨论。
正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。
首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。
其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。
无论是单管正激还是双管正激,都存在磁复位的问题。
且,都可以看成是被动方式的复位。
复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。
复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。
但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik.正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关Vo=Vin*DVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的.加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心.复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好?如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。
双开关正激转换器及其应用设计

双开关正激转换器及其应用设计单开关(或称单晶体管)正激转换器是一种最基本类型的基于变压器的隔离降压转换器,广泛用于需要大降压比的应用。
这种转换器的优点包括只需单颗接地参考晶体管,及非脉冲输出电流减小输出电容的均方根纹波电流含量等。
但这种转换器的功率能力小于半桥或全桥拓扑结构,且变压器需要磁芯复位,使这种转换器的最大占空比限制在约50%。
此外,金属氧化物半导体场效应管(MOSFET)开关的漏电压变化达输入电压的两倍或更多,使这种拓扑结构较难于用在较高输入电压的应用。
图1:正激转换器不带磁芯复位与带磁芯复位之对比正激转换器中,变压器的磁芯单方向磁化,在每个开关周期都需要采用相应的措施来使磁芯复位到初始值,否则励磁电流会在每个开关周期增大,经历几个周期后会使磁芯饱和,损坏开关器件。
相对而言,如果有磁芯复位,电流就不会在每个开关周期增大,电压会基于励磁电感(Lmag)反相并使磁芯复位。
图1以单开关正激转换器为例,简要对比了无磁芯复位与有磁芯复位的电路图及励磁电感电流波形。
有3种常见的标准磁芯复位技术,分别是三次绕组,电阻、电容、二极管(RCD)钳位和双开关正激。
三次绕组磁芯复位技术的电路示意图参见图1b),这种技术能够提供大于50%的占空比,但开关Q1的峰值电压可能大于输入电压的2倍,而且变压器有三次绕组,使变压器结构更复杂。
RCD钳位磁芯复位技术也能使占空比大于50%,但需要写等式和仿真,以检验复位的正确性,让设计过程更复杂。
RCD钳位技术的成本比三次绕组技术低,但由于复位电路中的钳位电阻消耗能量,影响了电源转换效率。
图2:双开关正激转换器电路原理图与前两种磁芯复位技术相比,双开关正激更易于实现,而且开关Q1上的峰值电压等于输入电压,降低了开关所承受的电压应力。
这种技术需要额外的MOSFET (Q2)和高端驱动器,且需要2个高压低功率二极管(D3和D4),参见图2。
双开关正激技术的每个开关周期包含3步:第1步,开关Q1、Q2及二极管D1导通,二极管D2、D3及D4关闭;第2步,开关Q1、Q2及二极管D1关闭,而二极管D2、D3及D4导通;第3步,开关Q1、Q2及二极管D1仍然关闭,二极管D2仍然导通,而二极管D3及D4则关闭。
正激变压器设计

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。
首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。
其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。
无论是单管正激还是双管正激,都存在磁复位的问题。
且,都可以看成是被动方式的复位。
复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。
复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。
但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik.正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关Vo=Vin*DVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的.加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心.复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好?如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。
高效率双管正激变换器的研究

华中科技大学硕士学位论文高效率双管正激变换器的研究姓名:吴琼申请学位级别:硕士专业:电力电子与电力传动指导教师:熊蕊20070210摘要高功率密度、高可靠性和高稳定性是现代电力电子功率变换器不断追求的目标。
双管正激变换器作为一种主要的电力电子功率变换器,由于其开关电压应力低,具有内在抗桥臂直通的能力可靠性高等优点,使得它在通信电源、焊接电源、计算机电源等很多领域都得到了广泛的应用。
本文旨在不增加原主电路和控制电路复杂性的基础上,从变压器原边主开关管驱动方式和副边整流电路两个方面,对传统双管正激电路做出改进,提高电路的效率。
文章对改进后电路的工作过程及具体应用时遇到的问题做出了分析,给出了解决方案。
与传统电路相比,改进后的电路控制电路得到了简化,两个主开关管中的一个能够工作在零电流开通和零电流关断状态,同步整流电路克服了死区和轻载环路电流的影响,电路的整体性能得到了提高。
实验过程中利用峰值电流型PWM控制芯片UC2845,制作了一台15V/300W的样机,实验证明样机工作稳定,各种保护功能完备,改进后的双管正激电路较传统电路效率提高3~4个百分点,整机满载效率最高可达88%。
关键字:双管正激电压自驱动同步整流门极电荷保持环路电流AbstractHigh power density as well as high reliability has always been the goal to pursue in the field of modern electric power converters. As one kind of the modern electric power converters, two transistor forward converter has many attractive characteristics, such as low switch voltage stress, inherent anti-break-through capability, and high reliability. It becomes one of the most widely used topology in the industrial application, especially in the telecommunication energy systems, welding machines and computer power supply.Based on driven approach of main power switch in the primary side of the transformer and rectifier circuit, this paper aims at not increasing the complexity of the main circuit and control circuit of origin, to improve the traditional two transistor forward converter and enhance the efficiency of circuit. The paper made analysis of the process of improved circuit and the specific problems encountered by the application and gave the solutions of the pared with the traditional circuit, the control circuit of the improved converter has been modified to streamline, one of the two main switches can work in a ZCS state, synchronous rectifier circuit can overcome the dead zone and light load loop current, and the circuit's overall performance has been enhanced.Using the current mode PWM controller, a 15V/300W power system was developed during the experiment by the author. The experiment proved stable jobs of the system and simplifying control circuit (similar with the Forward circuit).The circuit improved 3-4 percentage points more efficient than traditional circuit, with the maximum efficiency of 88% of full load.Keywords: t wo transistor forward converter self voltage drivensynchronous rectification gate charge retentioncirculating current独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
《正激变换器的设计》课件

总结词
正激变换器的特点是电路简单、可靠性高、成本低等,广泛 应用于开关电源、适配器、充电器等领域。
详细描述
正激变换器具有电路简单、可靠性高、成本低等优点,因此 在开关电源、适配器、充电器等领域得到广泛应用。它能够 实现输入和输出电压的隔离和变压,同时具有较高的效率和 较低的损耗。
02 正激变换器的设计步骤
通过对电路参数和元件的优化选择, 可以进一步提高正激变换器的效率。
损耗
正激变换器的损耗主要包括开关损耗 、磁性元件损耗和导通损耗。这些损 耗应尽可能降低,以提高整体效率。
温升分析
温度
正激变换器在工作过程中会产生热量,导致温升 。过高的温度会影响变换器的性能和可靠性。
散热
为了控制温升,需要采取有效的散热措施,如自 然散热、强制风冷或液冷等。
选择合适的磁芯和绕组
磁芯材料
01
选择合适的磁芯材料,如铁氧体、硅钢等,以满足工作频率和
磁通密度的要求。
磁芯形状
02
根据实际需求选择合适的磁芯形状,如E型、EE型、罐型等。
绕组线径和匝数
03
根据输入输出电压和电流的大小,计算绕组的匝数和线径,以
确保变压器的电气性能。
计算变压器匝数和线径
匝数计算
根据输入输出电压和磁芯的磁通密度 ,计算绕组的匝数。
、安全认证的要求等方面的内容。
THANKS FOR WATCHING
感谢您的观看
电路组成
总结词
正激变换器的电路组成包括输入滤波器、开关管、变压器、输出整流器和输出 滤波器等部分。
详细描述
正激变换器的电路组成包括输入滤波器用于抑制电磁干扰,开关管用于控制能 量传输,变压器用于实现电压隔离和变压,输出整流器用于将交流电压转换为 直流电压,以及输出滤波器用于平滑输出电压。
1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计1200W双管正激变换器设计之一——变压器设计正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用. 下面举例给大家分享下对正激变换器的设计方法: 规格:输入电压Vin=400V(一般在输入端会有CCM APFC将输入电压升压在稳定的DC400V左右) 输出电压Vout=12V输出功率Pout=1200W效率η=85%开关频率Fs=68KHz最大占空比Dmax=0.35第一,第一,选择磁芯的材质选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下:因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T第二,确定磁芯规格根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)其中:Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数对正激变换器,视在功率Ps=Pout/η+Pout电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2铜窗口占用系数Ku取0.2J=600A/cm2,Ku=0.2 ΔB=0.20T,代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4查磁芯规格书,选用磁芯ETD49,其相关参数如下:第三,计算匝比、匝数1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf)其中Vf为输出二极管正向压降,取0.8V得匝比N=(400*0.35)/(12+0.8)=10.9375,取匝比N=11验算最大占空比Dmax,最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.3522. 根据公式Np=Vin*Ton/(ΔB*Ae)导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106得初级匝数NP=[Vin*Dmax*(1/Fs*106)]/(ΔB*Ae)={400*0.352*[1/(68*103)*106]}/(0.201*213)=48.36Ts,取49Ts3. 次级匝数Ns=Np/N=49/11=4.45Ts4. 取次级匝数Ns=5Ts验算初级匝数Np,初级匝数Np=Ns*N=5*11=55Ts考虑到输入电压较高,采用双管正激比采用单管正激可以大幅减小MOS的电压应力,无需消磁绕组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1200W双管正激变换器设计之一——变压器设计
正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法:
规格:
输入电压Vin=400V(一般在输入端会有CCM A PFC将输入电压升压在稳定的DC400V左右)
输出电压Vout=12V
输出功率Pout=1200W
效率η=85%
开关频率Fs=68KHz
最大占空比Dmax=0.35
第一,
第一,选择磁芯的材质
选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下:
因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,
得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB 的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T
第二,确定磁芯规格
根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)
其中:
Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数
对正激变换器,视在功率Ps=Pout/η+Pout
电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2
铜窗口占用系数Ku取0.2
ΔB=0.20T,J=600A/cm2,Ku=0.2
代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4
查磁芯规格书,选用磁芯ETD49,其相关参数如下:
第三,计算匝比、匝数
1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf)
其中Vf为输出二极管正向压降,取0.8V
得匝比N=(400*0.35)/(12+0.8)=10.9375,
取匝比N=11验算最大占空比Dmax,
最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352
2. 根据公式Np=Vin*Ton/(ΔB*Ae)
导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106
得初级匝数NP=[Vin*Dmax*(1/Fs*106)]/(Δ
B*Ae)={400*0.352*[1/(68*103)*106]}/(0.201*213)=48.36Ts,取49Ts
3. 次级匝数Ns=Np/N=49/11=
4.45Ts
4. 取次级匝数Ns=5Ts验算初级匝数Np,
初级匝数Np=Ns*N=5*11=55Ts
考虑到输入电压较高,采用双管正激比采用单管正激可以大幅减小MOS的电压应力,无需消磁绕组。
7. 再通过初级匝数Np来验算最大磁通变化量ΔB,
最大磁通变化量ΔB=(Vin*Dmax*Ts)
/(Np*Ae)={400*0.352*[1/(68*103)*106]}/(55*213)=0.1767T
根据ΔB+Br<Bs得0.1767+0.055=0.2317<0.39, OK
8. 根据L=N2*Al得,
初级电感量最小值Lmin=Np2*[AL*(1-0.25)]=552*[4440*(1-0.25)]/106=10.0mH
第四,计算各绕组线径
1. 输入电流Ip=Pout/(Vin*Dmax*η)=1200/(400*0.352*0.85)=10.0A
初级线圈电流有效值Ip_rms=Ip*SQRT(Dmax)=10.0*SQRT(0.352)=5.9A
则,初级线圈截面积Swp=Ip_rms/J=5.9/600=0.0098cm2=0.98mm2
多股纱包线单根直径为0.1mm,其单根面积为Sw=3.14*(0.1/2)2=0.00785mm2
得,初级所需纱包线股数Nwp=Swp/Sw=0.98/0.00785=124.8PCS,约125PCS。
即,初级线圈采用125根单根直径0.1mm的纱包线。
2. 次级线圈电流有效值Is_rms=Iout*SQRT(Dmax)=100*SQRT(0.352)=59.3A
次级线圈截面积Sws=Is_rms/J=59.3/600=0.0988cm2=9.88mm2
次级所需纱包线股数Nws=Sws/Sw=9.88/0.00785=1258.6PCS,约1260PCS。
即,次级线圈采用1260根单根直径0.1mm的纱包线。
通常纱包线的电流密度可取范围较大,一般为400~1200A/CM2,结合常用规格,取:
初级线圈采用120根单根直径0.1mm的纱包线绕55Ts;
次级线圈采用1200根单根直径0.1mm的纱包线绕5Ts。